Lab_interaccio/2019/GIGANTES-MERCE/websocket-client/mWebSockets/CryptoLegacy/examples/TestSHA1/TestSHA1.ino

320 lines
8.5 KiB
Arduino
Raw Permalink Normal View History

2025-02-25 21:29:42 +01:00
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the SHA1 implementation to verify correct behaviour.
*/
#include <Crypto.h>
#include <SHA1.h>
#include <string.h>
#define HASH_SIZE 20
#define BLOCK_SIZE 64
struct TestHashVector
{
const char *name;
const char *key;
const char *data;
uint8_t hash[HASH_SIZE];
};
static TestHashVector const testVectorSHA1_1 = {
"SHA-1 #1",
0,
"abc",
{0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A,
0xBA, 0x3E, 0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C,
0x9C, 0xD0, 0xD8, 0x9D}
};
static TestHashVector const testVectorSHA1_2 = {
"SHA-1 #2",
0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
0xE5, 0x46, 0x70, 0xF1}
};
static TestHashVector const testVectorHMAC_SHA1_1 = {
"HMAC-SHA-1 #1",
"",
"",
{0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
0x70, 0x69, 0x0e, 0x1d}
};
static TestHashVector const testVectorHMAC_SHA1_2 = {
"HMAC-SHA-1 #2",
"key",
"The quick brown fox jumps over the lazy dog",
{0xde, 0x7c, 0x9b, 0x85, 0xb8, 0xb7, 0x8a, 0xa6,
0xbc, 0x8a, 0x7a, 0x36, 0xf7, 0x0a, 0x90, 0x70,
0x1c, 0x9d, 0xb4, 0xd9}
};
SHA1 sha1;
byte buffer[128];
bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc)
{
size_t size = strlen(test->data);
size_t posn, len;
uint8_t value[HASH_SIZE];
hash->reset();
for (posn = 0; posn < size; posn += inc) {
len = size - posn;
if (len > inc)
len = inc;
hash->update(test->data + posn, len);
}
hash->finalize(value, sizeof(value));
if (memcmp(value, test->hash, sizeof(value)) != 0)
return false;
return true;
}
void testHash(Hash *hash, const struct TestHashVector *test)
{
bool ok;
Serial.print(test->name);
Serial.print(" ... ");
ok = testHash_N(hash, test, strlen(test->data));
ok &= testHash_N(hash, test, 1);
ok &= testHash_N(hash, test, 2);
ok &= testHash_N(hash, test, 5);
ok &= testHash_N(hash, test, 8);
ok &= testHash_N(hash, test, 13);
ok &= testHash_N(hash, test, 16);
ok &= testHash_N(hash, test, 24);
ok &= testHash_N(hash, test, 63);
ok &= testHash_N(hash, test, 64);
if (ok)
Serial.println("Passed");
else
Serial.println("Failed");
}
// Very simple method for hashing a HMAC inner or outer key.
void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad)
{
size_t posn;
uint8_t buf;
uint8_t result[HASH_SIZE];
if (keyLen <= BLOCK_SIZE) {
hash->reset();
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
if (posn < keyLen)
buf = key[posn] ^ pad;
else
buf = pad;
hash->update(&buf, 1);
}
} else {
hash->reset();
hash->update(key, keyLen);
hash->finalize(result, HASH_SIZE);
hash->reset();
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
if (posn < HASH_SIZE)
buf = result[posn] ^ pad;
else
buf = pad;
hash->update(&buf, 1);
}
}
}
void testHMAC(Hash *hash, size_t keyLen)
{
uint8_t result[HASH_SIZE];
Serial.print("HMAC-SHA-1 keysize=");
Serial.print(keyLen);
Serial.print(" ... ");
// Construct the expected result with a simple HMAC implementation.
memset(buffer, (uint8_t)keyLen, keyLen);
hashKey(hash, buffer, keyLen, 0x36);
memset(buffer, 0xBA, sizeof(buffer));
hash->update(buffer, sizeof(buffer));
hash->finalize(result, HASH_SIZE);
memset(buffer, (uint8_t)keyLen, keyLen);
hashKey(hash, buffer, keyLen, 0x5C);
hash->update(result, HASH_SIZE);
hash->finalize(result, HASH_SIZE);
// Now use the library to compute the HMAC.
hash->resetHMAC(buffer, keyLen);
memset(buffer, 0xBA, sizeof(buffer));
hash->update(buffer, sizeof(buffer));
memset(buffer, (uint8_t)keyLen, keyLen);
hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE);
// Check the result.
if (!memcmp(result, buffer, HASH_SIZE))
Serial.println("Passed");
else
Serial.println("Failed");
}
void testHMAC(Hash *hash, const struct TestHashVector *test)
{
uint8_t result[HASH_SIZE];
Serial.print(test->name);
Serial.print(" ... ");
hash->resetHMAC(test->key, strlen(test->key));
hash->update(test->data, strlen(test->data));
hash->finalizeHMAC(test->key, strlen(test->key), result, sizeof(result));
if (!memcmp(result, test->hash, HASH_SIZE))
Serial.println("Passed");
else
Serial.println("Failed");
}
void perfHash(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Hashing ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
hash->reset();
start = micros();
for (count = 0; count < 1000; ++count) {
hash->update(buffer, sizeof(buffer));
}
elapsed = micros() - start;
Serial.print(elapsed / (sizeof(buffer) * 1000.0));
Serial.print("us per byte, ");
Serial.print((sizeof(buffer) * 1000.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void perfFinalize(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Finalizing ... ");
hash->reset();
hash->update("abc", 3);
start = micros();
for (count = 0; count < 1000; ++count) {
hash->finalize(buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void perfHMAC(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("HMAC Reset ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
start = micros();
for (count = 0; count < 1000; ++count) {
hash->resetHMAC(buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
Serial.print("HMAC Finalize ... ");
hash->resetHMAC(buffer, hash->hashSize());
hash->update("abc", 3);
start = micros();
for (count = 0; count < 1000; ++count) {
hash->finalizeHMAC(buffer, hash->hashSize(), buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void setup()
{
Serial.begin(9600);
Serial.println();
Serial.print("State Size ...");
Serial.println(sizeof(SHA1));
Serial.println();
Serial.println("Test Vectors:");
testHash(&sha1, &testVectorSHA1_1);
testHash(&sha1, &testVectorSHA1_2);
testHMAC(&sha1, &testVectorHMAC_SHA1_1);
testHMAC(&sha1, &testVectorHMAC_SHA1_2);
testHMAC(&sha1, (size_t)0);
testHMAC(&sha1, 1);
testHMAC(&sha1, HASH_SIZE);
testHMAC(&sha1, BLOCK_SIZE);
testHMAC(&sha1, BLOCK_SIZE + 1);
testHMAC(&sha1, sizeof(buffer));
Serial.println();
Serial.println("Performance Tests:");
perfHash(&sha1);
perfFinalize(&sha1);
perfHMAC(&sha1);
}
void loop()
{
}