/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* This example runs tests on the SHA1 implementation to verify correct behaviour. */ #include #include #include #define HASH_SIZE 20 #define BLOCK_SIZE 64 struct TestHashVector { const char *name; const char *key; const char *data; uint8_t hash[HASH_SIZE]; }; static TestHashVector const testVectorSHA1_1 = { "SHA-1 #1", 0, "abc", {0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E, 0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D} }; static TestHashVector const testVectorSHA1_2 = { "SHA-1 #2", 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", {0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1} }; static TestHashVector const testVectorHMAC_SHA1_1 = { "HMAC-SHA-1 #1", "", "", {0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08, 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63, 0x70, 0x69, 0x0e, 0x1d} }; static TestHashVector const testVectorHMAC_SHA1_2 = { "HMAC-SHA-1 #2", "key", "The quick brown fox jumps over the lazy dog", {0xde, 0x7c, 0x9b, 0x85, 0xb8, 0xb7, 0x8a, 0xa6, 0xbc, 0x8a, 0x7a, 0x36, 0xf7, 0x0a, 0x90, 0x70, 0x1c, 0x9d, 0xb4, 0xd9} }; SHA1 sha1; byte buffer[128]; bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc) { size_t size = strlen(test->data); size_t posn, len; uint8_t value[HASH_SIZE]; hash->reset(); for (posn = 0; posn < size; posn += inc) { len = size - posn; if (len > inc) len = inc; hash->update(test->data + posn, len); } hash->finalize(value, sizeof(value)); if (memcmp(value, test->hash, sizeof(value)) != 0) return false; return true; } void testHash(Hash *hash, const struct TestHashVector *test) { bool ok; Serial.print(test->name); Serial.print(" ... "); ok = testHash_N(hash, test, strlen(test->data)); ok &= testHash_N(hash, test, 1); ok &= testHash_N(hash, test, 2); ok &= testHash_N(hash, test, 5); ok &= testHash_N(hash, test, 8); ok &= testHash_N(hash, test, 13); ok &= testHash_N(hash, test, 16); ok &= testHash_N(hash, test, 24); ok &= testHash_N(hash, test, 63); ok &= testHash_N(hash, test, 64); if (ok) Serial.println("Passed"); else Serial.println("Failed"); } // Very simple method for hashing a HMAC inner or outer key. void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad) { size_t posn; uint8_t buf; uint8_t result[HASH_SIZE]; if (keyLen <= BLOCK_SIZE) { hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < keyLen) buf = key[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } else { hash->reset(); hash->update(key, keyLen); hash->finalize(result, HASH_SIZE); hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < HASH_SIZE) buf = result[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } } void testHMAC(Hash *hash, size_t keyLen) { uint8_t result[HASH_SIZE]; Serial.print("HMAC-SHA-1 keysize="); Serial.print(keyLen); Serial.print(" ... "); // Construct the expected result with a simple HMAC implementation. memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x36); memset(buffer, 0xBA, sizeof(buffer)); hash->update(buffer, sizeof(buffer)); hash->finalize(result, HASH_SIZE); memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x5C); hash->update(result, HASH_SIZE); hash->finalize(result, HASH_SIZE); // Now use the library to compute the HMAC. hash->resetHMAC(buffer, keyLen); memset(buffer, 0xBA, sizeof(buffer)); hash->update(buffer, sizeof(buffer)); memset(buffer, (uint8_t)keyLen, keyLen); hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE); // Check the result. if (!memcmp(result, buffer, HASH_SIZE)) Serial.println("Passed"); else Serial.println("Failed"); } void testHMAC(Hash *hash, const struct TestHashVector *test) { uint8_t result[HASH_SIZE]; Serial.print(test->name); Serial.print(" ... "); hash->resetHMAC(test->key, strlen(test->key)); hash->update(test->data, strlen(test->data)); hash->finalizeHMAC(test->key, strlen(test->key), result, sizeof(result)); if (!memcmp(result, test->hash, HASH_SIZE)) Serial.println("Passed"); else Serial.println("Failed"); } void perfHash(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Hashing ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; hash->reset(); start = micros(); for (count = 0; count < 1000; ++count) { hash->update(buffer, sizeof(buffer)); } elapsed = micros() - start; Serial.print(elapsed / (sizeof(buffer) * 1000.0)); Serial.print("us per byte, "); Serial.print((sizeof(buffer) * 1000.0 * 1000000.0) / elapsed); Serial.println(" bytes per second"); } void perfFinalize(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Finalizing ... "); hash->reset(); hash->update("abc", 3); start = micros(); for (count = 0; count < 1000; ++count) { hash->finalize(buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void perfHMAC(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("HMAC Reset ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; start = micros(); for (count = 0; count < 1000; ++count) { hash->resetHMAC(buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); Serial.print("HMAC Finalize ... "); hash->resetHMAC(buffer, hash->hashSize()); hash->update("abc", 3); start = micros(); for (count = 0; count < 1000; ++count) { hash->finalizeHMAC(buffer, hash->hashSize(), buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void setup() { Serial.begin(9600); Serial.println(); Serial.print("State Size ..."); Serial.println(sizeof(SHA1)); Serial.println(); Serial.println("Test Vectors:"); testHash(&sha1, &testVectorSHA1_1); testHash(&sha1, &testVectorSHA1_2); testHMAC(&sha1, &testVectorHMAC_SHA1_1); testHMAC(&sha1, &testVectorHMAC_SHA1_2); testHMAC(&sha1, (size_t)0); testHMAC(&sha1, 1); testHMAC(&sha1, HASH_SIZE); testHMAC(&sha1, BLOCK_SIZE); testHMAC(&sha1, BLOCK_SIZE + 1); testHMAC(&sha1, sizeof(buffer)); Serial.println(); Serial.println("Performance Tests:"); perfHash(&sha1); perfFinalize(&sha1); perfHMAC(&sha1); } void loop() { }