Lab_interaccio/2013/bhoreal_v0_6_test/Bhoreal.cpp
2025-02-25 21:29:42 +01:00

369 lines
11 KiB
C++

#include "bhoreal.h"
#include "Adafruit_NeoPixel.h"
// Variables for interpreting the serial commands
byte tempR;
byte tempC;
byte lastread;
byte command = 0;
byte ready = true;
uint16_t IntensityMAX = 100;
// Default draw colour. Each channel can be between 0 and 4095.
int red = 0;
int green = IntensityMAX;
int blue = 0;
// Auxiliary analog output definitions
#define ANALOG0 A5 //POTENCIOMETRO
#define ANALOG1 A1
boolean adc[2] = { //On or off state
0, 0};
byte analogval[2]; //The last reported value
byte tempADC; //Temporary storage for comparison purposes
uint16_t MODEL = MINISLIM; //Modelo
uint16_t MAX = 4;
int NUM_LEDS = 16;
#define PIN 11
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, PIN, NEO_GRB + NEO_KHZ800);
boolean pressed[8][8] = {
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1}
};
byte remap[8][8] = {
{48,49,51,52, 12,13,14,15},
{50,53,54,55, 11,10, 9, 8},
{56,57,58,59, 7, 6, 5, 2},
{63,62,61,60, 4, 3, 1, 0},
{32,33,35,36, 28,29,30,31},
{34,37,38,39, 27,26,25,24},
{40,41,42,43, 23,22,21,18},
{47,46,45,44, 20,19,17,16},
};
const byte remapmini[4][4] = {
{3, 4, 11, 12},
{2, 5, 10, 13},
{1, 6, 9, 14},
{0, 7, 8, 15},
};
int levelR[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0};
int levelG[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0};
int levelB[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0};
byte row[4] = {13, 5, 10, 9};
byte column[4] = {8, 6, 12, 4};
void Bhoreal::begin(uint16_t DEVICE, uint32_t BAUD)
{
for(byte x = 0; x < MAX; ++x){
for(byte y = 0; y <MAX; ++y)
{
remap[x][y] = remapmini[x][y];
}
}
for(byte i = 0; i<4; i++)
{
pinMode(column[i], INPUT);
pinMode(row[i], OUTPUT);
digitalWrite(row[i], LOW);
}
// Start the serial port
Serial.begin(BAUD);
/* Setup the timer interrupt*/
timer3Initialize();
strip.begin();
strip.show();
}
void Bhoreal::on_press(byte r, byte c){
Serial.write( 1);
Serial.write( (r << 4) | c);
}
void Bhoreal::on_release(byte r, byte c){
Serial.write( byte(0) );
Serial.write( (r << 4) | c);
}
void Bhoreal::checkButtons(){
for(byte c = 0; c < MAX; c++)
{
digitalWrite(row[c],HIGH);
for(int r= MAX - 1; r >= 0; r--)
{
if(pressed[c][r] != digitalRead(column[r]))
{ // read the state
pressed[c][r] = digitalRead(column[r]);
if(pressed[c][r]) on_press(c, r);
else on_release(c, r);
}
}
digitalWrite(row[c],LOW);
}
}
// Run this animation once at startup. Currently unfinished.
void Bhoreal::startup(){
for(byte x = 0; x < MAX; ++x){
for(byte y = 0; y < MAX; ++y)
{
//levelR[remap[x][y]] = 0;
levelR[remap[x][0]] = IntensityMAX;
levelB[remap[0][y]] = IntensityMAX;
levelG[remap[x][y]] = IntensityMAX;
}
}
for(int x = 0; x < NUM_LEDS; ++x) strip.setPixelColor(x, levelR[x], levelG[x], levelB[x]);
strip.show();
}
void Bhoreal::checkADC(){
// For all of the ADC's which are activated, check if the analog value has changed,
// and send a message if it has.
if(adc[0]){
tempADC = (analogRead(ANALOG0) >> 2);
if(abs((int)analogval[0] - (int)tempADC) > 3 ){
analogval[0] = tempADC;
Serial.write(14 << 4);
Serial.write(analogval[0]);
}
}
if(adc[1]){
if(analogval[1] != (analogRead(ANALOG1) >> 2)){
analogval[1] = (analogRead(ANALOG1) >> 2);
Serial.write(14 << 4 | 1);
Serial.write(analogval[1]);
}
}
}
/*TIMER*/
ISR(TIMER3_OVF_vect)
{
//sei(); //Reenable global interrupts, otherwise serial commands will get dropped
// makemagic();
do{ // This do ensures that the data is always parsed at least once per cycle
if(Serial.available()){
if(ready){ // If the last command has finished executing, read in the next command and reset the command flag
command = Serial.read();
ready = false;
}
switch (command >> 4) { //Execute the appropriate command, but only if we have received enough bytes to complete it. We might one day add "partial completion" for long command strings.
case 1: // set colour
if( Serial.available() > 2 ) {
red = Serial.read();
green = Serial.read();
blue = Serial.read();
ready=true;
}
break;
case 2: // led_on
if( Serial.available() ) {
lastread = Serial.read();
tempR = lastread >> 4;
tempC = lastread & B1111;
if ((tempR < MAX)&&(tempC < MAX))
{
levelR[remap[tempC][tempR]] = red;
levelG[remap[tempC][tempR]] = green;
levelB[remap[tempC][tempR]] = blue;
strip.setPixelColor(remap[tempC][tempR], red, green, blue);
strip.show();
}
ready = true;
}
break;
case 3: // led_off
if( Serial.available() ) {
lastread = Serial.read();
tempR = lastread >> 4;
tempC = lastread & B1111;
if ((tempR < MAX)&&(tempC < MAX))
{
levelR[remap[tempC][tempR]] = 0;
levelG[remap[tempC][tempR]] = 0;
levelB[remap[tempC][tempR]] = 0;
strip.setPixelColor(remap[tempC][tempR], 0, 0, 0);
strip.show();
}
ready = true;
}
break;
case 4: // led_row1
if( Serial.available() ) {
tempR = command & B1111;
lastread = Serial.read();
if (tempR < MAX)
{
for(tempC = 0; tempC < MAX; ++tempC){
if(lastread & (1 << tempC) ){
levelR[remap[tempR][tempC]] = red;
levelG[remap[tempR][tempC]] = green;
levelB[remap[tempR][tempC]] = blue;
strip.setPixelColor(remap[tempR][tempC], red, green, blue);
}
else {
levelR[remap[tempR][tempC]] = 0;
levelG[remap[tempR][tempC]] = 0;
levelB[remap[tempR][tempC]] = 0;
strip.setPixelColor(remap[tempR][tempC], 0, 0, 0);
}
}
strip.show();
}
ready = true;
}
break;
case 5: // led_col1
if( Serial.available() ) {
tempC = command & B1111;
lastread = Serial.read();
if (tempC < MAX)
{
for(tempR = 0; tempR < MAX; ++tempR){
if(lastread & (1 << tempR) ){
levelR[remap[tempR][tempC]] = red;
levelG[remap[tempR][tempC]] = green;
levelB[remap[tempR][tempC]] = blue;
strip.setPixelColor(remap[tempR][tempC], red, green, blue);
}
else {
levelR[remap[tempR][tempC]] = 0;
levelG[remap[tempR][tempC]] = 0;
levelB[remap[tempR][tempC]] = 0;
strip.setPixelColor(remap[tempR][tempC], 0, 0, 0);
}
}
strip.show();
}
ready = true;
}
break;
case 8: //frame
if( Serial.available() > 7 ) {
for(tempR=0; tempR < MAX; ++tempR){
lastread = Serial.read();
for(tempC = 0; tempC < MAX; ++tempC){
if(lastread & (1 << tempC) ){
levelR[remap[tempR][tempC]] = red;
levelG[remap[tempR][tempC]] = green;
levelB[remap[tempR][tempC]] = blue;
strip.setPixelColor(remap[tempR][tempC], red, green, blue);
}
else {
levelR[remap[tempR][tempC]] = 0;
levelG[remap[tempR][tempC]] = 0;
levelB[remap[tempR][tempC]] = 0;
strip.setPixelColor(remap[tempR][tempC], 0, 0, 0);
}
}
strip.show();
}
ready = true;
}
break;
case 9: //clear
if(command & 1){
byte TEMPMAX = MAX*MAX;
for(int x = 0; x< TEMPMAX;++x){
levelR[x] = red;
levelG[x] = green;
levelB[x] = blue;
strip.setPixelColor(x, red, green, blue);
}
strip.show();
}
else{
byte TEMPMAX = MAX*MAX;
for(int x = 0; x< TEMPMAX;++x){
levelR[x] = 0;
levelG[x] = 0;
levelB[x] = 0;
strip.setPixelColor(x, 0, 0, 0);
}
strip.show();
}
ready = true;
break;
case 12:
switch(command & 15){
case 0:
adc[0] = true;
analogval[0] = (analogRead(ANALOG0) >> 2);
Serial.write(14 << 4);
Serial.write(analogval[0]);
break;
case 1:
adc[1] = true;
analogval[1] = (analogRead(ANALOG1) >> 2);
Serial.write(14 << 4 | 1);
Serial.write(analogval[1]);
break;
default:
break;
}
ready = true;
break;
case 13:
adc[command & 15] = false;
ready = true;
break;
default:
break;
}
}
}
// If the serial buffer is getting too close to full, keep executing the parsing until it falls below a given level
// This might cause flicker, or even dropped messages, but it should prevent a crash.
while (Serial.available() > TOOFULL);
}
void Bhoreal::timer3Initialize()
{
TCCR3A = 0;
TCCR3B = 0<<CS32 | 0<<CS31 | 1<<CS30;
//Timer1 Overflow Interrupt Enable
TIMSK3 = 1<<TOIE3;
}