/* Copyright (C) 2011 J. Coliz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include "nRF24L01.h" #include "RF24_config.h" #include "RF24.h" /****************************************************************************/ /*AƱadido para un segundo SPI*/ #include #include "wiring_private.h" // pinPeripheral() function SPIClass _spi (&sercom1, 12, 13, 11, SPI_PAD_0_SCK_1, SERCOM_RX_PAD_3); void RF24::csn(bool mode) { #if defined(RF24_TINY) if (ce_pin != csn_pin) { digitalWrite(csn_pin, mode); } else { if (mode == HIGH) { PORTB |= (1<CSN HIGH delayMicroseconds(RF24_CSN_SETTLE_HIGH_DELAY); // allow csn to settle. } else { PORTB &= ~(1<CSN LOW delayMicroseconds(RF24_CSN_SETTLE_LOW_DELAY); // allow csn to settle } } // Return, CSN toggle complete return; #elif defined(ARDUINO) && !defined(RF24_SPI_TRANSACTIONS) // Minimum ideal SPI bus speed is 2x data rate // If we assume 2Mbs data rate and 16Mhz clock, a // divider of 4 is the minimum we want. // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz #if !defined(SOFTSPI) // applies to SPI_UART and inherent hardware SPI #if defined (RF24_SPI_PTR) _spi->setBitOrder(MSBFIRST); _spi->setDataMode(SPI_MODE0); #if !defined(F_CPU) || F_CPU < 20000000 _spi->setClockDivider(SPI_CLOCK_DIV2); #elif F_CPU < 40000000 _spi->setClockDivider(SPI_CLOCK_DIV4); #elif F_CPU < 80000000 _spi->setClockDivider(SPI_CLOCK_DIV8); #elif F_CPU < 160000000 _spi->setClockDivider(SPI_CLOCK_DIV16); #elif F_CPU < 320000000 _spi->setClockDivider(SPI_CLOCK_DIV32); #elif F_CPU < 640000000 _spi->setClockDivider(SPI_CLOCK_DIV64); #elif F_CPU < 1280000000 _spi->setClockDivider(SPI_CLOCK_DIV128); #else // F_CPU >= 1280000000 #error "Unsupported CPU frequency. Please set correct SPI divider." #endif // F_CPU to SPI_CLOCK_DIV translation #else // !defined(RF24_SPI_PTR) _SPI.setBitOrder(MSBFIRST); _SPI.setDataMode(SPI_MODE0); #if !defined(F_CPU) || F_CPU < 20000000 _SPI.setClockDivider(SPI_CLOCK_DIV2); #elif F_CPU < 40000000 _SPI.setClockDivider(SPI_CLOCK_DIV4); #elif F_CPU < 80000000 _SPI.setClockDivider(SPI_CLOCK_DIV8); #elif F_CPU < 160000000 _SPI.setClockDivider(SPI_CLOCK_DIV16); #elif F_CPU < 320000000 _SPI.setClockDivider(SPI_CLOCK_DIV32); #elif F_CPU < 640000000 _SPI.setClockDivider(SPI_CLOCK_DIV64); #elif F_CPU < 1280000000 _SPI.setClockDivider(SPI_CLOCK_DIV128); #else // F_CPU >= 1280000000 #error "Unsupported CPU frequency. Please set correct SPI divider." #endif // F_CPU to SPI_CLOCK_DIV translation #endif // !defined(RF24_SPI_PTR) #endif // !defined(SOFTSPI) #elif defined (RF24_RPi) if(!mode) _SPI.chipSelect(csn_pin); #endif // defined(RF24_RPi) #if !defined(RF24_LINUX) digitalWrite(csn_pin, mode); delayMicroseconds(csDelay); #endif // !defined(RF24_LINUX) } /****************************************************************************/ void RF24::ce(bool level) { //Allow for 3-pin use on ATTiny if (ce_pin != csn_pin) { digitalWrite(ce_pin, level); } } /****************************************************************************/ inline void RF24::beginTransaction() { #if defined (RF24_SPI_TRANSACTIONS) #if defined (RF24_SPI_PTR) _spi->beginTransaction(SPISettings(spi_speed, MSBFIRST, SPI_MODE0)); #else // !defined(RF24_SPI_PTR) _SPI.beginTransaction(SPISettings(spi_speed, MSBFIRST, SPI_MODE0)); #endif // !defined(RF24_SPI_PTR) #endif // defined (RF24_SPI_TRANSACTIONS) csn(LOW); } /****************************************************************************/ inline void RF24::endTransaction() { csn(HIGH); #if defined (RF24_SPI_TRANSACTIONS) #if defined (RF24_SPI_PTR) _spi->endTransaction(); #else // !defined(RF24_SPI_PTR) _SPI.endTransaction(); #endif // !defined(RF24_SPI_PTR) #endif // defined (RF24_SPI_TRANSACTIONS) } /****************************************************************************/ void RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { #if defined(RF24_LINUX) beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size = len + 1; // Add register value to transmit buffer *ptx++ = (R_REGISTER | reg); while (len--){ *ptx++ = RF24_NOP; } // Dummy operation, just for reading _SPI.transfernb((char *)spi_txbuff, (char *)spi_rxbuff, size); status = *prx++; // status is 1st byte of receive buffer // decrement before to skip status byte while (--size) { *buf++ = *prx++; } endTransaction(); // unlocks mutex and setting csn high #else // !defined(RF24_LINUX) beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(R_REGISTER | reg); while (len--) { *buf++ = _spi->transfer(0xFF); } #else // !defined(RF24_SPI_PTR) status = _SPI.transfer(R_REGISTER | reg); while (len--) { *buf++ = _SPI.transfer(0xFF); } #endif // !defined(RF24_SPI_PTR) endTransaction(); #endif // !defined(RF24_LINUX) } /****************************************************************************/ uint8_t RF24::read_register(uint8_t reg) { uint8_t result; #if defined(RF24_LINUX) beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; *ptx++ = (R_REGISTER | reg); *ptx++ = RF24_NOP ; // Dummy operation, just for reading _SPI.transfernb((char *)spi_txbuff, (char *)spi_rxbuff, 2); status = *prx; // status is 1st byte of receive buffer result = *++prx; // result is 2nd byte of receive buffer endTransaction(); #else // !defined(RF24_LINUX) beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(R_REGISTER | reg); result = _spi->transfer(0xff); #else // !defined(RF24_SPI_PTR) status = _SPI.transfer(R_REGISTER | reg); result = _SPI.transfer(0xff); #endif // !defined(RF24_SPI_PTR) endTransaction(); #endif // !defined(RF24_LINUX) return result; } /****************************************************************************/ void RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { #if defined(RF24_LINUX) beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size = len + 1; // Add register value to transmit buffer *ptx++ = (W_REGISTER | (REGISTER_MASK & reg)); while (len--) *ptx++ = *buf++; _SPI.transfernb((char *)spi_txbuff, (char *)spi_rxbuff, size); status = *prx; // status is 1st byte of receive buffer endTransaction(); #else // !defined(RF24_LINUX) beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(W_REGISTER | reg); while (len--) { _spi->transfer(*buf++); } #else // !defined(RF24_SPI_PTR) status = _SPI.transfer(W_REGISTER | reg); while (len--) { _SPI.transfer(*buf++); } #endif // !defined(RF24_SPI_PTR) endTransaction(); #endif // !defined(RF24_LINUX) } /****************************************************************************/ void RF24::write_register(uint8_t reg, uint8_t value, bool is_cmd_only) { if (is_cmd_only) { if (reg != RF24_NOP) { // don't print the get_status() operation IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x)\r\n"), reg)); } beginTransaction(); #if defined (RF24_LINUX) status = _SPI.transfer(W_REGISTER | reg); #else #if defined (RF24_SPI_PTR) status = _spi->transfer(W_REGISTER | reg); #else // !defined (RF24_SPI_PTR) status = _SPI.transfer(W_REGISTER | reg); #endif // !defined (RF24_SPI_PTR) #endif // !defined(RF24_LINUX) endTransaction(); } else { IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"), reg, value)); #if defined(RF24_LINUX) beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; *ptx++ = (W_REGISTER | reg); *ptx = value; _SPI.transfernb((char *)spi_txbuff, (char *)spi_rxbuff, 2); status = *prx++; // status is 1st byte of receive buffer endTransaction(); #else // !defined(RF24_LINUX) beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(W_REGISTER | reg); _spi->transfer(value); #else // !defined(RF24_SPI_PTR) status = _SPI.transfer(W_REGISTER | reg); _SPI.transfer(value); #endif // !defined(RF24_SPI_PTR) endTransaction(); #endif // !defined(RF24_LINUX) } } /****************************************************************************/ void RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType) { const uint8_t* current = reinterpret_cast(buf); uint8_t blank_len = !data_len ? 1 : 0; if (!dynamic_payloads_enabled) { data_len = rf24_min(data_len, payload_size); blank_len = payload_size - data_len; } else { data_len = rf24_min(data_len, 32); } //printf("[Writing %u bytes %u blanks]",data_len,blank_len); IF_SERIAL_DEBUG(printf("[Writing %u bytes %u blanks]\n", data_len, blank_len); ); #if defined(RF24_LINUX) beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size; size = data_len + blank_len + 1 ; // Add register value to transmit buffer *ptx++ = writeType; while (data_len--) { *ptx++ = *current++; } while (blank_len--) { *ptx++ = 0; } _SPI.transfernb((char *)spi_txbuff, (char *)spi_rxbuff, size); status = *prx; // status is 1st byte of receive buffer endTransaction(); #else // !defined(RF24_LINUX) beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(writeType); while (data_len--) { _spi->transfer(*current++); } while (blank_len--) { _spi->transfer(0); } #else // !defined(RF24_SPI_PTR) status = _SPI.transfer(writeType); while (data_len--) { _SPI.transfer(*current++); } while (blank_len--) { _SPI.transfer(0); } #endif // !defined(RF24_SPI_PTR) endTransaction(); #endif // !defined(RF24_LINUX) } /****************************************************************************/ void RF24::read_payload(void* buf, uint8_t data_len) { uint8_t* current = reinterpret_cast(buf); uint8_t blank_len = 0; if (!dynamic_payloads_enabled) { data_len = rf24_min(data_len, payload_size); blank_len = payload_size - data_len; } else { data_len = rf24_min(data_len, 32); } //printf("[Reading %u bytes %u blanks]",data_len,blank_len); IF_SERIAL_DEBUG(printf("[Reading %u bytes %u blanks]\n", data_len, blank_len); ); #if defined(RF24_LINUX) beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size; size = data_len + blank_len + 1; // Add register value to transmit buffer *ptx++ = R_RX_PAYLOAD; while(--size) { *ptx++ = RF24_NOP; } size = data_len + blank_len + 1; // Size has been lost during while, re affect _SPI.transfernb((char *)spi_txbuff, (char *)spi_rxbuff, size); status = *prx++; // 1st byte is status if (data_len > 0) { while (--data_len) // Decrement before to skip 1st status byte *current++ = *prx++; *current = *prx; } endTransaction(); #else // !defined(RF24_LINUX) beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(R_RX_PAYLOAD); while (data_len--) { *current++ = _spi->transfer(0xFF); } while (blank_len--) { _spi->transfer(0xff); } #else // !defined(RF24_SPI_PTR) status = _SPI.transfer(R_RX_PAYLOAD); while (data_len--) { *current++ = _SPI.transfer(0xFF); } while (blank_len--) { _SPI.transfer(0xff); } #endif // !defined(RF24_SPI_PTR) endTransaction(); #endif // !defined(RF24_LINUX) } /****************************************************************************/ uint8_t RF24::flush_rx(void) { write_register(FLUSH_RX, RF24_NOP, true); return status; } /****************************************************************************/ uint8_t RF24::flush_tx(void) { write_register(FLUSH_TX, RF24_NOP, true); return status; } /****************************************************************************/ uint8_t RF24::get_status(void) { write_register(RF24_NOP, RF24_NOP, true); return status; } /****************************************************************************/ #if !defined(MINIMAL) void RF24::print_status(uint8_t _status) { printf_P(PSTR("STATUS\t\t= 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), _status, (_status & _BV(RX_DR)) ? 1 : 0, (_status & _BV(TX_DS)) ? 1 : 0, (_status & _BV(MAX_RT)) ? 1 : 0, ((_status >> RX_P_NO) & 0x07), (_status & _BV(TX_FULL)) ? 1 : 0); } /****************************************************************************/ void RF24::print_observe_tx(uint8_t value) { printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), value, (value >> PLOS_CNT) & 0x0F, (value >> ARC_CNT) & 0x0F); } /****************************************************************************/ void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty) { //char extra_tab = strlen_P(name) < 8 ? '\t' : 0; //printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab); #if defined(RF24_LINUX) printf("%s\t=", name); #else // !defined(RF24_LINUX) printf_P(PSTR(PRIPSTR"\t="),name); #endif // !defined(RF24_LINUX) while (qty--) { printf_P(PSTR(" 0x%02x"), read_register(reg++)); } printf_P(PSTR("\r\n")); } /****************************************************************************/ void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty) { #if defined(RF24_LINUX) printf("%s\t=", name); #else // !defined(RF24_LINUX) printf_P(PSTR(PRIPSTR"\t="), name); #endif // !defined(RF24_LINUX) while (qty--) { uint8_t buffer[addr_width]; read_register(reg++ & REGISTER_MASK, buffer, sizeof(buffer)); printf_P(PSTR(" 0x")); uint8_t* bufptr = buffer + sizeof(buffer); while (--bufptr >= buffer) { printf_P(PSTR("%02x"), *bufptr); } } printf_P(PSTR("\r\n")); } #endif // !defined(MINIMAL) /****************************************************************************/ RF24::RF24(uint16_t _cepin, uint16_t _cspin, uint32_t _spi_speed) :ce_pin(_cepin), csn_pin(_cspin), spi_speed(_spi_speed), payload_size(32), dynamic_payloads_enabled(true), addr_width(5), _is_p_variant(false), csDelay(5) { _init_obj(); } /****************************************************************************/ RF24::RF24(uint32_t _spi_speed) :ce_pin(0xFFFF), csn_pin(0xFFFF), spi_speed(_spi_speed), payload_size(32), dynamic_payloads_enabled(true), addr_width(5), _is_p_variant(false), csDelay(5) { _init_obj(); } /****************************************************************************/ void RF24::_init_obj() { // Use a pointer on the Arduino platform #if defined (RF24_SPI_PTR) _spi = &SPI; #endif // defined (RF24_SPI_PTR) pipe0_reading_address[0] = 0; if(spi_speed <= 35000){ //Handle old BCM2835 speed constants, default to RF24_SPI_SPEED spi_speed = RF24_SPI_SPEED; } } /****************************************************************************/ void RF24::setChannel(uint8_t channel) { const uint8_t max_channel = 125; write_register(RF_CH, rf24_min(channel, max_channel)); } uint8_t RF24::getChannel() { return read_register(RF_CH); } /****************************************************************************/ void RF24::setPayloadSize(uint8_t size) { // payload size must be in range [1, 32] payload_size = rf24_max(1, rf24_min(32, size)); // write static payload size setting for all pipes for (uint8_t i = 0; i < 6; ++i) write_register(RX_PW_P0 + i, payload_size); } /****************************************************************************/ uint8_t RF24::getPayloadSize(void) { return payload_size; } /****************************************************************************/ #if !defined(MINIMAL) static const PROGMEM char rf24_datarate_e_str_0[] = "= 1 MBPS"; static const PROGMEM char rf24_datarate_e_str_1[] = "= 2 MBPS"; static const PROGMEM char rf24_datarate_e_str_2[] = "= 250 KBPS"; static const PROGMEM char * const rf24_datarate_e_str_P[] = { rf24_datarate_e_str_0, rf24_datarate_e_str_1, rf24_datarate_e_str_2, }; static const PROGMEM char rf24_model_e_str_0[] = "nRF24L01"; static const PROGMEM char rf24_model_e_str_1[] = "nRF24L01+"; static const PROGMEM char * const rf24_model_e_str_P[] = { rf24_model_e_str_0, rf24_model_e_str_1, }; static const PROGMEM char rf24_crclength_e_str_0[] = "= Disabled"; static const PROGMEM char rf24_crclength_e_str_1[] = "= 8 bits"; static const PROGMEM char rf24_crclength_e_str_2[] = "= 16 bits" ; static const PROGMEM char * const rf24_crclength_e_str_P[] = { rf24_crclength_e_str_0, rf24_crclength_e_str_1, rf24_crclength_e_str_2, }; static const PROGMEM char rf24_pa_dbm_e_str_0[] = "= PA_MIN"; static const PROGMEM char rf24_pa_dbm_e_str_1[] = "= PA_LOW"; static const PROGMEM char rf24_pa_dbm_e_str_2[] = "= PA_HIGH"; static const PROGMEM char rf24_pa_dbm_e_str_3[] = "= PA_MAX"; static const PROGMEM char * const rf24_pa_dbm_e_str_P[] = { rf24_pa_dbm_e_str_0, rf24_pa_dbm_e_str_1, rf24_pa_dbm_e_str_2, rf24_pa_dbm_e_str_3, }; #if defined(RF24_LINUX) static const char rf24_csn_e_str_0[] = "CE0 (PI Hardware Driven)"; static const char rf24_csn_e_str_1[] = "CE1 (PI Hardware Driven)"; static const char rf24_csn_e_str_2[] = "CE2 (PI Hardware Driven)"; static const char rf24_csn_e_str_3[] = "Custom GPIO Software Driven"; static const char * const rf24_csn_e_str_P[] = { rf24_csn_e_str_0, rf24_csn_e_str_1, rf24_csn_e_str_2, rf24_csn_e_str_3, }; #endif // defined(RF24_LINUX) static const PROGMEM char rf24_feature_e_str_on[] = "= Enabled"; static const PROGMEM char rf24_feature_e_str_allowed[] = "= Allowed"; static const PROGMEM char rf24_feature_e_str_open[] = " open "; static const PROGMEM char rf24_feature_e_str_closed[] = "closed"; static const PROGMEM char * const rf24_feature_e_str_P[] = { rf24_crclength_e_str_0, rf24_feature_e_str_on, rf24_feature_e_str_allowed, rf24_feature_e_str_closed, rf24_feature_e_str_open }; void RF24::printDetails(void) { #if defined(RF24_LINUX) printf("================ SPI Configuration ================\n" ); uint8_t bus_ce = csn_pin % 10; uint8_t bus_numb = (csn_pin - bus_ce) / 10; printf("CSN Pin\t\t= /dev/spidev%d.%d\n", bus_numb, bus_ce); printf("CE Pin\t\t= Custom GPIO%d\n", ce_pin); #endif printf_P(PSTR("SPI Speedz\t= %d Mhz\n"),(uint8_t)(spi_speed/1000000)); //Print the SPI speed on non-Linux devices #if defined(RF24_LINUX) printf("================ NRF Configuration ================\n"); #endif // defined(RF24_LINUX) print_status(get_status()); print_address_register(PSTR("RX_ADDR_P0-1"), RX_ADDR_P0, 2); print_byte_register(PSTR("RX_ADDR_P2-5"), RX_ADDR_P2, 4); print_address_register(PSTR("TX_ADDR\t"), TX_ADDR); print_byte_register(PSTR("RX_PW_P0-6"), RX_PW_P0, 6); print_byte_register(PSTR("EN_AA\t"), EN_AA); print_byte_register(PSTR("EN_RXADDR"), EN_RXADDR); print_byte_register(PSTR("RF_CH\t"), RF_CH); print_byte_register(PSTR("RF_SETUP"), RF_SETUP); print_byte_register(PSTR("CONFIG\t"), NRF_CONFIG); print_byte_register(PSTR("DYNPD/FEATURE"), DYNPD, 2); printf_P(PSTR("Data Rate\t" PRIPSTR "\r\n"),(char*)pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()])); printf_P(PSTR("Model\t\t= " PRIPSTR "\r\n"),(char*)pgm_read_ptr(&rf24_model_e_str_P[isPVariant()])); printf_P(PSTR("CRC Length\t" PRIPSTR "\r\n"),(char*)pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()])); printf_P(PSTR("PA Power\t" PRIPSTR "\r\n"),(char*)pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()])); printf_P(PSTR("ARC\t\t= %d\r\n"), getARC()); } void RF24::printPrettyDetails(void) { #if defined(RF24_LINUX) printf("================ SPI Configuration ================\n"); uint8_t bus_ce = csn_pin % 10; uint8_t bus_numb = (csn_pin - bus_ce) / 10; printf("CSN Pin\t\t\t= /dev/spidev%d.%d\n", bus_numb, bus_ce); printf("CE Pin\t\t\t= Custom GPIO%d\n", ce_pin); #endif printf_P(PSTR("SPI Frequency\t\t= %d Mhz\n"), (uint8_t)(spi_speed / 1000000)); //Print the SPI speed on non-Linux devices #if defined(RF24_LINUX) printf("================ NRF Configuration ================\n"); #endif // defined(RF24_LINUX) uint8_t channel = getChannel(); uint16_t frequency = (uint16_t)channel + 2400; printf_P(PSTR("Channel\t\t\t= %u (~ %u MHz)\r\n"), channel, frequency); printf_P(PSTR("RF Data Rate\t\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()])); printf_P(PSTR("RF Power Amplifier\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()])); printf_P(PSTR("RF Low Noise Amplifier\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_feature_e_str_P[(bool)(read_register(RF_SETUP) & 1) * 1])); printf_P(PSTR("CRC Length\t\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()])); printf_P(PSTR("Address Length\t\t= %d bytes\r\n"), (read_register(SETUP_AW) & 3) + 2); printf_P(PSTR("Static Payload Length\t= %d bytes\r\n"), getPayloadSize()); uint8_t setupRetry = read_register(SETUP_RETR); printf_P(PSTR("Auto Retry Delay\t= %d microseconds\r\n"), (uint16_t)(setupRetry >> ARD) * 250 + 250); printf_P(PSTR("Auto Retry Attempts\t= %d maximum\r\n"), setupRetry & 0x0F); uint8_t observeTx = read_register(OBSERVE_TX); printf_P(PSTR("Packets lost on\n current channel\t= %d\r\n"), observeTx >> 4); printf_P(PSTR("Retry attempts made for\n last transmission\t= %d\r\n"), observeTx & 0x0F); uint8_t features = read_register(FEATURE); printf_P(PSTR("Multicast\t\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_feature_e_str_P[(bool)(features & _BV(EN_DYN_ACK)) * 2])); printf_P(PSTR("Custom ACK Payload\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_feature_e_str_P[(bool)(features & _BV(EN_ACK_PAY)) * 1])); uint8_t dynPl = read_register(DYNPD); printf_P(PSTR("Dynamic Payloads\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_feature_e_str_P[(dynPl && (features &_BV(EN_DPL))) * 1])); uint8_t autoAck = read_register(EN_AA); if (autoAck == 0x3F || autoAck == 0) { // all pipes have the same configuration about auto-ack feature printf_P(PSTR("Auto Acknowledgment\t" PRIPSTR "\r\n"), (char*)pgm_read_ptr(&rf24_feature_e_str_P[(bool)(autoAck) * 1])); } else { // representation per pipe printf_P(PSTR("Auto Acknowledgment\t= 0b%c%c%c%c%c%c\r\n"), (char)((bool)(autoAck & _BV(ENAA_P5)) + 48), (char)((bool)(autoAck & _BV(ENAA_P4)) + 48), (char)((bool)(autoAck & _BV(ENAA_P3)) + 48), (char)((bool)(autoAck & _BV(ENAA_P2)) + 48), (char)((bool)(autoAck & _BV(ENAA_P1)) + 48), (char)((bool)(autoAck & _BV(ENAA_P0)) + 48)); } config_reg = read_register(NRF_CONFIG); printf_P(PSTR("Primary Mode\t\t= %cX\r\n"), config_reg & _BV(PRIM_RX) ? 'R' : 'T'); print_address_register(PSTR("TX address\t"), TX_ADDR); uint8_t openPipes = read_register(EN_RXADDR); for (uint8_t i = 0; i < 6; ++i) { bool isOpen = openPipes & _BV(i); printf_P(PSTR("pipe %u (" PRIPSTR ") bound"), i, (char*)pgm_read_ptr(&rf24_feature_e_str_P[isOpen + 3])); if (i < 2) { print_address_register(PSTR(""), RX_ADDR_P0 + i); } else { print_byte_register(PSTR(""), RX_ADDR_P0 + i); } } } #endif // !defined(MINIMAL) /****************************************************************************/ #if defined (RF24_SPI_PTR) || defined (DOXYGEN_FORCED) // does not apply to RF24_LINUX bool RF24::begin(_SPI* spiBus) { _spi = spiBus; if (_init_pins()) return _init_radio(); return false; } /****************************************************************************/ bool RF24::begin(_SPI* spiBus, uint16_t _cepin, uint16_t _cspin) { ce_pin = _cepin; csn_pin = _cspin; return begin(spiBus); } #endif // defined (RF24_SPI_PTR) || defined (DOXYGEN_FORCED) /****************************************************************************/ bool RF24::begin(uint16_t _cepin, uint16_t _cspin) { ce_pin = _cepin; csn_pin = _cspin; return begin(); } /****************************************************************************/ bool RF24::begin(void) { #if defined (RF24_LINUX) #if defined (RF24_RPi) switch(csn_pin) { // Ensure valid hardware CS pin case 0: break; case 1: break; // Allow BCM2835 enums for RPi case 8: csn_pin = 0; break; case 7: csn_pin = 1; break; case 18: csn_pin = 10; break; // to make it work on SPI1 case 17: csn_pin = 11; break; case 16: csn_pin = 12; break; default: csn_pin = 0; break; } #endif // RF24_RPi _SPI.begin(csn_pin, spi_speed); #elif defined (XMEGA_D3) _spi->begin(csn_pin); #else // using an Arduino platform || defined (LITTLEWIRE) #if defined (RF24_SPI_PTR) _spi->begin(); #else // !defined(RF24_SPI_PTR) _SPI.begin(); #endif // !defined(RF24_SPI_PTR) #endif // !defined(XMEGA_D3) && !defined(RF24_LINUX) return _init_pins() && _init_radio(); } /****************************************************************************/ bool RF24::_init_pins() { if (!isValid()) { // didn't specify the CSN & CE pins to c'tor nor begin() return false; } #if defined (RF24_LINUX) #if defined (MRAA) GPIO(); gpio.begin(ce_pin, csn_pin); #endif pinMode(ce_pin, OUTPUT); ce(LOW); delay(100); #elif defined (LITTLEWIRE) pinMode(csn_pin, OUTPUT); csn(HIGH); #elif defined (XMEGA_D3) if (ce_pin != csn_pin) { pinMode(ce_pin, OUTPUT); }; ce(LOW); csn(HIGH); delay(200); #else // using an Arduino platform // Initialize pins if (ce_pin != csn_pin) { pinMode(ce_pin, OUTPUT); pinMode(csn_pin, OUTPUT); } ce(LOW); csn(HIGH); #if defined (__ARDUINO_X86__) delay(100); #endif #endif // !defined(XMEGA_D3) && !defined(LITTLEWIRE) && !defined(RF24_LINUX) return true; // assuming pins are connected properly } /****************************************************************************/ bool RF24::_init_radio() { // Must allow the radio time to settle else configuration bits will not necessarily stick. // This is actually only required following power up but some settling time also appears to // be required after resets too. For full coverage, we'll always assume the worst. // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. delay(5); // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet // sizes must never be used. See datasheet for a more complete explanation. setRetries(5, 15); // Then set the data rate to the slowest (and most reliable) speed supported by all // hardware. setDataRate(RF24_1MBPS); // detect if is a plus variant & use old toggle features command accordingly uint8_t before_toggle = read_register(FEATURE); toggle_features(); uint8_t after_toggle = read_register(FEATURE); _is_p_variant = before_toggle == after_toggle; if (after_toggle){ if (_is_p_variant){ // module did not experience power-on-reset (#401) toggle_features(); } // allow use of multicast parameter and dynamic payloads by default write_register(FEATURE, 0); } ack_payloads_enabled = false; // ack payloads disabled by default write_register(DYNPD, 0); // disable dynamic payloads by default (for all pipes) dynamic_payloads_enabled = false; write_register(EN_AA, 0x3F); // enable auto-ack on all pipes write_register(EN_RXADDR, 3); // only open RX pipes 0 & 1 setPayloadSize(32); // set static payload size to 32 (max) bytes by default setAddressWidth(5); // set default address length to (max) 5 bytes // Set up default configuration. Callers can always change it later. // This channel should be universally safe and not bleed over into adjacent // spectrum. setChannel(76); // Reset current status // Notice reset and flush is the last thing we do write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Flush buffers flush_rx(); flush_tx(); // Clear CONFIG register: // Reflect all IRQ events on IRQ pin // Enable PTX // Power Up // 16-bit CRC (CRC required by auto-ack) // Do not write CE high so radio will remain in standby I mode // PTX should use only 22uA of power write_register(NRF_CONFIG, (_BV(EN_CRC) | _BV(CRCO)) ); config_reg = read_register(NRF_CONFIG); powerUp(); // if config is not set correctly then there was a bad response from module return config_reg == (_BV(EN_CRC) | _BV(CRCO) | _BV(PWR_UP)) ? true : false; } /****************************************************************************/ bool RF24::isChipConnected() { uint8_t setup = read_register(SETUP_AW); if (setup >= 1 && setup <= 3) { return true; } return false; } /****************************************************************************/ bool RF24::isValid() { return ce_pin != 0xFFFF && csn_pin != 0xFFFF; } /****************************************************************************/ void RF24::startListening(void) { #if !defined(RF24_TINY) && !defined(LITTLEWIRE) powerUp(); #endif config_reg |= _BV(PRIM_RX); write_register(NRF_CONFIG, config_reg); write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); ce(HIGH); // Restore the pipe0 address, if exists if (pipe0_reading_address[0] > 0) { write_register(RX_ADDR_P0, pipe0_reading_address, addr_width); } else { closeReadingPipe(0); } } /****************************************************************************/ static const PROGMEM uint8_t child_pipe_enable[] = {ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5}; void RF24::stopListening(void) { ce(LOW); //delayMicroseconds(100); delayMicroseconds(txDelay); if (ack_payloads_enabled){ flush_tx(); } config_reg &= ~_BV(PRIM_RX); write_register(NRF_CONFIG, config_reg); #if defined(RF24_TINY) || defined(LITTLEWIRE) // for 3 pins solution TX mode is only left with additonal powerDown/powerUp cycle if (ce_pin == csn_pin) { powerDown(); powerUp(); } #endif write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0 } /****************************************************************************/ void RF24::powerDown(void) { ce(LOW); // Guarantee CE is low on powerDown config_reg &= ~_BV(PWR_UP); write_register(NRF_CONFIG,config_reg); } /****************************************************************************/ //Power up now. Radio will not power down unless instructed by MCU for config changes etc. void RF24::powerUp(void) { // if not powered up then power up and wait for the radio to initialize if (!(config_reg & _BV(PWR_UP))) { config_reg |= _BV(PWR_UP); write_register(NRF_CONFIG, config_reg); // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet delayMicroseconds(RF24_POWERUP_DELAY); } } /******************************************************************/ #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) void RF24::errNotify() { #if defined(SERIAL_DEBUG) || defined(RF24_LINUX) printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n")); #endif #if defined(FAILURE_HANDLING) failureDetected = 1; #else delay(5000); #endif } #endif /******************************************************************/ //Similar to the previous write, clears the interrupt flags bool RF24::write(const void* buf, uint8_t len, const bool multicast) { //Start Writing startFastWrite(buf, len, multicast); //Wait until complete or failed #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) uint32_t timer = millis(); #endif // defined(FAILURE_HANDLING) || defined(RF24_LINUX) while (!(get_status() & (_BV(TX_DS) | _BV(MAX_RT)))) { #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) if (millis() - timer > 95) { errNotify(); #if defined(FAILURE_HANDLING) return 0; #else delay(100); #endif } #endif } ce(LOW); write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); //Max retries exceeded if (status & _BV(MAX_RT)) { flush_tx(); // Only going to be 1 packet in the FIFO at a time using this method, so just flush return 0; } //TX OK 1 or 0 return 1; } bool RF24::write(const void* buf, uint8_t len) { return write(buf, len, 0); } /****************************************************************************/ //For general use, the interrupt flags are not important to clear bool RF24::writeBlocking(const void* buf, uint8_t len, uint32_t timeout) { //Block until the FIFO is NOT full. //Keep track of the MAX retries and set auto-retry if seeing failures //This way the FIFO will fill up and allow blocking until packets go through //The radio will auto-clear everything in the FIFO as long as CE remains high uint32_t timer = millis(); // Get the time that the payload transmission started while ((get_status() & (_BV(TX_FULL)))) { // Blocking only if FIFO is full. This will loop and block until TX is successful or timeout if (status & _BV(MAX_RT)) { // If MAX Retries have been reached reUseTX(); // Set re-transmit and clear the MAX_RT interrupt flag if (millis() - timer > timeout) { return 0; // If this payload has exceeded the user-defined timeout, exit and return 0 } } #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) if (millis() - timer > (timeout + 95)) { errNotify(); #if defined(FAILURE_HANDLING) return 0; #endif } #endif } //Start Writing startFastWrite(buf, len, 0); // Write the payload if a buffer is clear return 1; // Return 1 to indicate successful transmission } /****************************************************************************/ void RF24::reUseTX() { write_register(NRF_STATUS, _BV(MAX_RT)); //Clear max retry flag write_register(REUSE_TX_PL, RF24_NOP, true); ce(LOW); //Re-Transfer packet ce(HIGH); } /****************************************************************************/ bool RF24::writeFast(const void* buf, uint8_t len, const bool multicast) { //Block until the FIFO is NOT full. //Keep track of the MAX retries and set auto-retry if seeing failures //Return 0 so the user can control the retrys and set a timer or failure counter if required //The radio will auto-clear everything in the FIFO as long as CE remains high #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) uint32_t timer = millis(); #endif //Blocking only if FIFO is full. This will loop and block until TX is successful or fail while ((get_status() & (_BV(TX_FULL)))) { if (status & _BV(MAX_RT)) { return 0; //Return 0. The previous payload has not been retransmitted // From the user perspective, if you get a 0, just keep trying to send the same payload } #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) if (millis() - timer > 95) { errNotify(); #if defined(FAILURE_HANDLING) return 0; #endif // defined(FAILURE_HANDLING) } #endif } startFastWrite(buf, len, multicast); // Start Writing return 1; } bool RF24::writeFast(const void* buf, uint8_t len) { return writeFast(buf, len, 0); } /****************************************************************************/ //Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high //In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay) //Otherwise we enter Standby-II mode, which is still faster than standby mode //Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data void RF24::startFastWrite(const void* buf, uint8_t len, const bool multicast, bool startTx) { //TMRh20 write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD); if (startTx) { ce(HIGH); } } /****************************************************************************/ //Added the original startWrite back in so users can still use interrupts, ack payloads, etc //Allows the library to pass all tests bool RF24::startWrite(const void* buf, uint8_t len, const bool multicast) { // Send the payload write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD); ce(HIGH); #if !defined(F_CPU) || F_CPU > 20000000 delayMicroseconds(10); #endif ce(LOW); return !(status & _BV(TX_FULL)); } /****************************************************************************/ bool RF24::rxFifoFull() { return read_register(FIFO_STATUS) & _BV(RX_FULL); } /****************************************************************************/ bool RF24::txStandBy() { #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) uint32_t timeout = millis(); #endif while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) { if (status & _BV(MAX_RT)) { write_register(NRF_STATUS, _BV(MAX_RT)); ce(LOW); flush_tx(); //Non blocking, flush the data return 0; } #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) if (millis() - timeout > 95) { errNotify(); #if defined(FAILURE_HANDLING) return 0; #endif } #endif } ce(LOW); //Set STANDBY-I mode return 1; } /****************************************************************************/ bool RF24::txStandBy(uint32_t timeout, bool startTx) { if (startTx) { stopListening(); ce(HIGH); } uint32_t start = millis(); while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) { if (status & _BV(MAX_RT)) { write_register(NRF_STATUS, _BV(MAX_RT)); ce(LOW); // Set re-transmit ce(HIGH); if (millis() - start >= timeout) { ce(LOW); flush_tx(); return 0; } } #if defined(FAILURE_HANDLING) || defined(RF24_LINUX) if (millis() - start > (timeout + 95)) { errNotify(); #if defined(FAILURE_HANDLING) return 0; #endif } #endif } ce(LOW); //Set STANDBY-I mode return 1; } /****************************************************************************/ void RF24::maskIRQ(bool tx, bool fail, bool rx) { /* clear the interrupt flags */ config_reg &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); /* set the specified interrupt flags */ config_reg |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; write_register(NRF_CONFIG, config_reg); } /****************************************************************************/ uint8_t RF24::getDynamicPayloadSize(void) { uint8_t result = read_register(R_RX_PL_WID); if (result > 32) { flush_rx(); delay(2); return 0; } return result; } /****************************************************************************/ bool RF24::available(void) { return available(NULL); } /****************************************************************************/ bool RF24::available(uint8_t* pipe_num) { // get implied RX FIFO empty flag from status byte uint8_t pipe = (get_status() >> RX_P_NO) & 0x07; if (pipe > 5) return 0; // If the caller wants the pipe number, include that if (pipe_num) *pipe_num = pipe; return 1; } /****************************************************************************/ void RF24::read(void* buf, uint8_t len) { // Fetch the payload read_payload(buf, len); //Clear the only applicable interrupt flags write_register(NRF_STATUS, _BV(RX_DR)); } /****************************************************************************/ void RF24::whatHappened(bool& tx_ok, bool& tx_fail, bool& rx_ready) { // Read the status & reset the status in one easy call // Or is that such a good idea? write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Report to the user what happened tx_ok = status & _BV(TX_DS); tx_fail = status & _BV(MAX_RT); rx_ready = status & _BV(RX_DR); } /****************************************************************************/ void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, reinterpret_cast(&value), addr_width); write_register(TX_ADDR, reinterpret_cast(&value), addr_width); } /****************************************************************************/ void RF24::openWritingPipe(const uint8_t* address) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, address, addr_width); write_register(TX_ADDR, address, addr_width); } /****************************************************************************/ static const PROGMEM uint8_t child_pipe[] = {RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5}; void RF24::openReadingPipe(uint8_t child, uint64_t address) { // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) { memcpy(pipe0_reading_address, &address, addr_width); } if (child <= 5) { // For pipes 2-5, only write the LSB if (child < 2) { write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), addr_width); } else { write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), 1); } // Note it would be more efficient to set all of the bits for all open // pipes at once. However, I thought it would make the calling code // more simple to do it this way. write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); } } /****************************************************************************/ void RF24::setAddressWidth(uint8_t a_width) { if (a_width -= 2) { write_register(SETUP_AW, a_width % 4); addr_width = (a_width % 4) + 2; } else { write_register(SETUP_AW, 0); addr_width = 2; } } /****************************************************************************/ void RF24::openReadingPipe(uint8_t child, const uint8_t* address) { // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) { memcpy(pipe0_reading_address, address, addr_width); } if (child <= 5) { // For pipes 2-5, only write the LSB if (child < 2) { write_register(pgm_read_byte(&child_pipe[child]), address, addr_width); } else { write_register(pgm_read_byte(&child_pipe[child]), address, 1); } // Note it would be more efficient to set all of the bits for all open // pipes at once. However, I thought it would make the calling code // more simple to do it this way. write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); } } /****************************************************************************/ void RF24::closeReadingPipe(uint8_t pipe) { write_register(EN_RXADDR, read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))); } /****************************************************************************/ void RF24::toggle_features(void) { beginTransaction(); #if defined (RF24_SPI_PTR) status = _spi->transfer(ACTIVATE); _spi->transfer(0x73); #else status = _SPI.transfer(ACTIVATE); _SPI.transfer(0x73); #endif endTransaction(); } /****************************************************************************/ void RF24::enableDynamicPayloads(void) { // Enable dynamic payload throughout the system //toggle_features(); write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); // Enable dynamic payload on all pipes // // Not sure the use case of only having dynamic payload on certain // pipes, so the library does not support it. write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)); dynamic_payloads_enabled = true; } /****************************************************************************/ void RF24::disableDynamicPayloads(void) { // Disables dynamic payload throughout the system. Also disables Ack Payloads //toggle_features(); write_register(FEATURE, 0); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); // Disable dynamic payload on all pipes // // Not sure the use case of only having dynamic payload on certain // pipes, so the library does not support it. write_register(DYNPD, 0); dynamic_payloads_enabled = false; ack_payloads_enabled = false; } /****************************************************************************/ void RF24::enableAckPayload(void) { // enable ack payloads and dynamic payload features if (!ack_payloads_enabled){ write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); // Enable dynamic payload on pipes 0 & 1 write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); dynamic_payloads_enabled = true; ack_payloads_enabled = true; } } /****************************************************************************/ void RF24::disableAckPayload(void) { // disable ack payloads (leave dynamic payload features as is) if (ack_payloads_enabled){ write_register(FEATURE, read_register(FEATURE) | ~_BV(EN_ACK_PAY)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); ack_payloads_enabled = false; } } /****************************************************************************/ void RF24::enableDynamicAck(void) { // // enable dynamic ack features // //toggle_features(); write_register(FEATURE, read_register(FEATURE) | _BV(EN_DYN_ACK)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); } /****************************************************************************/ bool RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) { if (ack_payloads_enabled){ const uint8_t* current = reinterpret_cast(buf); write_payload(current, len, W_ACK_PAYLOAD | (pipe & 0x07)); return !(status & _BV(TX_FULL)); } return 0; } /****************************************************************************/ bool RF24::isAckPayloadAvailable(void) { return available(NULL); } /****************************************************************************/ bool RF24::isPVariant(void) { return _is_p_variant; } /****************************************************************************/ void RF24::setAutoAck(bool enable) { if (enable){ write_register(EN_AA, 0x3F); }else{ write_register(EN_AA, 0); // accomodate ACK payloads feature if (ack_payloads_enabled){ disableAckPayload(); } } } /****************************************************************************/ void RF24::setAutoAck(uint8_t pipe, bool enable) { if (pipe < 6) { uint8_t en_aa = read_register(EN_AA); if (enable) { en_aa |= _BV(pipe); }else{ en_aa &= ~_BV(pipe); if (ack_payloads_enabled && !pipe){ disableAckPayload(); } } write_register(EN_AA, en_aa); } } /****************************************************************************/ bool RF24::testCarrier(void) { return (read_register(CD) & 1); } /****************************************************************************/ bool RF24::testRPD(void) { return (read_register(RPD) & 1); } /****************************************************************************/ void RF24::setPALevel(uint8_t level, bool lnaEnable) { uint8_t setup = read_register(RF_SETUP) & 0xF8; if (level > 3) { // If invalid level, go to max PA level = (RF24_PA_MAX << 1) + lnaEnable; // +1 to support the SI24R1 chip extra bit } else { level = (level << 1) + lnaEnable; // Else set level as requested } write_register(RF_SETUP, setup |= level); // Write it to the chip } /****************************************************************************/ uint8_t RF24::getPALevel(void) { return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1; } /****************************************************************************/ uint8_t RF24::getARC(void) { return read_register(OBSERVE_TX) & 0x0F; } /****************************************************************************/ bool RF24::setDataRate(rf24_datarate_e speed) { bool result = false; uint8_t setup = read_register(RF_SETUP); // HIGH and LOW '00' is 1Mbs - our default setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); #if !defined(F_CPU) || F_CPU > 20000000 txDelay = 280; #else //16Mhz Arduino txDelay=85; #endif if (speed == RF24_250KBPS) { // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 // Making it '10'. setup |= _BV(RF_DR_LOW); #if !defined(F_CPU) || F_CPU > 20000000 txDelay = 505; #else //16Mhz Arduino txDelay = 155; #endif } else { // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 // Making it '01' if (speed == RF24_2MBPS) { setup |= _BV(RF_DR_HIGH); #if !defined(F_CPU) || F_CPU > 20000000 txDelay = 240; #else // 16Mhz Arduino txDelay = 65; #endif } } write_register(RF_SETUP, setup); // Verify our result if (read_register(RF_SETUP) == setup) { result = true; } return result; } /****************************************************************************/ rf24_datarate_e RF24::getDataRate(void) { rf24_datarate_e result; uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); // switch uses RAM (evil!) // Order matters in our case below if (dr == _BV(RF_DR_LOW)) { // '10' = 250KBPS result = RF24_250KBPS; } else if (dr == _BV(RF_DR_HIGH)) { // '01' = 2MBPS result = RF24_2MBPS; } else { // '00' = 1MBPS result = RF24_1MBPS; } return result; } /****************************************************************************/ void RF24::setCRCLength(rf24_crclength_e length) { config_reg &= ~(_BV(CRCO) | _BV(EN_CRC)); // switch uses RAM (evil!) if (length == RF24_CRC_DISABLED) { // Do nothing, we turned it off above. } else if (length == RF24_CRC_8) { config_reg |= _BV(EN_CRC); } else { config_reg |= _BV(EN_CRC); config_reg |= _BV(CRCO); } write_register(NRF_CONFIG, config_reg); } /****************************************************************************/ rf24_crclength_e RF24::getCRCLength(void) { rf24_crclength_e result = RF24_CRC_DISABLED; uint8_t AA = read_register(EN_AA); config_reg = read_register(NRF_CONFIG); if (config_reg & _BV(EN_CRC) || AA) { if (config_reg & _BV(CRCO)) { result = RF24_CRC_16; } else { result = RF24_CRC_8; } } return result; } /****************************************************************************/ void RF24::disableCRC(void) { config_reg &= ~_BV(EN_CRC); write_register(NRF_CONFIG, config_reg); } /****************************************************************************/ void RF24::setRetries(uint8_t delay, uint8_t count) { write_register(SETUP_RETR, rf24_min(15, delay) << ARD | rf24_min(15, count)); } /****************************************************************************/ void RF24::startConstCarrier(rf24_pa_dbm_e level, uint8_t channel) { stopListening(); write_register(RF_SETUP, read_register(RF_SETUP) | _BV(CONT_WAVE) | _BV(PLL_LOCK)); if (isPVariant()){ setAutoAck(0); setRetries(0, 0); uint8_t dummy_buf[32]; for (uint8_t i = 0; i < 32; ++i) dummy_buf[i] = 0xFF; // use write_register() instead of openWritingPipe() to bypass // truncation of the address with the current RF24::addr_width value write_register(TX_ADDR, reinterpret_cast(&dummy_buf), 5); flush_tx(); // so we can write to top level // use write_register() instead of write_payload() to bypass // truncation of the payload with the current RF24::payload_size value write_register(W_TX_PAYLOAD, reinterpret_cast(&dummy_buf), 32); disableCRC(); } setPALevel(level); setChannel(channel); IF_SERIAL_DEBUG(printf_P(PSTR("RF_SETUP=%02x\r\n"), read_register(RF_SETUP))); ce(HIGH); if (isPVariant()){ delay(1); // datasheet says 1 ms is ok in this instance ce(LOW); reUseTX(); } } /****************************************************************************/ void RF24::stopConstCarrier() { /* * A note from the datasheet: * Do not use REUSE_TX_PL together with CONT_WAVE=1. When both these * registers are set the chip does not react when setting CE low. If * however, both registers are set PWR_UP = 0 will turn TX mode off. */ powerDown(); // per datasheet recommendation (just to be safe) write_register(RF_SETUP, read_register(RF_SETUP) & ~_BV(CONT_WAVE) & ~_BV(PLL_LOCK)); ce(LOW); }