/* RGBmatrixPanel Arduino library for Adafruit 16x32 and 32x32 RGB LED matrix panels. Pick one up at: http://www.adafruit.com/products/420 http://www.adafruit.com/products/607 This version uses a few tricks to achieve better performance and/or lower CPU utilization: - To control LED brightness, traditional PWM is eschewed in favor of Binary Code Modulation, which operates through a succession of periods each twice the length of the preceeding one (rather than a direct linear count a la PWM). It's explained well here: http://www.batsocks.co.uk/readme/art_bcm_1.htm I was initially skeptical, but it works exceedingly well in practice! And this uses considerably fewer CPU cycles than software PWM. - Although many control pins are software-configurable in the user's code, a couple things are tied to specific PORT registers. It's just a lot faster this way -- port lookups take time. Please see the notes later regarding wiring on "alternative" Arduino boards. - A tiny bit of inline assembly language is used in the most speed- critical section. The C++ compiler wasn't making optimal use of the instruction set in what seemed like an obvious chunk of code. Since it's only a few short instructions, this loop is also "unrolled" -- each iteration is stated explicitly, not through a control loop. Written by Limor Fried/Ladyada & Phil Burgess/PaintYourDragon for Adafruit Industries. BSD license, all text above must be included in any redistribution. */ #include "RGBmatrixPanel.h" #include "gamma.h" // A full PORT register is required for the data lines, though only the // top 6 output bits are used. For performance reasons, the port # cannot // be changed via library calls, only by changing constants in the library. // For similar reasons, the clock pin is only semi-configurable...it can // be specified as any pin within a specific PORT register stated below. #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // Arduino Mega is now tested and confirmed, with the following caveats: // Because digital pins 2-7 don't map to a contiguous port register, // the Mega requires connecting the matrix data lines to different pins. // Digital pins 24-29 are used for the data interface, and 22 & 23 are // unavailable for other outputs because the software needs to write to // the full PORTA register for speed. Clock may be any pin on PORTB -- // on the Mega, this CAN'T be pins 8 or 9 (these are on PORTH), thus the // wiring will need to be slightly different than the tutorial's // explanation on the Uno, etc. Pins 10-13 are all fair game for the // clock, as are pins 50-53. #define DATAPORT PORTA #define DATADIR DDRA #define SCLKPORT PORTB #elif defined(__AVR_ATmega32U4__) // Arduino Leonardo: this is vestigial code an unlikely to ever be // finished -- DO NOT USE!!! Unlike the Uno, digital pins 2-7 do NOT // map to a contiguous port register, dashing our hopes for compatible // wiring. Making this work would require significant changes both to // the bit-shifting code in the library, and how this board is wired to // the LED matrix. Bummer. #define DATAPORT PORTD #define DATADIR DDRD #define SCLKPORT PORTB #else // Ports for "standard" boards (Arduino Uno, Duemilanove, etc.) #define DATAPORT PORTD #define DATADIR DDRD #define SCLKPORT PORTB #endif #define nPlanes 4 // The fact that the display driver interrupt stuff is tied to the // singular Timer1 doesn't really take well to object orientation with // multiple RGBmatrixPanel instances. The solution at present is to // allow instances, but only one is active at any given time, via its // begin() method. The implementation is still incomplete in parts; // the prior active panel really should be gracefully disabled, and a // stop() method should perhaps be added...assuming multiple instances // are even an actual need. static RGBmatrixPanel *activePanel = NULL; // Code common to both the 16x32 and 32x32 constructors: void RGBmatrixPanel::init(uint8_t rows, uint8_t a, uint8_t b, uint8_t c, uint8_t sclk, uint8_t latch, uint8_t oe, boolean dbuf, uint8_t width) { nRows = rows; // Number of multiplexed rows; actual height is 2X this // Allocate and initialize matrix buffer: int buffsize = width * nRows * 3, // x3 = 3 bytes holds 4 planes "packed" allocsize = (dbuf == true) ? (buffsize * 2) : buffsize; if(NULL == (matrixbuff[0] = (uint8_t *)malloc(allocsize))) return; memset(matrixbuff[0], 0, allocsize); // If not double-buffered, both buffers then point to the same address: matrixbuff[1] = (dbuf == true) ? &matrixbuff[0][buffsize] : matrixbuff[0]; // Save pin numbers for use by begin() method later. _a = a; _b = b; _c = c; _sclk = sclk; _latch = latch; _oe = oe; // Look up port registers and pin masks ahead of time, // avoids many slow digitalWrite() calls later. sclkpin = digitalPinToBitMask(sclk); latport = portOutputRegister(digitalPinToPort(latch)); latpin = digitalPinToBitMask(latch); oeport = portOutputRegister(digitalPinToPort(oe)); oepin = digitalPinToBitMask(oe); addraport = portOutputRegister(digitalPinToPort(a)); addrapin = digitalPinToBitMask(a); addrbport = portOutputRegister(digitalPinToPort(b)); addrbpin = digitalPinToBitMask(b); addrcport = portOutputRegister(digitalPinToPort(c)); addrcpin = digitalPinToBitMask(c); plane = nPlanes - 1; row = nRows - 1; swapflag = false; backindex = 0; // Array index of back buffer } // Constructor for 16x32 panel: RGBmatrixPanel::RGBmatrixPanel( uint8_t a, uint8_t b, uint8_t c, uint8_t sclk, uint8_t latch, uint8_t oe, boolean dbuf) : Adafruit_GFX(32, 16) { init(8, a, b, c, sclk, latch, oe, dbuf, 32); } // Constructor for 32x32 or 32x64 panel: RGBmatrixPanel::RGBmatrixPanel( uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t sclk, uint8_t latch, uint8_t oe, boolean dbuf, uint8_t width) : Adafruit_GFX(width, 32) { init(16, a, b, c, sclk, latch, oe, dbuf, width); // Init a few extra 32x32-specific elements: _d = d; addrdport = portOutputRegister(digitalPinToPort(d)); addrdpin = digitalPinToBitMask(d); } void RGBmatrixPanel::begin(void) { backindex = 0; // Back buffer buffptr = matrixbuff[1 - backindex]; // -> front buffer activePanel = this; // For interrupt hander // Enable all comm & address pins as outputs, set default states: pinMode(_sclk , OUTPUT); SCLKPORT &= ~sclkpin; // Low pinMode(_latch, OUTPUT); *latport &= ~latpin; // Low pinMode(_oe , OUTPUT); *oeport |= oepin; // High (disable output) pinMode(_a , OUTPUT); *addraport &= ~addrapin; // Low pinMode(_b , OUTPUT); *addrbport &= ~addrbpin; // Low pinMode(_c , OUTPUT); *addrcport &= ~addrcpin; // Low if(nRows > 8) { pinMode(_d , OUTPUT); *addrdport &= ~addrdpin; // Low } // The high six bits of the data port are set as outputs; // Might make this configurable in the future, but not yet. DATADIR = B11111100; DATAPORT = 0; // Set up Timer1 for interrupt: TCCR1A = _BV(WGM11); // Mode 14 (fast PWM), OC1A off TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // Mode 14, no prescale ICR1 = 100; TIMSK1 |= _BV(TOIE1); // Enable Timer1 interrupt sei(); // Enable global interrupts } // Original RGBmatrixPanel library used 3/3/3 color. Later version used // 4/4/4. Then Adafruit_GFX (core library used across all Adafruit // display devices now) standardized on 5/6/5. The matrix still operates // internally on 4/4/4 color, but all the graphics functions are written // to expect 5/6/5...the matrix lib will truncate the color components as // needed when drawing. These next functions are mostly here for the // benefit of older code using one of the original color formats. // Promote 3/3/3 RGB to Adafruit_GFX 5/6/5 uint16_t RGBmatrixPanel::Color333(uint8_t r, uint8_t g, uint8_t b) { // RRRrrGGGgggBBBbb return ((r & 0x7) << 13) | ((r & 0x6) << 10) | ((g & 0x7) << 8) | ((g & 0x7) << 5) | ((b & 0x7) << 2) | ((b & 0x6) >> 1); } // Promote 4/4/4 RGB to Adafruit_GFX 5/6/5 uint16_t RGBmatrixPanel::Color444(uint8_t r, uint8_t g, uint8_t b) { // RRRRrGGGGggBBBBb return ((r & 0xF) << 12) | ((r & 0x8) << 8) | ((g & 0xF) << 7) | ((g & 0xC) << 3) | ((b & 0xF) << 1) | ((b & 0x8) >> 3); } // Demote 8/8/8 to Adafruit_GFX 5/6/5 // If no gamma flag passed, assume linear color uint16_t RGBmatrixPanel::Color888(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 11) | ((g & 0xFC) << 5) | (b >> 3); } // 8/8/8 -> gamma -> 5/6/5 uint16_t RGBmatrixPanel::Color888( uint8_t r, uint8_t g, uint8_t b, boolean gflag) { if(gflag) { // Gamma-corrected color? r = pgm_read_byte(&gamma[r]); // Gamma correction table maps g = pgm_read_byte(&gamma[g]); // 8-bit input to 4-bit output b = pgm_read_byte(&gamma[b]); return (r << 12) | ((r & 0x8) << 8) | // 4/4/4 -> 5/6/5 (g << 7) | ((g & 0xC) << 3) | (b << 1) | ( b >> 3); } // else linear (uncorrected) color return ((r & 0xF8) << 11) | ((g & 0xFC) << 5) | (b >> 3); } uint16_t RGBmatrixPanel::ColorHSV( long hue, uint8_t sat, uint8_t val, boolean gflag) { uint8_t r, g, b, lo; uint16_t s1, v1; // Hue hue %= 1536; // -1535 to +1535 if(hue < 0) hue += 1536; // 0 to +1535 lo = hue & 255; // Low byte = primary/secondary color mix switch(hue >> 8) { // High byte = sextant of colorwheel case 0 : r = 255 ; g = lo ; b = 0 ; break; // R to Y case 1 : r = 255 - lo; g = 255 ; b = 0 ; break; // Y to G case 2 : r = 0 ; g = 255 ; b = lo ; break; // G to C case 3 : r = 0 ; g = 255 - lo; b = 255 ; break; // C to B case 4 : r = lo ; g = 0 ; b = 255 ; break; // B to M default: r = 255 ; g = 0 ; b = 255 - lo; break; // M to R } // Saturation: add 1 so range is 1 to 256, allowig a quick shift operation // on the result rather than a costly divide, while the type upgrade to int // avoids repeated type conversions in both directions. s1 = sat + 1; r = 255 - (((255 - r) * s1) >> 8); g = 255 - (((255 - g) * s1) >> 8); b = 255 - (((255 - b) * s1) >> 8); // Value (brightness) & 16-bit color reduction: similar to above, add 1 // to allow shifts, and upgrade to int makes other conversions implicit. v1 = val + 1; if(gflag) { // Gamma-corrected color? r = pgm_read_byte(&gamma[(r * v1) >> 8]); // Gamma correction table maps g = pgm_read_byte(&gamma[(g * v1) >> 8]); // 8-bit input to 4-bit output b = pgm_read_byte(&gamma[(b * v1) >> 8]); } else { // linear (uncorrected) color r = (r * v1) >> 12; // 4-bit results g = (g * v1) >> 12; b = (b * v1) >> 12; } return (r << 12) | ((r & 0x8) << 8) | // 4/4/4 -> 5/6/5 (g << 7) | ((g & 0xC) << 3) | (b << 1) | ( b >> 3); } void RGBmatrixPanel::drawPixel(int16_t x, int16_t y, uint16_t c) { uint8_t r, g, b, bit, limit, *ptr; if((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return; switch(rotation) { case 1: swap(x, y); x = WIDTH - 1 - x; break; case 2: x = WIDTH - 1 - x; y = HEIGHT - 1 - y; break; case 3: swap(x, y); y = HEIGHT - 1 - y; break; } // Adafruit_GFX uses 16-bit color in 5/6/5 format, while matrix needs // 4/4/4. Pluck out relevant bits while separating into R,G,B: r = c >> 12; // RRRRrggggggbbbbb g = (c >> 7) & 0xF; // rrrrrGGGGggbbbbb b = (c >> 1) & 0xF; // rrrrrggggggBBBBb // Loop counter stuff bit = 2; limit = 1 << nPlanes; if(y < nRows) { // Data for the upper half of the display is stored in the lower // bits of each byte. ptr = &matrixbuff[backindex][y * WIDTH * (nPlanes - 1) + x]; // Base addr // Plane 0 is a tricky case -- its data is spread about, // stored in least two bits not used by the other planes. ptr[_width*2] &= ~B00000011; // Plane 0 R,G mask out in one op if(r & 1) ptr[_width*2] |= B00000001; // Plane 0 R: 64 bytes ahead, bit 0 if(g & 1) ptr[_width*2] |= B00000010; // Plane 0 G: 64 bytes ahead, bit 1 if(b & 1) ptr[_width] |= B00000001; // Plane 0 B: 32 bytes ahead, bit 0 else ptr[_width] &= ~B00000001; // Plane 0 B unset; mask out // The remaining three image planes are more normal-ish. // Data is stored in the high 6 bits so it can be quickly // copied to the DATAPORT register w/6 output lines. for(; bit < limit; bit <<= 1) { *ptr &= ~B00011100; // Mask out R,G,B in one op if(r & bit) *ptr |= B00000100; // Plane N R: bit 2 if(g & bit) *ptr |= B00001000; // Plane N G: bit 3 if(b & bit) *ptr |= B00010000; // Plane N B: bit 4 ptr += WIDTH; // Advance to next bit plane } } else { // Data for the lower half of the display is stored in the upper // bits, except for the plane 0 stuff, using 2 least bits. ptr = &matrixbuff[backindex][(y - nRows) * WIDTH * (nPlanes - 1) + x]; *ptr &= ~B00000011; // Plane 0 G,B mask out in one op if(r & 1) ptr[_width] |= B00000010; // Plane 0 R: 32 bytes ahead, bit 1 else ptr[_width] &= ~B00000010; // Plane 0 R unset; mask out if(g & 1) *ptr |= B00000001; // Plane 0 G: bit 0 if(b & 1) *ptr |= B00000010; // Plane 0 B: bit 0 for(; bit < limit; bit <<= 1) { *ptr &= ~B11100000; // Mask out R,G,B in one op if(r & bit) *ptr |= B00100000; // Plane N R: bit 5 if(g & bit) *ptr |= B01000000; // Plane N G: bit 6 if(b & bit) *ptr |= B10000000; // Plane N B: bit 7 ptr += WIDTH; // Advance to next bit plane } } } void RGBmatrixPanel::fillScreen(uint16_t c) { if((c == 0x0000) || (c == 0xffff)) { // For black or white, all bits in frame buffer will be identically // set or unset (regardless of weird bit packing), so it's OK to just // quickly memset the whole thing: memset(matrixbuff[backindex], c, _width * nRows * 3); } else { // Otherwise, need to handle it the long way: Adafruit_GFX::fillScreen(c); } } // Return address of back buffer -- can then load/store data directly uint8_t *RGBmatrixPanel::backBuffer() { return matrixbuff[backindex]; } // For smooth animation -- drawing always takes place in the "back" buffer; // this method pushes it to the "front" for display. Passing "true", the // updated display contents are then copied to the new back buffer and can // be incrementally modified. If "false", the back buffer then contains // the old front buffer contents -- your code can either clear this or // draw over every pixel. (No effect if double-buffering is not enabled.) void RGBmatrixPanel::swapBuffers(boolean copy) { if(matrixbuff[0] != matrixbuff[1]) { // To avoid 'tearing' display, actual swap takes place in the interrupt // handler, at the end of a complete screen refresh cycle. swapflag = true; // Set flag here, then... while(swapflag == true) delay(1); // wait for interrupt to clear it if(copy == true) memcpy(matrixbuff[backindex], matrixbuff[1-backindex], _width * nRows * 3); } } // Dump display contents to the Serial Monitor, adding some formatting to // simplify copy-and-paste of data as a PROGMEM-embedded image for another // sketch. If using multiple dumps this way, you'll need to edit the // output to change the 'img' name for each. Data can then be loaded // back into the display using a pgm_read_byte() loop. void RGBmatrixPanel::dumpMatrix(void) { int i, buffsize = _width * nRows * 3; Serial.print("\n\n" "#include \n\n" "static const uint8_t PROGMEM img[] = {\n "); for(i=0; iupdateDisplay(); // Call refresh func for active display TIFR1 |= TOV1; // Clear Timer1 interrupt flag } // Two constants are used in timing each successive BCM interval. // These were found empirically, by checking the value of TCNT1 at // certain positions in the interrupt code. // CALLOVERHEAD is the number of CPU 'ticks' from the timer overflow // condition (triggering the interrupt) to the first line in the // updateDisplay() method. It's then assumed (maybe not entirely 100% // accurately, but close enough) that a similar amount of time will be // needed at the opposite end, restoring regular program flow. // LOOPTIME is the number of 'ticks' spent inside the shortest data- // issuing loop (not actually a 'loop' because it's unrolled, but eh). // Both numbers are rounded up slightly to allow a little wiggle room // should different compilers produce slightly different results. #define CALLOVERHEAD 60 // Actual value measured = 56 #define LOOPTIME 200 // Actual value measured = 188 // The "on" time for bitplane 0 (with the shortest BCM interval) can // then be estimated as LOOPTIME + CALLOVERHEAD * 2. Each successive // bitplane then doubles the prior amount of time. We can then // estimate refresh rates from this: // 4 bitplanes = 320 + 640 + 1280 + 2560 = 4800 ticks per row. // 4800 ticks * 16 rows (for 32x32 matrix) = 76800 ticks/frame. // 16M CPU ticks/sec / 76800 ticks/frame = 208.33 Hz. // Actual frame rate will be slightly less due to work being done // during the brief "LEDs off" interval...it's reasonable to say // "about 200 Hz." The 16x32 matrix only has to scan half as many // rows...so we could either double the refresh rate (keeping the CPU // load the same), or keep the same refresh rate but halve the CPU // load. We opted for the latter. // Can also estimate CPU use: bitplanes 1-3 all use 320 ticks to // issue data (the increasing gaps in the timing invervals are then // available to other code), and bitplane 0 takes 920 ticks out of // the 2560 tick interval. // 320 * 3 + 920 = 1880 ticks spent in interrupt code, per row. // From prior calculations, about 4800 ticks happen per row. // CPU use = 1880 / 4800 = ~39% (actual use will be very slightly // higher, again due to code used in the LEDs off interval). // 16x32 matrix uses about half that CPU load. CPU time could be // further adjusted by padding the LOOPTIME value, but refresh rates // will decrease proportionally, and 200 Hz is a decent target. // The flow of the interrupt can be awkward to grasp, because data is // being issued to the LED matrix for the *next* bitplane and/or row // while the *current* plane/row is being shown. As a result, the // counter variables change between past/present/future tense in mid- // function...hopefully tenses are sufficiently commented. void RGBmatrixPanel::updateDisplay(void) { uint8_t i, tick, tock, *ptr; uint16_t t, duration; *oeport |= oepin; // Disable LED output during row/plane switchover *latport |= latpin; // Latch data loaded during *prior* interrupt // Calculate time to next interrupt BEFORE incrementing plane #. // This is because duration is the display time for the data loaded // on the PRIOR interrupt. CALLOVERHEAD is subtracted from the // result because that time is implicit between the timer overflow // (interrupt triggered) and the initial LEDs-off line at the start // of this method. t = (nRows > 8) ? LOOPTIME : (LOOPTIME * 2); duration = ((t + CALLOVERHEAD * 2) << plane) - CALLOVERHEAD; // Borrowing a technique here from Ray's Logic: // www.rayslogic.com/propeller/Programming/AdafruitRGB/AdafruitRGB.htm // This code cycles through all four planes for each scanline before // advancing to the next line. While it might seem beneficial to // advance lines every time and interleave the planes to reduce // vertical scanning artifacts, in practice with this panel it causes // a green 'ghosting' effect on black pixels, a much worse artifact. if(++plane >= nPlanes) { // Advance plane counter. Maxed out? plane = 0; // Yes, reset to plane 0, and if(++row >= nRows) { // advance row counter. Maxed out? row = 0; // Yes, reset row counter, then... if(swapflag == true) { // Swap front/back buffers if requested backindex = 1 - backindex; swapflag = false; } buffptr = matrixbuff[1-backindex]; // Reset into front buffer } } else if(plane == 1) { // Plane 0 was loaded on prior interrupt invocation and is about to // latch now, so update the row address lines before we do that: if(row & 0x1) *addraport |= addrapin; else *addraport &= ~addrapin; if(row & 0x2) *addrbport |= addrbpin; else *addrbport &= ~addrbpin; if(row & 0x4) *addrcport |= addrcpin; else *addrcport &= ~addrcpin; if(nRows > 8) { if(row & 0x8) *addrdport |= addrdpin; else *addrdport &= ~addrdpin; } } // buffptr, being 'volatile' type, doesn't take well to optimization. // A local register copy can speed some things up: ptr = (uint8_t *)buffptr; ICR1 = duration; // Set interval for next interrupt TCNT1 = 0; // Restart interrupt timer *oeport &= ~oepin; // Re-enable output *latport &= ~latpin; // Latch down // Record current state of SCLKPORT register, as well as a second // copy with the clock bit set. This makes the innnermost data- // pushing loops faster, as they can just set the PORT state and // not have to load/modify/store bits every single time. It's a // somewhat rude trick that ONLY works because the interrupt // handler is set ISR_BLOCK, halting any other interrupts that // might otherwise also be twiddling the port at the same time // (else this would clobber them). tock = SCLKPORT; tick = tock | sclkpin; if(plane > 0) { // 188 ticks from TCNT1=0 (above) to end of function // Planes 1-3 copy bytes directly from RAM to PORT without unpacking. // The least 2 bits (used for plane 0 data) are presumed masked out // by the port direction bits. // A tiny bit of inline assembly is used; compiler doesn't pick // up on opportunity for post-increment addressing mode. // 5 instruction ticks per 'pew' = 160 ticks total #define pew asm volatile( \ "ld __tmp_reg__, %a[ptr]+" "\n\t" \ "out %[data] , __tmp_reg__" "\n\t" \ "out %[clk] , %[tick]" "\n\t" \ "out %[clk] , %[tock]" "\n" \ :: [ptr] "e" (ptr), \ [data] "I" (_SFR_IO_ADDR(DATAPORT)), \ [clk] "I" (_SFR_IO_ADDR(SCLKPORT)), \ [tick] "r" (tick), \ [tock] "r" (tock)); // Loop is unrolled for speed: pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew if (_width == 64) { pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew pew } buffptr = ptr; //+= 32; } else { // 920 ticks from TCNT1=0 (above) to end of function // Planes 1-3 (handled above) formatted their data "in place," // their layout matching that out the output PORT register (where // 6 bits correspond to output data lines), maximizing throughput // as no conversion or unpacking is needed. Plane 0 then takes up // the slack, with all its data packed into the 2 least bits not // used by the other planes. This works because the unpacking and // output for plane 0 is handled while plane 3 is being displayed... // because binary coded modulation is used (not PWM), that plane // has the longest display interval, so the extra work fits. for(i=0; i<_width; i++) { DATAPORT = ( ptr[i] << 6) | ((ptr[i+_width] << 4) & 0x30) | ((ptr[i+_width*2] << 2) & 0x0C); SCLKPORT = tick; // Clock lo SCLKPORT = tock; // Clock hi } } }