/*! * @file MIDI.hpp * Project Arduino MIDI Library * @brief MIDI Library for the Arduino - Inline implementations * @version 4.2 * @author Francois Best * @date 24/02/11 * @license GPL v3.0 - Copyright Forty Seven Effects 2014 * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once BEGIN_MIDI_NAMESPACE /// \brief Constructor for MidiInterface. template inline MidiInterface::MidiInterface(SerialPort& inSerial) : mSerial(inSerial) { mNoteOffCallback = 0; mNoteOnCallback = 0; mAfterTouchPolyCallback = 0; mControlChangeCallback = 0; mProgramChangeCallback = 0; mAfterTouchChannelCallback = 0; mPitchBendCallback = 0; mSystemExclusiveCallback = 0; mTimeCodeQuarterFrameCallback = 0; mSongPositionCallback = 0; mSongSelectCallback = 0; mTuneRequestCallback = 0; mClockCallback = 0; mStartCallback = 0; mContinueCallback = 0; mStopCallback = 0; mActiveSensingCallback = 0; mSystemResetCallback = 0; } /*! \brief Destructor for MidiInterface. This is not really useful for the Arduino, as it is never called... */ template inline MidiInterface::~MidiInterface() { } // ----------------------------------------------------------------------------- /*! \brief Call the begin method in the setup() function of the Arduino. All parameters are set to their default values: - Input channel set to 1 if no value is specified - Full thru mirroring */ template void MidiInterface::begin(Channel inChannel) { // Initialise the Serial port #if defined(FSE_AVR) mSerial. template open(); #else mSerial.begin(Settings::BaudRate); #endif mInputChannel = inChannel; mRunningStatus_TX = InvalidType; mRunningStatus_RX = InvalidType; mPendingMessageIndex = 0; mPendingMessageExpectedLenght = 0; mMessage.valid = false; mMessage.type = InvalidType; mMessage.channel = 0; mMessage.data1 = 0; mMessage.data2 = 0; mThruFilterMode = Full; mThruActivated = true; } // ----------------------------------------------------------------------------- // Output // ----------------------------------------------------------------------------- /*! \addtogroup output @{ */ /*! \brief Generate and send a MIDI message from the values given. \param inType The message type (see type defines for reference) \param inData1 The first data byte. \param inData2 The second data byte (if the message contains only 1 data byte, set this one to 0). \param inChannel The output channel on which the message will be sent (values from 1 to 16). Note: you cannot send to OMNI. This is an internal method, use it only if you need to send raw data from your code, at your own risks. */ template void MidiInterface::send(MidiType inType, DataByte inData1, DataByte inData2, Channel inChannel) { // Then test if channel is valid if (inChannel >= MIDI_CHANNEL_OFF || inChannel == MIDI_CHANNEL_OMNI || inType < 0x80) { if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } return; // Don't send anything } if (inType <= PitchBend) // Channel messages { // Protection: remove MSBs on data inData1 &= 0x7f; inData2 &= 0x7f; const StatusByte status = getStatus(inType, inChannel); if (Settings::UseRunningStatus) { if (mRunningStatus_TX != status) { // New message, memorise and send header mRunningStatus_TX = status; mSerial.write(mRunningStatus_TX); } } else { // Don't care about running status, send the status byte. mSerial.write(status); } // Then send data mSerial.write(inData1); if (inType != ProgramChange && inType != AfterTouchChannel) { mSerial.write(inData2); } } else if (inType >= TuneRequest && inType <= SystemReset) { sendRealTime(inType); // System Real-time and 1 byte. } } // ----------------------------------------------------------------------------- /*! \brief Send a Note On message \param inNoteNumber Pitch value in the MIDI format (0 to 127). \param inVelocity Note attack velocity (0 to 127). A NoteOn with 0 velocity is considered as a NoteOff. \param inChannel The channel on which the message will be sent (1 to 16). Take a look at the values, names and frequencies of notes here: http://www.phys.unsw.edu.au/jw/notes.html */ template void MidiInterface::sendNoteOn(DataByte inNoteNumber, DataByte inVelocity, Channel inChannel) { send(NoteOn, inNoteNumber, inVelocity, inChannel); } /*! \brief Send a Note Off message \param inNoteNumber Pitch value in the MIDI format (0 to 127). \param inVelocity Release velocity (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). Note: you can send NoteOn with zero velocity to make a NoteOff, this is based on the Running Status principle, to avoid sending status messages and thus sending only NoteOn data. sendNoteOff will always send a real NoteOff message. Take a look at the values, names and frequencies of notes here: http://www.phys.unsw.edu.au/jw/notes.html */ template void MidiInterface::sendNoteOff(DataByte inNoteNumber, DataByte inVelocity, Channel inChannel) { send(NoteOff, inNoteNumber, inVelocity, inChannel); } /*! \brief Send a Program Change message \param inProgramNumber The Program to select (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). */ template void MidiInterface::sendProgramChange(DataByte inProgramNumber, Channel inChannel) { send(ProgramChange, inProgramNumber, 0, inChannel); } /*! \brief Send a Control Change message \param inControlNumber The controller number (0 to 127). \param inControlValue The value for the specified controller (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). @see MidiControlChangeNumber */ template void MidiInterface::sendControlChange(DataByte inControlNumber, DataByte inControlValue, Channel inChannel) { send(ControlChange, inControlNumber, inControlValue, inChannel); } /*! \brief Send a Polyphonic AfterTouch message (applies to a specified note) \param inNoteNumber The note to apply AfterTouch to (0 to 127). \param inPressure The amount of AfterTouch to apply (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). */ template void MidiInterface::sendPolyPressure(DataByte inNoteNumber, DataByte inPressure, Channel inChannel) { send(AfterTouchPoly, inNoteNumber, inPressure, inChannel); } /*! \brief Send a MonoPhonic AfterTouch message (applies to all notes) \param inPressure The amount of AfterTouch to apply to all notes. \param inChannel The channel on which the message will be sent (1 to 16). */ template void MidiInterface::sendAfterTouch(DataByte inPressure, Channel inChannel) { send(AfterTouchChannel, inPressure, 0, inChannel); } /*! \brief Send a Pitch Bend message using a signed integer value. \param inPitchValue The amount of bend to send (in a signed integer format), between MIDI_PITCHBEND_MIN and MIDI_PITCHBEND_MAX, center value is 0. \param inChannel The channel on which the message will be sent (1 to 16). */ template void MidiInterface::sendPitchBend(int inPitchValue, Channel inChannel) { const unsigned bend = inPitchValue - MIDI_PITCHBEND_MIN; send(PitchBend, (bend & 0x7f), (bend >> 7) & 0x7f, inChannel); } /*! \brief Send a Pitch Bend message using a floating point value. \param inPitchValue The amount of bend to send (in a floating point format), between -1.0f (maximum downwards bend) and +1.0f (max upwards bend), center value is 0.0f. \param inChannel The channel on which the message will be sent (1 to 16). */ template void MidiInterface::sendPitchBend(double inPitchValue, Channel inChannel) { const int value = inPitchValue * MIDI_PITCHBEND_MAX * Settings::Toto; sendPitchBend(value, inChannel); } /*! \brief Generate and send a System Exclusive frame. \param inLength The size of the array to send \param inArray The byte array containing the data to send \param inArrayContainsBoundaries When set to 'true', 0xf0 & 0xf7 bytes (start & stop SysEx) will NOT be sent (and therefore must be included in the array). default value for ArrayContainsBoundaries is set to 'false' for compatibility with previous versions of the library. */ template void MidiInterface::sendSysEx(unsigned inLength, const byte* inArray, bool inArrayContainsBoundaries) { const bool writeBeginEndBytes = !inArrayContainsBoundaries; if (writeBeginEndBytes) { mSerial.write(0xf0); } for (unsigned i = 0; i < inLength; ++i) { mSerial.write(inArray[i]); } if (writeBeginEndBytes) { mSerial.write(0xf7); } if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } } /*! \brief Send a Tune Request message. When a MIDI unit receives this message, it should tune its oscillators (if equipped with any). */ template void MidiInterface::sendTuneRequest() { sendRealTime(TuneRequest); } /*! \brief Send a MIDI Time Code Quarter Frame. \param inTypeNibble MTC type \param inValuesNibble MTC data See MIDI Specification for more information. */ template void MidiInterface::sendTimeCodeQuarterFrame(DataByte inTypeNibble, DataByte inValuesNibble) { const byte data = (((inTypeNibble & 0x07) << 4) | (inValuesNibble & 0x0f)); sendTimeCodeQuarterFrame(data); } /*! \brief Send a MIDI Time Code Quarter Frame. See MIDI Specification for more information. \param inData if you want to encode directly the nibbles in your program, you can send the byte here. */ template void MidiInterface::sendTimeCodeQuarterFrame(DataByte inData) { mSerial.write((byte)TimeCodeQuarterFrame); mSerial.write(inData); if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } } /*! \brief Send a Song Position Pointer message. \param inBeats The number of beats since the start of the song. */ template void MidiInterface::sendSongPosition(unsigned inBeats) { mSerial.write((byte)SongPosition); mSerial.write(inBeats & 0x7f); mSerial.write((inBeats >> 7) & 0x7f); if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } } /*! \brief Send a Song Select message */ template void MidiInterface::sendSongSelect(DataByte inSongNumber) { mSerial.write((byte)SongSelect); mSerial.write(inSongNumber & 0x7f); if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } } /*! \brief Send a Real Time (one byte) message. \param inType The available Real Time types are: Start, Stop, Continue, Clock, ActiveSensing and SystemReset. You can also send a Tune Request with this method. @see MidiType */ template void MidiInterface::sendRealTime(MidiType inType) { switch (inType) { case TuneRequest: // Not really real-time, but one byte anyway. case Clock: case Start: case Stop: case Continue: case ActiveSensing: case SystemReset: mSerial.write((byte)inType); break; default: // Invalid Real Time marker break; } // Do not cancel Running Status for real-time messages as they can be // interleaved within any message. Though, TuneRequest can be sent here, // and as it is a System Common message, it must reset Running Status. if (Settings::UseRunningStatus && inType == TuneRequest) { mRunningStatus_TX = InvalidType; } } /*! @} */ // End of doc group MIDI Output // ----------------------------------------------------------------------------- template StatusByte MidiInterface::getStatus(MidiType inType, Channel inChannel) const { return ((byte)inType | ((inChannel - 1) & 0x0f)); } // ----------------------------------------------------------------------------- // Input // ----------------------------------------------------------------------------- /*! \addtogroup input @{ */ /*! \brief Read messages from the serial port using the main input channel. \return True if a valid message has been stored in the structure, false if not. A valid message is a message that matches the input channel. \n\n If the Thru is enabled and the message matches the filter, it is sent back on the MIDI output. @see see setInputChannel() */ template inline bool MidiInterface::read() { return read(mInputChannel); } /*! \brief Read messages on a specified channel. */ template inline bool MidiInterface::read(Channel inChannel) { if (inChannel >= MIDI_CHANNEL_OFF) return false; // MIDI Input disabled. if (!parse()) return false; handleNullVelocityNoteOnAsNoteOff(); const bool channelMatch = inputFilter(inChannel); if (channelMatch) { launchCallback(); } thruFilter(inChannel); return channelMatch; } // ----------------------------------------------------------------------------- // Private method: MIDI parser template bool MidiInterface::parse() { if (mSerial.available() == 0) // No data available. return false; // Parsing algorithm: // Get a byte from the serial buffer. // If there is no pending message to be recomposed, start a new one. // - Find type and channel (if pertinent) // - Look for other bytes in buffer, call parser recursively, // until the message is assembled or the buffer is empty. // Else, add the extracted byte to the pending message, and check validity. // When the message is done, store it. const byte extracted = mSerial.read(); if (mPendingMessageIndex == 0) { // Start a new pending message mPendingMessage[0] = extracted; // Check for running status first if (isChannelMessage(getTypeFromStatusByte(mRunningStatus_RX))) { // Only these types allow Running Status // If the status byte is not received, prepend it // to the pending message if (extracted < 0x80) { mPendingMessage[0] = mRunningStatus_RX; mPendingMessage[1] = extracted; mPendingMessageIndex = 1; } // Else: well, we received another status byte, // so the running status does not apply here. // It will be updated upon completion of this message. } switch (getTypeFromStatusByte(mPendingMessage[0])) { // 1 byte messages case Start: case Continue: case Stop: case Clock: case ActiveSensing: case SystemReset: case TuneRequest: // Handle the message type directly here. mMessage.type = getTypeFromStatusByte(mPendingMessage[0]); mMessage.channel = 0; mMessage.data1 = 0; mMessage.data2 = 0; mMessage.valid = true; // \fix Running Status broken when receiving Clock messages. // Do not reset all input attributes, Running Status must remain unchanged. //resetInput(); // We still need to reset these mPendingMessageIndex = 0; mPendingMessageExpectedLenght = 0; return true; break; // 2 bytes messages case ProgramChange: case AfterTouchChannel: case TimeCodeQuarterFrame: case SongSelect: mPendingMessageExpectedLenght = 2; break; // 3 bytes messages case NoteOn: case NoteOff: case ControlChange: case PitchBend: case AfterTouchPoly: case SongPosition: mPendingMessageExpectedLenght = 3; break; case SystemExclusive: // The message can be any lenght // between 3 and MidiMessage::sSysExMaxSize bytes mPendingMessageExpectedLenght = MidiMessage::sSysExMaxSize; mRunningStatus_RX = InvalidType; mMessage.sysexArray[0] = SystemExclusive; break; case InvalidType: default: // This is obviously wrong. Let's get the hell out'a here. resetInput(); return false; break; } if (mPendingMessageIndex >= (mPendingMessageExpectedLenght - 1)) { // Reception complete mMessage.type = getTypeFromStatusByte(mPendingMessage[0]); mMessage.channel = getChannelFromStatusByte(mPendingMessage[0]); mMessage.data1 = mPendingMessage[1]; // Save data2 only if applicable if (mPendingMessageExpectedLenght == 3) mMessage.data2 = mPendingMessage[2]; else mMessage.data2 = 0; mPendingMessageIndex = 0; mPendingMessageExpectedLenght = 0; mMessage.valid = true; return true; } else { // Waiting for more data mPendingMessageIndex++; } if (Settings::Use1ByteParsing) { // Message is not complete. return false; } else { // Call the parser recursively // to parse the rest of the message. return parse(); } } else { // First, test if this is a status byte if (extracted >= 0x80) { // Reception of status bytes in the middle of an uncompleted message // are allowed only for interleaved Real Time message or EOX switch (extracted) { case Clock: case Start: case Continue: case Stop: case ActiveSensing: case SystemReset: // Here we will have to extract the one-byte message, // pass it to the structure for being read outside // the MIDI class, and recompose the message it was // interleaved into. Oh, and without killing the running status.. // This is done by leaving the pending message as is, // it will be completed on next calls. mMessage.type = (MidiType)extracted; mMessage.data1 = 0; mMessage.data2 = 0; mMessage.channel = 0; mMessage.valid = true; return true; break; // End of Exclusive case 0xf7: if (mMessage.sysexArray[0] == SystemExclusive) { // Store the last byte (EOX) mMessage.sysexArray[mPendingMessageIndex++] = 0xf7; mMessage.type = SystemExclusive; // Get length mMessage.data1 = mPendingMessageIndex & 0xff; // LSB mMessage.data2 = mPendingMessageIndex >> 8; // MSB mMessage.channel = 0; mMessage.valid = true; resetInput(); return true; } else { // Well well well.. error. resetInput(); return false; } break; default: break; } } // Add extracted data byte to pending message if (mPendingMessage[0] == SystemExclusive) mMessage.sysexArray[mPendingMessageIndex] = extracted; else mPendingMessage[mPendingMessageIndex] = extracted; // Now we are going to check if we have reached the end of the message if (mPendingMessageIndex >= (mPendingMessageExpectedLenght - 1)) { // "FML" case: fall down here with an overflown SysEx.. // This means we received the last possible data byte that can fit // the buffer. If this happens, try increasing MidiMessage::sSysExMaxSize. if (mPendingMessage[0] == SystemExclusive) { resetInput(); return false; } mMessage.type = getTypeFromStatusByte(mPendingMessage[0]); if (isChannelMessage(mMessage.type)) mMessage.channel = getChannelFromStatusByte(mPendingMessage[0]); else mMessage.channel = 0; mMessage.data1 = mPendingMessage[1]; // Save data2 only if applicable if (mPendingMessageExpectedLenght == 3) mMessage.data2 = mPendingMessage[2]; else mMessage.data2 = 0; // Reset local variables mPendingMessageIndex = 0; mPendingMessageExpectedLenght = 0; mMessage.valid = true; // Activate running status (if enabled for the received type) switch (mMessage.type) { case NoteOff: case NoteOn: case AfterTouchPoly: case ControlChange: case ProgramChange: case AfterTouchChannel: case PitchBend: // Running status enabled: store it from received message mRunningStatus_RX = mPendingMessage[0]; break; default: // No running status mRunningStatus_RX = InvalidType; break; } return true; } else { // Then update the index of the pending message. mPendingMessageIndex++; if (Settings::Use1ByteParsing) { // Message is not complete. return false; } else { // Call the parser recursively to parse the rest of the message. return parse(); } } } } // Private method, see midi_Settings.h for documentation template inline void MidiInterface::handleNullVelocityNoteOnAsNoteOff() { if (Settings::HandleNullVelocityNoteOnAsNoteOff && getType() == NoteOn && getData2() == 0) { mMessage.type = NoteOff; } } // Private method: check if the received message is on the listened channel template inline bool MidiInterface::inputFilter(Channel inChannel) { // This method handles recognition of channel // (to know if the message is destinated to the Arduino) if (mMessage.type == InvalidType) return false; // First, check if the received message is Channel if (mMessage.type >= NoteOff && mMessage.type <= PitchBend) { // Then we need to know if we listen to it if ((mMessage.channel == mInputChannel) || (mInputChannel == MIDI_CHANNEL_OMNI)) { return true; } else { // We don't listen to this channel return false; } } else { // System messages are always received return true; } } // Private method: reset input attributes template inline void MidiInterface::resetInput() { mPendingMessageIndex = 0; mPendingMessageExpectedLenght = 0; mRunningStatus_RX = InvalidType; } // ----------------------------------------------------------------------------- /*! \brief Get the last received message's type Returns an enumerated type. @see MidiType */ template inline MidiType MidiInterface::getType() const { return mMessage.type; } /*! \brief Get the channel of the message stored in the structure. \return Channel range is 1 to 16. For non-channel messages, this will return 0. */ template inline Channel MidiInterface::getChannel() const { return mMessage.channel; } /*! \brief Get the first data byte of the last received message. */ template inline DataByte MidiInterface::getData1() const { return mMessage.data1; } /*! \brief Get the second data byte of the last received message. */ template inline DataByte MidiInterface::getData2() const { return mMessage.data2; } /*! \brief Get the System Exclusive byte array. @see getSysExArrayLength to get the array's length in bytes. */ template inline const byte* MidiInterface::getSysExArray() const { return mMessage.sysexArray; } /*! \brief Get the lenght of the System Exclusive array. It is coded using data1 as LSB and data2 as MSB. \return The array's length, in bytes. */ template inline unsigned MidiInterface::getSysExArrayLength() const { return mMessage.getSysExSize(); } /*! \brief Check if a valid message is stored in the structure. */ template inline bool MidiInterface::check() const { return mMessage.valid; } // ----------------------------------------------------------------------------- template inline Channel MidiInterface::getInputChannel() const { return mInputChannel; } /*! \brief Set the value for the input MIDI channel \param inChannel the channel value. Valid values are 1 to 16, MIDI_CHANNEL_OMNI if you want to listen to all channels, and MIDI_CHANNEL_OFF to disable input. */ template inline void MidiInterface::setInputChannel(Channel inChannel) { mInputChannel = inChannel; } // ----------------------------------------------------------------------------- /*! \brief Extract an enumerated MIDI type from a status byte. This is a utility static method, used internally, made public so you can handle MidiTypes more easily. */ template MidiType MidiInterface::getTypeFromStatusByte(byte inStatus) { if ((inStatus < 0x80) || (inStatus == 0xf4) || (inStatus == 0xf5) || (inStatus == 0xf9) || (inStatus == 0xfD)) { // Data bytes and undefined. return InvalidType; } if (inStatus < 0xf0) { // Channel message, remove channel nibble. return MidiType(inStatus & 0xf0); } return MidiType(inStatus); } /*! \brief Returns channel in the range 1-16 */ template inline Channel MidiInterface::getChannelFromStatusByte(byte inStatus) { return (inStatus & 0x0f) + 1; } template bool MidiInterface::isChannelMessage(MidiType inType) { return (inType == NoteOff || inType == NoteOn || inType == ControlChange || inType == AfterTouchPoly || inType == AfterTouchChannel || inType == PitchBend || inType == ProgramChange); } // ----------------------------------------------------------------------------- /*! \addtogroup callbacks @{ */ template void MidiInterface::setHandleNoteOff(void (*fptr)(byte channel, byte note, byte velocity)) { mNoteOffCallback = fptr; } template void MidiInterface::setHandleNoteOn(void (*fptr)(byte channel, byte note, byte velocity)) { mNoteOnCallback = fptr; } template void MidiInterface::setHandleAfterTouchPoly(void (*fptr)(byte channel, byte note, byte pressure)) { mAfterTouchPolyCallback = fptr; } template void MidiInterface::setHandleControlChange(void (*fptr)(byte channel, byte number, byte value)) { mControlChangeCallback = fptr; } template void MidiInterface::setHandleProgramChange(void (*fptr)(byte channel, byte number)) { mProgramChangeCallback = fptr; } template void MidiInterface::setHandleAfterTouchChannel(void (*fptr)(byte channel, byte pressure)) { mAfterTouchChannelCallback = fptr; } template void MidiInterface::setHandlePitchBend(void (*fptr)(byte channel, int bend)) { mPitchBendCallback = fptr; } template void MidiInterface::setHandleSystemExclusive(void (*fptr)(byte* array, unsigned size)) { mSystemExclusiveCallback = fptr; } template void MidiInterface::setHandleTimeCodeQuarterFrame(void (*fptr)(byte data)) { mTimeCodeQuarterFrameCallback = fptr; } template void MidiInterface::setHandleSongPosition(void (*fptr)(unsigned beats)) { mSongPositionCallback = fptr; } template void MidiInterface::setHandleSongSelect(void (*fptr)(byte songnumber)) { mSongSelectCallback = fptr; } template void MidiInterface::setHandleTuneRequest(void (*fptr)(void)) { mTuneRequestCallback = fptr; } template void MidiInterface::setHandleClock(void (*fptr)(void)) { mClockCallback = fptr; } template void MidiInterface::setHandleStart(void (*fptr)(void)) { mStartCallback = fptr; } template void MidiInterface::setHandleContinue(void (*fptr)(void)) { mContinueCallback = fptr; } template void MidiInterface::setHandleStop(void (*fptr)(void)) { mStopCallback = fptr; } template void MidiInterface::setHandleActiveSensing(void (*fptr)(void)) { mActiveSensingCallback = fptr; } template void MidiInterface::setHandleSystemReset(void (*fptr)(void)) { mSystemResetCallback = fptr; } /*! \brief Detach an external function from the given type. Use this method to cancel the effects of setHandle********. \param inType The type of message to unbind. When a message of this type is received, no function will be called. */ template void MidiInterface::disconnectCallbackFromType(MidiType inType) { switch (inType) { case NoteOff: mNoteOffCallback = 0; break; case NoteOn: mNoteOnCallback = 0; break; case AfterTouchPoly: mAfterTouchPolyCallback = 0; break; case ControlChange: mControlChangeCallback = 0; break; case ProgramChange: mProgramChangeCallback = 0; break; case AfterTouchChannel: mAfterTouchChannelCallback = 0; break; case PitchBend: mPitchBendCallback = 0; break; case SystemExclusive: mSystemExclusiveCallback = 0; break; case TimeCodeQuarterFrame: mTimeCodeQuarterFrameCallback = 0; break; case SongPosition: mSongPositionCallback = 0; break; case SongSelect: mSongSelectCallback = 0; break; case TuneRequest: mTuneRequestCallback = 0; break; case Clock: mClockCallback = 0; break; case Start: mStartCallback = 0; break; case Continue: mContinueCallback = 0; break; case Stop: mStopCallback = 0; break; case ActiveSensing: mActiveSensingCallback = 0; break; case SystemReset: mSystemResetCallback = 0; break; default: break; } } /*! @} */ // End of doc group MIDI Callbacks // Private - launch callback function based on received type. template void MidiInterface::launchCallback() { // The order is mixed to allow frequent messages to trigger their callback faster. switch (mMessage.type) { // Notes case NoteOff: if (mNoteOffCallback != 0) mNoteOffCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; case NoteOn: if (mNoteOnCallback != 0) mNoteOnCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; // Real-time messages case Clock: if (mClockCallback != 0) mClockCallback(); break; case Start: if (mStartCallback != 0) mStartCallback(); break; case Continue: if (mContinueCallback != 0) mContinueCallback(); break; case Stop: if (mStopCallback != 0) mStopCallback(); break; case ActiveSensing: if (mActiveSensingCallback != 0) mActiveSensingCallback(); break; // Continuous controllers case ControlChange: if (mControlChangeCallback != 0) mControlChangeCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; case PitchBend: if (mPitchBendCallback != 0) mPitchBendCallback(mMessage.channel, (int)((mMessage.data1 & 0x7f) | ((mMessage.data2 & 0x7f) << 7)) + MIDI_PITCHBEND_MIN); break; // TODO: check this case AfterTouchPoly: if (mAfterTouchPolyCallback != 0) mAfterTouchPolyCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; case AfterTouchChannel: if (mAfterTouchChannelCallback != 0) mAfterTouchChannelCallback(mMessage.channel, mMessage.data1); break; case ProgramChange: if (mProgramChangeCallback != 0) mProgramChangeCallback(mMessage.channel, mMessage.data1); break; case SystemExclusive: if (mSystemExclusiveCallback != 0) mSystemExclusiveCallback(mMessage.sysexArray, mMessage.getSysExSize()); break; // Occasional messages case TimeCodeQuarterFrame: if (mTimeCodeQuarterFrameCallback != 0) mTimeCodeQuarterFrameCallback(mMessage.data1); break; case SongPosition: if (mSongPositionCallback != 0) mSongPositionCallback((mMessage.data1 & 0x7f) | ((mMessage.data2 & 0x7f) << 7)); break; case SongSelect: if (mSongSelectCallback != 0) mSongSelectCallback(mMessage.data1); break; case TuneRequest: if (mTuneRequestCallback != 0) mTuneRequestCallback(); break; case SystemReset: if (mSystemResetCallback != 0) mSystemResetCallback(); break; case InvalidType: default: break; } } /*! @} */ // End of doc group MIDI Input // ----------------------------------------------------------------------------- // Thru // ----------------------------------------------------------------------------- /*! \addtogroup thru @{ */ /*! \brief Set the filter for thru mirroring \param inThruFilterMode a filter mode @see MidiFilterMode */ template void MidiInterface::setThruFilterMode(MidiFilterMode inThruFilterMode) { mThruFilterMode = inThruFilterMode; if (mThruFilterMode != Off) mThruActivated = true; else mThruActivated = false; } template MidiFilterMode MidiInterface::getFilterMode() const { return mThruFilterMode; } template bool MidiInterface::getThruState() const { return mThruActivated; } template void MidiInterface::turnThruOn(MidiFilterMode inThruFilterMode) { mThruActivated = true; mThruFilterMode = inThruFilterMode; } template void MidiInterface::turnThruOff() { mThruActivated = false; mThruFilterMode = Off; } /*! @} */ // End of doc group MIDI Thru // This method is called upon reception of a message // and takes care of Thru filtering and sending. // - All system messages (System Exclusive, Common and Real Time) are passed // to output unless filter is set to Off. // - Channel messages are passed to the output whether their channel // is matching the input channel and the filter setting template void MidiInterface::thruFilter(Channel inChannel) { // If the feature is disabled, don't do anything. if (!mThruActivated || (mThruFilterMode == Off)) return; // First, check if the received message is Channel if (mMessage.type >= NoteOff && mMessage.type <= PitchBend) { const bool filter_condition = ((mMessage.channel == mInputChannel) || (mInputChannel == MIDI_CHANNEL_OMNI)); // Now let's pass it to the output switch (mThruFilterMode) { case Full: send(mMessage.type, mMessage.data1, mMessage.data2, mMessage.channel); break; case SameChannel: if (filter_condition) { send(mMessage.type, mMessage.data1, mMessage.data2, mMessage.channel); } break; case DifferentChannel: if (!filter_condition) { send(mMessage.type, mMessage.data1, mMessage.data2, mMessage.channel); } break; case Off: // Do nothing. // Technically it's impossible to get there because // the case was already tested earlier. break; default: break; } } else { // Send the message to the output switch (mMessage.type) { // Real Time and 1 byte case Clock: case Start: case Stop: case Continue: case ActiveSensing: case SystemReset: case TuneRequest: sendRealTime(mMessage.type); break; case SystemExclusive: // Send SysEx (0xf0 and 0xf7 are included in the buffer) sendSysEx(getSysExArrayLength(), getSysExArray(), true); break; case SongSelect: sendSongSelect(mMessage.data1); break; case SongPosition: sendSongPosition(mMessage.data1 | ((unsigned)mMessage.data2 << 7)); break; case TimeCodeQuarterFrame: sendTimeCodeQuarterFrame(mMessage.data1,mMessage.data2); break; default: break; } } } END_MIDI_NAMESPACE