/* MinIMU-9-Arduino-AHRS Pololu MinIMU-9 + Arduino AHRS (Attitude and Heading Reference System) Copyright (c) 2011 Pololu Corporation. http://www.pololu.com/ MinIMU-9-Arduino-AHRS is based on sf9domahrs by Doug Weibel and Jose Julio: http://code.google.com/p/sf9domahrs/ sf9domahrs is based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and Doug Weibel: http://code.google.com/p/ardu-imu/ MinIMU-9-Arduino-AHRS is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. MinIMU-9-Arduino-AHRS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with MinIMU-9-Arduino-AHRS. If not, see . */ /**************************************************/ void Normalize(void) { float error=0; float temporary[3][3]; float renorm=0; error= -Vector_Dot_Product(&DCM_Matrix[0][0],&DCM_Matrix[1][0])*.5; //eq.19 Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //eq.19 Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0], error); //eq.19 Vector_Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0]);//eq.19 Vector_Add(&temporary[1][0], &temporary[1][0], &DCM_Matrix[1][0]);//eq.19 Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.20 renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.21 Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0], renorm); renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //eq.21 Vector_Scale(&DCM_Matrix[1][0], &temporary[1][0], renorm); renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.21 Vector_Scale(&DCM_Matrix[2][0], &temporary[2][0], renorm); } /**************************************************/ void Drift_correction(void) { float mag_heading_x; float mag_heading_y; float errorCourse; //Compensation the Roll, Pitch and Yaw drift. static float Scaled_Omega_P[3]; static float Scaled_Omega_I[3]; float Accel_magnitude; float Accel_weight; //*****Roll and Pitch*************** // Calculate the magnitude of the accelerometer vector Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]); Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity. // Dynamic weighting of accelerometer info (reliability filter) // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1); // Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&DCM_Matrix[2][0]); //adjust the ground of reference Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight); Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH*Accel_weight); Vector_Add(Omega_I,Omega_I,Scaled_Omega_I); //*****YAW*************** // We make the gyro YAW drift correction based on compass magnetic heading mag_heading_x = cos(MAG_Heading); mag_heading_y = sin(MAG_Heading); errorCourse=(DCM_Matrix[0][0]*mag_heading_y) - (DCM_Matrix[1][0]*mag_heading_x); //Calculating YAW error Vector_Scale(errorYaw,&DCM_Matrix[2][0],errorCourse); //Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position. Vector_Scale(&Scaled_Omega_P[0],&errorYaw[0],Kp_YAW);//.01proportional of YAW. Vector_Add(Omega_P,Omega_P,Scaled_Omega_P);//Adding Proportional. Vector_Scale(&Scaled_Omega_I[0],&errorYaw[0],Ki_YAW);//.00001Integrator Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);//adding integrator to the Omega_I } /**************************************************/ /* void Accel_adjust(void) { Accel_Vector[1] += Accel_Scale(speed_3d*Omega[2]); // Centrifugal force on Acc_y = GPS_speed*GyroZ Accel_Vector[2] -= Accel_Scale(speed_3d*Omega[1]); // Centrifugal force on Acc_z = GPS_speed*GyroY } */ /**************************************************/ void Matrix_update(void) { Gyro_Vector[0]=Gyro_Scaled_X(gyro_x); //gyro x roll Gyro_Vector[1]=Gyro_Scaled_Y(gyro_y); //gyro y pitch Gyro_Vector[2]=Gyro_Scaled_Z(gyro_z); //gyro Z yaw Accel_Vector[0]=accel_x; Accel_Vector[1]=accel_y; Accel_Vector[2]=accel_z; Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]); //adding proportional term Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]); //adding Integrator term //Accel_adjust(); //Remove centrifugal acceleration. We are not using this function in this version - we have no speed measurement #if OUTPUTMODE==1 Update_Matrix[0][0]=0; Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z Update_Matrix[1][1]=0; Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x Update_Matrix[2][2]=0; #else // Uncorrected data (no drift correction) Update_Matrix[0][0]=0; Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z Update_Matrix[1][1]=0; Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0]; Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1]; Update_Matrix[2][1]=G_Dt*Gyro_Vector[0]; Update_Matrix[2][2]=0; #endif Matrix_Multiply(DCM_Matrix,Update_Matrix,Temporary_Matrix); //a*b=c for(int x=0; x<3; x++) //Matrix Addition (update) { for(int y=0; y<3; y++) { DCM_Matrix[x][y]+=Temporary_Matrix[x][y]; } } } void Euler_angles(void) { pitch = -asin(DCM_Matrix[2][0]); roll = atan2(DCM_Matrix[2][1],DCM_Matrix[2][2]); yaw = atan2(DCM_Matrix[1][0],DCM_Matrix[0][0]); }