/* Tinct firmware, version ??? (no version number scheme yet) Written by Jonathan M. Guberman jonathan@upwardnotnorthward.com www.upwardnotnorthward.com Released under a Creative Commons Attribution-Noncommercial-Sharealike license Can be used and adapted for noncommercial purposes, as long as proper credit is given to the original author, and any derivatives works are released under a similar license. */ //Debugging definitions: uncomment the relevant line to turn it on //#define REDALERT 100 //Draw colour is forced to red if the serial receive buffer has more than the specified number of characters in it //#define REPORTBUFFER -1 //Sends out the current size of the Serial buffer using command ID 15 if the buffer size is greater than the defined value. Set to -1 to always report. // Serial data transfer rate #define BAUD 115200 /* Size of the serial buffer before the Tinct is forced to parse it continually. The buffer size is 128 bytes, and if it gets there the Tinct can (and will) crash. The largest command size is 9 bytes, so 119 is an absolute maximum value. Set it lower than this to be safe. If the Tinct hits this limit, it will start to flicker, and might miss commands, but it won't crash. Probably. */ #define TOOFULL 100 //TLC5940NT pin definitions #define VPRG 2 #define SIN 11 // MOSI - Hardware SPI, can't be changed #define SCLK 13 // SCK - Hardware SPI, can't be changed #define XLAT 4 #define BLANK 5 #define DCPRG 6 #define GSCLK 7 /* These pins are from the Hardware SPI, but aren't connected to the TLC5940 These definitions are only here for clarity, and aren't used. MISO can not be used for anything else, while SS can be used for any OUTPUT. It can NOT be used for an input. Currently, it is used for INCLOCKPIN, the 165's clock pin setting. */ #define MISO 12 //MISO - Hardware SPI, can't be changed (not connected, can't be used for anything other than MISO) #define SS 10 //SS - Hardware SPI, not used and therefore can be used for something else, but ONLY AS AN OUTPUT!! // Default draw colour. Each channel can be between 0 and 4095. int red = 0; int green = 4095; int blue = 0; // Auxiliary analog output definitions #define ANALOG0 3 //Output pin definitions #define ANALOG1 4 boolean adc[2] = { //On or off state 0, 0}; byte analogval[2]; //The last reported value byte tempADC; //Temporary storage for comparison purposes /* The transistor bases are done via port manipulation: RED goes to analog pin 5 GREEN goes to analog pin 0 BLUE goes to analog pin 1 */ // Pin definitions for the 74HC164 SIPO shift register (drives button rows high) #define DATAPIN 16 // aka analog pin 3 (what, you didn't know that analog pins 0-5 are also digital pins 14-19? Well, now you do!) #define CLOCKPIN 3 // Pin definitions for the 74HC165 PISO shift register (reads button column state) #define INDATAPIN 9 #define INCLOCKPIN 10 #define INLOADPIN 8 // toggling this tell the 165 to read the value into its memory for reading // Holds the last state of the button press boolean pressed[8][8] = { {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1} }; /*This is the mapping of the physical position of the boards to the correct output of the TLC5940s. The left halves are rotated to correspond to the orientation of the boards*/ const byte remap[8][8] = { {48,49,51,52, 12,13,14,15}, {50,53,54,55, 11,10, 9, 8}, {56,57,58,59, 7, 6, 5, 2}, {63,62,61,60, 4, 3, 1, 0}, {32,33,35,36, 28,29,30,31}, {34,37,38,39, 27,26,25,24}, {40,41,42,43, 23,22,21,18}, {47,46,45,44, 20,19,17,16}, }; // Holds the current colour level for each of the buttons int levelR[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int levelG[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int levelB[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // Variables for interpreting the serial commands byte tempR; byte tempC; byte lastread; byte command = 0; byte ready = true; // For interrupt timing; needed only to do intermediate clock speeds /* Divide interrupt frequency by a factor of FREQ. It is preferable to keep FREQ as small as possible, and control the frequency of the interrupts using the hardware clock. Setting it to 1 disables this entirely, which, if it works, is ideal; this should be the same as commenting out the "#define FREQ" statement entirely. */ #define FREQ 1 // How many interrupts occur before the serial commands are read #if FREQ > 1 byte int_counter = 0; #endif // Transfer a character out over hardware SPI char spi_transfer(volatile byte data) { SPDR = data; // Start the transmission while (!(SPSR & (1< 1 if(++int_counter == FREQ){ // Only do this once every FREQ-th interrupt int_counter = 0; #endif //FREQ do{ // This do ensures that the data is always parsed at least once per cycle if(Serial.available()){ #ifdef REDALERT // if REDALERT is defined, draw colour turns red when the buffer is getting dangerously full if(Serial.available() > REDALERT){ blue = 0; green = 0; red = 4095; } #endif //REDALERT #ifdef REPORTBUFFER // if REPORTBUFFER is defined, send out the size of the serial receive buffer using command ID 15 if(Serial.available() > REPORTBUFFER){ Serial.print(15 << 4, BYTE); Serial.print(Serial.available(), BYTE); } #endif //REPORTBUFFER if(ready){ // If the last command has finished executing, read in the next command and reset the command flag command = Serial.read(); ready = false; } switch (command >> 4) { //Execute the appropriate command, but only if we have received enough bytes to complete it. We might one day add "partial completion" for long command strings. case 1: // set colour if( Serial.available() > 2 ) { red = Serial.read() * 16; green = Serial.read() * 16; blue = Serial.read() * 16; ready=true; } break; case 2: // led_on if( Serial.available() ) { lastread = Serial.read(); tempR = lastread >> 4; tempC = lastread & B1111; levelR[remap[tempC][tempR]] = red; levelG[remap[tempC][tempR]] = green; levelB[remap[tempC][tempR]] = blue; ready = true; } break; case 3: // led_off if( Serial.available() ) { lastread = Serial.read(); tempR = lastread >> 4; tempC = lastread & B1111; levelR[remap[tempC][tempR]] = 0; levelG[remap[tempC][tempR]] = 0; levelB[remap[tempC][tempR]] = 0; ready = true; } break; case 4: // led_row1 if( Serial.available() ) { tempR = command & B1111; lastread = Serial.read(); for(tempC = 0; tempC < 8; ++tempC){ if(lastread & (1 << tempC) ){ levelR[remap[tempR][tempC]] = red; levelG[remap[tempR][tempC]] = green; levelB[remap[tempR][tempC]] = blue; } else { levelR[remap[tempR][tempC]] = 0; levelG[remap[tempR][tempC]] = 0; levelB[remap[tempR][tempC]] = 0; } } ready = true; } break; case 5: // led_col1 if( Serial.available() ) { tempC = command & B1111; lastread = Serial.read(); for(tempR = 0; tempR < 8; ++tempR){ if(lastread & (1 << tempR) ){ levelR[remap[tempR][tempC]] = red; levelG[remap[tempR][tempC]] = green; levelB[remap[tempR][tempC]] = blue; } else { levelR[remap[tempR][tempC]] = 0; levelG[remap[tempR][tempC]] = 0; levelB[remap[tempR][tempC]] = 0; } } ready = true; } break; case 8: //frame if( Serial.available() > 7 ) { for(tempR=0; tempR<8; ++tempR){ lastread = Serial.read(); for(tempC = 0; tempC < 8; ++tempC){ if(lastread & (1 << tempC) ){ levelR[remap[tempR][tempC]] = red; levelG[remap[tempR][tempC]] = green; levelB[remap[tempR][tempC]] = blue; } else { levelR[remap[tempR][tempC]] = 0; levelG[remap[tempR][tempC]] = 0; levelB[remap[tempR][tempC]] = 0; } } } ready = true; } break; case 9: //clear if(command & 1){ for(int x = 0; x< 64;++x){ levelR[x] = red; levelG[x] = green; levelB[x] = blue; } } else{ for(int x = 0; x<64;++x){ levelR[x] = 0; levelG[x] = 0; levelB[x] = 0; } } ready = true; break; case 12: switch(command & 15){ case 0: adc[0] = true; analogval[0] = (analogRead(ANALOG0) >> 2); Serial.print(14 << 4, BYTE); Serial.print(analogval[0], BYTE); break; case 1: adc[1] = true; analogval[1] = (analogRead(ANALOG1) >> 2); Serial.print(14 << 4 | 1, BYTE); Serial.print(analogval[1], BYTE); break; default: break; } ready = true; break; case 13: adc[command & 15] = false; ready = true; break; default: break; } } } // If the serial buffer is getting too close to full, keep executing the parsing until it falls below a given level // This might cause flicker, or even dropped messages, but it should prevent a crash. while (Serial.available() > TOOFULL); #if FREQ > 1 } #endif //FREQ } void setup() { //Setup data directions, and set everything to the correct initial levels, // For TLC5940 PORTC |= B00100011; DDRC |= B00100011; pinMode(VPRG, OUTPUT); pinMode(SIN, OUTPUT); pinMode(SCLK, OUTPUT); pinMode(XLAT, OUTPUT); pinMode(BLANK, OUTPUT); pinMode(DCPRG, OUTPUT); pinMode(GSCLK, OUTPUT); pinMode(MISO, INPUT); pinMode(SS,OUTPUT); digitalWrite(SS,HIGH); //disable device digitalWrite(SIN, LOW); digitalWrite(SCLK, LOW); digitalWrite(XLAT, LOW); digitalWrite(VPRG, LOW); digitalWrite(BLANK, HIGH); digitalWrite(GSCLK, HIGH); digitalWrite(DCPRG, LOW); // USE EEPROM DC register if LOW //Setup the Hardware SPI registers // SPCR = 01010000 //interrupt disabled,spi enabled,msb 1st,master,clk low when idle, //sample on leading edge of clk,system clock/4 (fastest) byte clr; SPCR = (1<=0; i--){ spi_transfer( (levelR[2*i+1] & 0x0FF0) >> 4 ); spi_transfer( ((levelR[2*i+1] & 0xF) << 4) | ((levelR[2*i] & 0x0F00) >> 8) ); spi_transfer( levelR[2*i] & 0xFF); } digitalWrite(XLAT,HIGH); digitalWrite(XLAT,LOW); digitalWrite(BLANK, LOW); } void setGreysG() { digitalWrite(BLANK, HIGH); digitalWrite(XLAT,LOW); for(int i = 31; i>=0; i--){ spi_transfer( (levelG[2*i+1] & 0x0FF0) >> 4 ); spi_transfer( ((levelG[2*i+1] & 0xF) << 4) | ((levelG[2*i] & 0x0F00) >> 8) ); spi_transfer( levelG[2*i] & 0xFF); } digitalWrite(XLAT,HIGH); digitalWrite(XLAT,LOW); digitalWrite(BLANK, LOW); } void setGreysB() { digitalWrite(BLANK, HIGH); digitalWrite(XLAT,LOW); for(int i = 31; i>=0; i--){ spi_transfer( (levelB[2*i+1] & 0x0FF0) >> 4 ); spi_transfer( ((levelB[2*i+1] & 0xF) << 4) | ((levelB[2*i] & 0x0F00) >> 8) ); spi_transfer( levelB[2*i] & 0xFF); } digitalWrite(XLAT,HIGH); digitalWrite(XLAT,LOW); digitalWrite(BLANK, LOW); } void feedPorts() { // Clock for TLC5940's PWM digitalWrite(BLANK, HIGH); digitalWrite(BLANK, LOW); //=all outputs ON, start PWM cycle for (int i=0; i<4096; i++) { pulseGSCLK(); } } void pulseGSCLK() { //ultra fast pulse trick, using digitalWrite caused flickering PORTD |= 0x80 ; // bring pin 7 high, but don't touch any of the other pins in PORTB //16 nanosecs is the min pulse width for the 5940, but no pause seems needed here PORTD &= 0x7F; // bring pin 7 low without touching the other pins in PORTB } void checkButtons(){ digitalWrite(CLOCKPIN,LOW); digitalWrite(DATAPIN, HIGH); for(byte c = 0; c < 8; c++){ digitalWrite(CLOCKPIN, HIGH); digitalWrite(INLOADPIN, LOW); // read into register digitalWrite(INLOADPIN, HIGH); // done reading into register, ready for us to read for(int r=7; r >= 0; r--){ // read each of the 165's 8 inputs (or its snapshot of it rather) // tell the 165 to send the first inputs pin state digitalWrite(INCLOCKPIN, LOW); // read the current output //int tempvalue = digitalRead(INDATAPIN); //Serial.print(tempvalue,DEC); if(pressed[r][c] != digitalRead(INDATAPIN)){ // read the state pressed[r][c] = digitalRead(INDATAPIN); if(!pressed[r][c]){ on_release(r, c); } else { on_press(r, c); } } // tell the 165 we are done reading the state, the next inclockpin=0 will output the next input value digitalWrite(INCLOCKPIN, 1); } //Serial.println(); digitalWrite(CLOCKPIN, LOW); digitalWrite(DATAPIN, LOW); } //Serial.println("new row"); //delay(2000); } void on_press(byte r, byte c){ Serial.print( 1 << 4, BYTE); //Serial.print( 1, BYTE); Serial.print( (r << 4) | c, BYTE); } void on_release(byte r, byte c){ Serial.print( 0 << 4, BYTE); //Serial.print( 0, BYTE); Serial.print( (r << 4) | c, BYTE); } void checkADC(){ // For all of the ADC's which are activated, check if the analog value has changed, // and send a message if it has. if(adc[0]){ tempADC = (analogRead(ANALOG0) >> 2); if(abs((int)analogval[0] - (int)tempADC) > 3 ){ analogval[0] = tempADC; Serial.print(14 << 4, BYTE); Serial.print(analogval[0], BYTE); } } if(adc[1]){ if(analogval[1] != (analogRead(ANALOG1) >> 2)){ analogval[1] = (analogRead(ANALOG1) >> 2); Serial.print(14 << 4 | 1, BYTE); Serial.print(analogval[1], BYTE); } } }