577 lines
18 KiB
C++
577 lines
18 KiB
C++
|
#include "bhoreal.h"
|
||
|
#include "Adafruit_NeoPixel.h"
|
||
|
|
||
|
// Variables for interpreting the serial commands
|
||
|
byte tempR;
|
||
|
byte tempC;
|
||
|
byte lastread;
|
||
|
byte command = 0;
|
||
|
boolean ready = true;
|
||
|
boolean refresh_ok = false;
|
||
|
uint16_t IntensityMAX = 255;
|
||
|
|
||
|
// Default draw colour. Each channel can be between 0 and 4095.
|
||
|
int red = 0;
|
||
|
int green = IntensityMAX;
|
||
|
int blue = 0;
|
||
|
|
||
|
// Auxiliary analog output definitions
|
||
|
#define ANALOG0 A5 //POTENCIOMETRO
|
||
|
#define ANALOG1 A1
|
||
|
boolean adc[2] = { //On or off state
|
||
|
0, 0};
|
||
|
byte analogval[2]; //The last reported value
|
||
|
byte tempADC; //Temporary storage for comparison purposes
|
||
|
|
||
|
uint16_t MODEL = MINISLIM; //Modelo
|
||
|
uint16_t MAX = 4;
|
||
|
|
||
|
int NUM_LEDS = 16;
|
||
|
|
||
|
#define PIN 11
|
||
|
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, PIN, NEO_GRB + NEO_KHZ800);
|
||
|
|
||
|
boolean pressed[8][8] = {
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1},
|
||
|
{1,1,1,1,1,1,1,1}
|
||
|
};
|
||
|
|
||
|
byte remap[8][8] = {
|
||
|
{48,49,51,52, 12,13,14,15},
|
||
|
{50,53,54,55, 11,10, 9, 8},
|
||
|
{56,57,58,59, 7, 6, 5, 2},
|
||
|
{63,62,61,60, 4, 3, 1, 0},
|
||
|
{32,33,35,36, 28,29,30,31},
|
||
|
{34,37,38,39, 27,26,25,24},
|
||
|
{40,41,42,43, 23,22,21,18},
|
||
|
{47,46,45,44, 20,19,17,16},
|
||
|
};
|
||
|
|
||
|
const byte remapmini[4][4] = {
|
||
|
{3, 4, 11, 12},
|
||
|
{2, 5, 10, 13},
|
||
|
{1, 6, 9, 14},
|
||
|
{0, 7, 8, 15},
|
||
|
};
|
||
|
|
||
|
int levelR[64] = {
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0};
|
||
|
int levelG[64] = {
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0};
|
||
|
int levelB[64] = {
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0};
|
||
|
|
||
|
byte row[4] = {13, 5, 10, 9};
|
||
|
byte column[4] = {8, 6, 12, 4};
|
||
|
|
||
|
|
||
|
void Bhoreal::begin(uint16_t DEVICE, uint32_t BAUD)
|
||
|
{
|
||
|
for(byte x = 0; x < MAX; ++x){
|
||
|
for(byte y = 0; y <MAX; ++y)
|
||
|
{
|
||
|
remap[x][y] = remapmini[x][y];
|
||
|
}
|
||
|
}
|
||
|
for(byte i = 0; i<4; i++)
|
||
|
{
|
||
|
pinMode(column[i], INPUT);
|
||
|
pinMode(row[i], OUTPUT);
|
||
|
digitalWrite(row[i], LOW);
|
||
|
}
|
||
|
// Start the serial port
|
||
|
Serial.begin(BAUD);
|
||
|
/* Setup the timer interrupt*/
|
||
|
strip.begin();
|
||
|
strip.show();
|
||
|
PORTE |= B01000000;
|
||
|
DDRE |= B01000000;
|
||
|
//digitalWrite(7, LOW);
|
||
|
timer1Initialize();
|
||
|
timer3Initialize();
|
||
|
}
|
||
|
|
||
|
void Bhoreal::on_press(byte r, byte c){
|
||
|
Serial.write( 1);
|
||
|
Serial.write( (r << 4) | c);
|
||
|
}
|
||
|
|
||
|
void Bhoreal::on_release(byte r, byte c){
|
||
|
Serial.write( byte(0) );
|
||
|
Serial.write( (r << 4) | c);
|
||
|
}
|
||
|
|
||
|
void Bhoreal::checkButtons(){
|
||
|
for(byte c = 0; c < MAX; c++)
|
||
|
{
|
||
|
digitalWrite(row[c],HIGH);
|
||
|
for(int r= MAX - 1; r >= 0; r--)
|
||
|
{
|
||
|
if(pressed[c][r] != digitalRead(column[r]))
|
||
|
{ // read the state
|
||
|
pressed[c][r] = digitalRead(column[r]);
|
||
|
if(pressed[c][r]) on_press(c, r);
|
||
|
else on_release(c, r);
|
||
|
}
|
||
|
}
|
||
|
digitalWrite(row[c],LOW);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
unsigned long time = 0;
|
||
|
|
||
|
void Bhoreal::refresh(){
|
||
|
if (refresh_ok)
|
||
|
{
|
||
|
strip.show();
|
||
|
refresh_ok=false;
|
||
|
}
|
||
|
// if ((millis() - time)>=100)
|
||
|
// {
|
||
|
// strip.show();
|
||
|
// time = millis();
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// Run this animation once at startup. Currently unfinished.
|
||
|
void Bhoreal::startup(){
|
||
|
for(byte x = 0; x < MAX; ++x){
|
||
|
for(byte y = 0; y < MAX; ++y)
|
||
|
{
|
||
|
levelR[remap[x][y]] = IntensityMAX;
|
||
|
levelB[remap[x][y]] = IntensityMAX;
|
||
|
levelG[remap[x][y]] = IntensityMAX;
|
||
|
}
|
||
|
}
|
||
|
for(int x = 0; x < NUM_LEDS; ++x) strip.setPixelColor(x, levelR[x], levelG[x], levelB[x]);
|
||
|
strip.show();
|
||
|
}
|
||
|
|
||
|
float average(int anaPin) {
|
||
|
int lecturas = 100;
|
||
|
long total = 0;
|
||
|
float average = 0;
|
||
|
for(int i=0; i<lecturas; i++)
|
||
|
{
|
||
|
//delay(1);
|
||
|
total = total + analogRead(anaPin);
|
||
|
}
|
||
|
average = (float)total / lecturas;
|
||
|
return(average);
|
||
|
}
|
||
|
|
||
|
unsigned int val = 0;
|
||
|
unsigned int val_ant = 0;
|
||
|
|
||
|
void Bhoreal::checkADC(){
|
||
|
// For all of the ADC's which are activated, check if the analog value has changed,
|
||
|
// and send a message if it has.
|
||
|
|
||
|
// Serial.println((int)((pow((analogRead(ANALOG0)/1023.),10)-1)*1023));
|
||
|
val = average(ANALOG0);
|
||
|
if ((val>=(val_ant + 5))||(val<=(val_ant - 5)))
|
||
|
{
|
||
|
val_ant =val;
|
||
|
Serial.println(val);
|
||
|
for(byte x = 0; x < MAX; ++x){
|
||
|
for(byte y = 0; y < MAX; ++y)
|
||
|
{
|
||
|
if (val<=(1023/3))
|
||
|
{
|
||
|
levelR[remap[x][y]] = map(val,0,1023/3,0, IntensityMAX);
|
||
|
levelG[remap[x][y]] = 0;
|
||
|
levelB[remap[x][y]] = 0;
|
||
|
}
|
||
|
else if (val<=(1023*2/3))
|
||
|
{
|
||
|
levelR[remap[x][y]] = IntensityMAX;
|
||
|
levelG[remap[x][y]] = map(val,1023/3, 1023*2/3, 0, IntensityMAX);
|
||
|
levelB[remap[x][y]] = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
levelR[remap[x][y]] = IntensityMAX;
|
||
|
levelG[remap[x][y]] = IntensityMAX;
|
||
|
levelB[remap[x][y]] = map(val,1023*2/3, 1023, 0, IntensityMAX);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for(int x = 0; x < NUM_LEDS; ++x) strip.setPixelColor(x, levelR[x], levelG[x], levelB[x]);
|
||
|
strip.show();
|
||
|
}
|
||
|
// if(adc[0]){
|
||
|
// tempADC = (analogRead(ANALOG0) >> 2);
|
||
|
// if(abs((int)analogval[0] - (int)tempADC) > 3 ){
|
||
|
// analogval[0] = tempADC;
|
||
|
// Serial.write(14 << 4);
|
||
|
// Serial.write(analogval[0]);
|
||
|
// }
|
||
|
// }
|
||
|
// if(adc[1]){
|
||
|
// if(analogval[1] != (analogRead(ANALOG1) >> 2)){
|
||
|
// analogval[1] = (analogRead(ANALOG1) >> 2);
|
||
|
// Serial.write(14 << 4 | 1);
|
||
|
// Serial.write(analogval[1]);
|
||
|
// }
|
||
|
// }
|
||
|
}
|
||
|
|
||
|
|
||
|
void Bhoreal::hueADC(){
|
||
|
// For all of the ADC's which are activated, check if the analog value has changed,
|
||
|
// and send a message if it has.
|
||
|
|
||
|
// Serial.println((int)((pow((analogRead(ANALOG0)/1023.),10)-1)*1023));
|
||
|
val = average(ANALOG0);
|
||
|
if ((val>=(val_ant + 1))||(val<=(val_ant - 1)))
|
||
|
{
|
||
|
val_ant =val;
|
||
|
//Serial.println(val);
|
||
|
for(byte x = 0; x < MAX; ++x){
|
||
|
for(byte y = 0; y < MAX; ++y)
|
||
|
{
|
||
|
uint32_t c = hue2rgb(val/8); // 128 HUE steps
|
||
|
uint8_t
|
||
|
r = (uint8_t)(c >> 16),
|
||
|
g = (uint8_t)(c >> 8),
|
||
|
b = (uint8_t)c;
|
||
|
}
|
||
|
}
|
||
|
for(int x = 0; x < NUM_LEDS; ++x) strip.setPixelColor(x, levelR[x], levelG[x], levelB[x]);
|
||
|
strip.show();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////
|
||
|
////////////////////// HUE -> RGB //////////////////////
|
||
|
///////////////////////////////////////////////////////////////
|
||
|
|
||
|
uint32_t Bhoreal::hue2rgb(uint16_t hueValue)
|
||
|
{
|
||
|
|
||
|
uint8_t r;
|
||
|
uint8_t g;
|
||
|
uint8_t b;
|
||
|
hueValue<<= 3; // 128 midi steps -> 1024 hue steps
|
||
|
|
||
|
if (hueValue < 341) { // Lowest third of the potentiometer's range (0-340)
|
||
|
hueValue = (hueValue * 3) / 4; // Normalize to 0-255
|
||
|
|
||
|
r = 255 - hueValue; // Red from full to off
|
||
|
g = hueValue; // Green from off to full
|
||
|
b = 1; // Blue off
|
||
|
}
|
||
|
else if (hueValue < 682) { // Middle third of potentiometer's range (341-681)
|
||
|
hueValue = ( (hueValue-341) * 3) / 4; // Normalize to 0-255
|
||
|
|
||
|
r = 1; // Red off
|
||
|
g = 255 - hueValue; // Green from full to off
|
||
|
b = hueValue; // Blue from off to full
|
||
|
}
|
||
|
else { // Upper third of potentiometer"s range (682-1023)
|
||
|
hueValue = ( (hueValue-683) * 3) / 4; // Normalize to 0-255
|
||
|
|
||
|
r = hueValue; // Red from off to full
|
||
|
g = 1; // Green off
|
||
|
b = 255 - hueValue; // Blue from full to off
|
||
|
}
|
||
|
|
||
|
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
boolean flag = true;
|
||
|
|
||
|
/*TIMER*/
|
||
|
ISR(TIMER3_OVF_vect)
|
||
|
{
|
||
|
cli();
|
||
|
do{ // This do ensures that the data is always parsed at least once per cycle
|
||
|
if(Serial.available()){
|
||
|
if(ready){ // If the last command has finished executing, read in the next command and reset the command flag
|
||
|
command = Serial.read();
|
||
|
ready = false;
|
||
|
}
|
||
|
switch (command >> 4) { //Execute the appropriate command, but only if we have received enough bytes to complete it. We might one day add "partial completion" for long command strings.
|
||
|
case 1: // set colour
|
||
|
if( Serial.available() > 2 ) {
|
||
|
red = Serial.read();
|
||
|
green = Serial.read();
|
||
|
blue = Serial.read();
|
||
|
ready=true;
|
||
|
}
|
||
|
break;
|
||
|
case 2: // led_on
|
||
|
if( Serial.available() ) {
|
||
|
lastread = Serial.read();
|
||
|
tempR = lastread >> 4;
|
||
|
tempC = lastread & B1111;
|
||
|
if ((tempR < MAX)&&(tempC < MAX))
|
||
|
{
|
||
|
levelR[remap[tempC][tempR]] = red;
|
||
|
levelG[remap[tempC][tempR]] = green;
|
||
|
levelB[remap[tempC][tempR]] = blue;
|
||
|
strip.setPixelColor(remap[tempC][tempR], red, green, blue);
|
||
|
refresh_ok=true;
|
||
|
}
|
||
|
ready = true;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
case 3: // led_off
|
||
|
if( Serial.available() ) {
|
||
|
lastread = Serial.read();
|
||
|
tempR = lastread >> 4;
|
||
|
tempC = lastread & B1111;
|
||
|
if ((tempR < MAX)&&(tempC < MAX))
|
||
|
{
|
||
|
levelR[remap[tempC][tempR]] = 0;
|
||
|
levelG[remap[tempC][tempR]] = 0;
|
||
|
levelB[remap[tempC][tempR]] = 0;
|
||
|
strip.setPixelColor(remap[tempC][tempR], 0, 0, 0);
|
||
|
refresh_ok=true;
|
||
|
}
|
||
|
ready = true;
|
||
|
}
|
||
|
break;
|
||
|
case 4: // led_row1
|
||
|
if( Serial.available() ) {
|
||
|
tempR = command & B1111;
|
||
|
lastread = Serial.read();
|
||
|
if (tempR < MAX)
|
||
|
{
|
||
|
for(tempC = 0; tempC < MAX; ++tempC){
|
||
|
if(lastread & (1 << tempC) ){
|
||
|
levelR[remap[tempR][tempC]] = red;
|
||
|
levelG[remap[tempR][tempC]] = green;
|
||
|
levelB[remap[tempR][tempC]] = blue;
|
||
|
strip.setPixelColor(remap[tempR][tempC], red, green, blue);
|
||
|
}
|
||
|
else {
|
||
|
levelR[remap[tempR][tempC]] = 0;
|
||
|
levelG[remap[tempR][tempC]] = 0;
|
||
|
levelB[remap[tempR][tempC]] = 0;
|
||
|
strip.setPixelColor(remap[tempR][tempC], 0, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
refresh_ok=true;
|
||
|
ready = true;
|
||
|
}
|
||
|
break;
|
||
|
case 5: // led_col1
|
||
|
if( Serial.available() ) {
|
||
|
tempC = command & B1111;
|
||
|
lastread = Serial.read();
|
||
|
if (tempC < MAX)
|
||
|
{
|
||
|
for(tempR = 0; tempR < MAX; ++tempR){
|
||
|
if(lastread & (1 << tempR) ){
|
||
|
levelR[remap[tempR][tempC]] = red;
|
||
|
levelG[remap[tempR][tempC]] = green;
|
||
|
levelB[remap[tempR][tempC]] = blue;
|
||
|
strip.setPixelColor(remap[tempR][tempC], red, green, blue);
|
||
|
}
|
||
|
else {
|
||
|
levelR[remap[tempR][tempC]] = 0;
|
||
|
levelG[remap[tempR][tempC]] = 0;
|
||
|
levelB[remap[tempR][tempC]] = 0;
|
||
|
strip.setPixelColor(remap[tempR][tempC], 0, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
refresh_ok=true;
|
||
|
ready = true;
|
||
|
}
|
||
|
break;
|
||
|
case 8: //frame
|
||
|
if( Serial.available() > 7 ) {
|
||
|
|
||
|
for(tempR=0; tempR < MAX; ++tempR){
|
||
|
lastread = Serial.read();
|
||
|
for(tempC = 0; tempC < MAX; ++tempC){
|
||
|
if(lastread & (1 << tempC) ){
|
||
|
levelR[remap[tempR][tempC]] = red;
|
||
|
levelG[remap[tempR][tempC]] = green;
|
||
|
levelB[remap[tempR][tempC]] = blue;
|
||
|
strip.setPixelColor(remap[tempR][tempC], red, green, blue);
|
||
|
}
|
||
|
else {
|
||
|
levelR[remap[tempR][tempC]] = 0;
|
||
|
levelG[remap[tempR][tempC]] = 0;
|
||
|
levelB[remap[tempR][tempC]] = 0;
|
||
|
strip.setPixelColor(remap[tempR][tempC], 0, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
refresh_ok=true;
|
||
|
ready = true;
|
||
|
}
|
||
|
break;
|
||
|
case 9: //clear
|
||
|
if(command & 1){
|
||
|
byte TEMPMAX = MAX*MAX;
|
||
|
for(int x = 0; x< TEMPMAX;++x){
|
||
|
levelR[x] = red;
|
||
|
levelG[x] = green;
|
||
|
levelB[x] = blue;
|
||
|
strip.setPixelColor(x, red, green, blue);
|
||
|
}
|
||
|
}
|
||
|
else{
|
||
|
byte TEMPMAX = MAX*MAX;
|
||
|
for(int x = 0; x< TEMPMAX;++x){
|
||
|
levelR[x] = 0;
|
||
|
levelG[x] = 0;
|
||
|
levelB[x] = 0;
|
||
|
strip.setPixelColor(x, 0, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
refresh_ok=true;
|
||
|
ready = true;
|
||
|
break;
|
||
|
case 12:
|
||
|
switch(command & 15){
|
||
|
case 0:
|
||
|
adc[0] = true;
|
||
|
analogval[0] = (analogRead(ANALOG0) >> 2);
|
||
|
Serial.write(14 << 4);
|
||
|
Serial.write(analogval[0]);
|
||
|
break;
|
||
|
case 1:
|
||
|
adc[1] = true;
|
||
|
analogval[1] = (analogRead(ANALOG1) >> 2);
|
||
|
Serial.write(14 << 4 | 1);
|
||
|
Serial.write(analogval[1]);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
ready = true;
|
||
|
break;
|
||
|
case 13:
|
||
|
adc[command & 15] = false;
|
||
|
ready = true;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// If the serial buffer is getting too close to full, keep executing the parsing until it falls below a given level
|
||
|
// This might cause flicker, or even dropped messages, but it should prevent a crash.
|
||
|
while (Serial.available() > TOOFULL);
|
||
|
sei();
|
||
|
}
|
||
|
|
||
|
#define RESOLUTION 65536 // Timer1 is 16 bit
|
||
|
unsigned int pwmPeriod;
|
||
|
unsigned char clockSelectBits;
|
||
|
char oldSREG; // To hold Status
|
||
|
|
||
|
void setPeriodTimer1(long microseconds) // AR modified for atomic access
|
||
|
{
|
||
|
|
||
|
long cycles = (F_CPU / 2000000) * microseconds; // the counter runs backwards after TOP, interrupt is at BOTTOM so divide microseconds by 2
|
||
|
if(cycles < RESOLUTION) clockSelectBits = _BV(CS10); // no prescale, full xtal
|
||
|
else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS11); // prescale by /8
|
||
|
else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS11) | _BV(CS10); // prescale by /64
|
||
|
else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS12); // prescale by /256
|
||
|
else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS12) | _BV(CS10); // prescale by /1024
|
||
|
else cycles = RESOLUTION - 1, clockSelectBits = _BV(CS12) | _BV(CS10); // request was out of bounds, set as maximum
|
||
|
|
||
|
oldSREG = SREG;
|
||
|
cli(); // Disable interrupts for 16 bit register access
|
||
|
ICR1 = pwmPeriod = cycles; // ICR1 is TOP in p & f correct pwm mode
|
||
|
SREG = oldSREG;
|
||
|
|
||
|
TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||
|
TCCR1B |= clockSelectBits; // reset clock select register, and starts the clock
|
||
|
}
|
||
|
|
||
|
|
||
|
void Bhoreal::timer1Initialize()
|
||
|
{
|
||
|
TCCR1A = 0; // clear control register A
|
||
|
TCCR1B = _BV(WGM13); // set mode 8: phase and frequency correct pwm, stop the timer
|
||
|
setPeriodTimer1(5);
|
||
|
TIMSK1 = _BV(TOIE1);
|
||
|
}
|
||
|
|
||
|
ISR(TIMER1_OVF_vect)
|
||
|
{
|
||
|
|
||
|
if (flag) { PORTE |= B01000000; flag=0;}
|
||
|
else if (!flag) { PORTE &= B10111111; flag=1;}
|
||
|
|
||
|
}
|
||
|
|
||
|
void setPeriodTimer3(long microseconds) // AR modified for atomic access
|
||
|
{
|
||
|
|
||
|
long cycles = (F_CPU / 2000000) * microseconds; // the counter runs backwards after TOP, interrupt is at BOTTOM so divide microseconds by 2
|
||
|
if(cycles < RESOLUTION) clockSelectBits = _BV(CS30); // no prescale, full xtal
|
||
|
else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS31); // prescale by /8
|
||
|
else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS31) | _BV(CS30); // prescale by /64
|
||
|
else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS32); // prescale by /256
|
||
|
else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS32) | _BV(CS30); // prescale by /1024
|
||
|
else cycles = RESOLUTION - 1, clockSelectBits = _BV(CS32) | _BV(CS30); // request was out of bounds, set as maximum
|
||
|
|
||
|
oldSREG = SREG;
|
||
|
cli(); // Disable interrupts for 16 bit register access
|
||
|
ICR3 = pwmPeriod = cycles; // ICR1 is TOP in p & f correct pwm mode
|
||
|
SREG = oldSREG;
|
||
|
|
||
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
||
|
TCCR3B |= clockSelectBits; // reset clock select register, and starts the clock
|
||
|
}
|
||
|
|
||
|
void Bhoreal::timer3Initialize()
|
||
|
{
|
||
|
TCCR3A = 0; // clear control register A
|
||
|
TCCR3B = _BV(WGM33); // set mode 8: phase and frequency correct pwm, stop the timer
|
||
|
setPeriodTimer3(5000);
|
||
|
TIMSK3 = _BV(TOIE3);
|
||
|
|
||
|
// TCCR3A = 0;
|
||
|
// TCCR3B = 0<<CS32 | 0<<CS31 | 1<<CS30;
|
||
|
// //Timer1 Overflow Interrupt Enable
|
||
|
// TIMSK3 = 1<<TOIE3;
|
||
|
}
|