Lab_interaccio/2024/RPC_test_VS/include/main_m4.cpp

516 lines
18 KiB
C++
Raw Permalink Normal View History

2025-02-25 21:29:42 +01:00
#include <Arduino.h>
#include <ShiftRegister74HC595.h>
//#include <PID_v1.h>
//#include <SPI.h>
#include <RPC.h>
#include "SerialRPC.h"
#include "constants.h"
#define DEBUG_M4 true
// Inicializando RTOS
using namespace rtos;
Thread sensorThread;
#if PID_ENABLE
// ************************************************ Variables PID *****************************************************************
double Setpoint = 0.0, Input = 0.0, Output = 0.0; // Setpoint=Posición designada; Input=Posición del motor; Output=Tensión de salida para el motor.
double kp = 0.0, ki = 0.0, kd = 0.0; // Constante proporcional, integral y derivativa.
double outMax = 0.0, outMin = 0.0; // Límites para no sobrepasar la resolución del PWM.
// **************************************************** Otras Variables ***********************************************************
volatile long contador = 0; // En esta variable se guardará los pulsos del encoder y que interpreremos como distancia (o ángulo si ese fuese el caso).
byte ant = 0, act = 0; // Sólo se utiliza los dos primeros bits de estas variables y servirán para decodificar el encoder. (ant=anterior, act=actual.)
byte cmd = 0; // Un byte que utilizamos para la comunicación serie. (cmd=comando.)
unsigned int tmp = 0; // Variable que utilizaremos para poner el tiempo de muestreo.
const byte ledok = 13; // El pin 13 de los Arduinos tienen un led que utilizo para mostrar que el motor ya ha llegado a la posición designada.
// ********************************************************************************************************************************
PID myPID(&Input, &Output, &Setpoint, 0.0, 0.0, 0.0, DIRECT); // Parámetros y configuración para invocar la librería.
#endif
// create a global shift register object
// parameters: <number of shift registers> (data pin, clock pin, latch pin)
ShiftRegister74HC595<1> sr(8, 4, 12);
#define M2A 0
#define M1A 1
#define M0A 2
#define M0B 3
#define M1B 4
#define M3A 5
#define M2B 6
#define M3B 7
#define M4A 31
#define M4B 33
#define M5A 29
#define M5B 27
const int EN_MOTOR[6] = {11, 3, 5, 6, 10, 9};
const int MA_MOTOR[6] = {M0A, M1A, M2A, M3A, M4A, M5A};
const int MB_MOTOR[6] = {M0B, M1B, M2B, M3B, M4B, M5B};
#define sr_enable 7
#define STOP 0
#define CONTINUOUS 1
#define ONE_TURN 2
const long TIME_LINEAL_MAX[6] = {4500, 670, 4250, 6200, 4000, 4000 }; //ms
#define command Serial2
volatile float fps_read = 0;
volatile float fps_temp = 0;
unsigned long time_sec= millis();
unsigned long time_fps = micros();
static volatile unsigned long lastTimeDebounce = 0; //Tiempo del rebote
void fps_count() {
if(digitalRead(20) && (micros()-lastTimeDebounce >= 500))
{
lastTimeDebounce = micros();
fps_temp = 1000000./(float)(micros()-time_fps);
if(fps_temp<70) fps_read = fps_temp;
time_fps = micros();
if((millis()-time_sec)>=1000)
{
//Serial.println(fps_read);
time_sec = millis();
}
}
}
void backward(int motor, int SPEED)
{
if(motor<4)
{
sr.set(MA_MOTOR[motor], HIGH);
sr.set(MB_MOTOR[motor], LOW);
}
else
{
digitalWrite(MA_MOTOR[motor], HIGH);
digitalWrite(MB_MOTOR[motor], LOW);
}
analogWrite(EN_MOTOR[motor], SPEED);
}
void forward(int motor, int SPEED)
{
if(motor<4)
{
sr.set(MA_MOTOR[motor], LOW);
sr.set(MB_MOTOR[motor], HIGH);
}
else
{
digitalWrite(MA_MOTOR[motor], LOW);
digitalWrite(MB_MOTOR[motor], HIGH);
}
analogWrite(EN_MOTOR[motor], SPEED);
}
void stop(int motor)
{
sr.set(MA_MOTOR[motor], LOW);
sr.set(MB_MOTOR[motor], LOW);
analogWrite(EN_MOTOR[motor], 0);
}
unsigned long time_move_motor[6] = {0, 0, 0, 0, 0, 0};
unsigned long time_refresh[6] = { millis(), millis(), millis(), millis(), millis(), millis()};
float position_motor[6] = { 0, 0, 0, 0, 0, 0};
bool state_pmotor[6] = { false, false, false, false, false, false};
void config_position_motor(int motor, float position) //Configuracion posicion en % motor
{
if((position!=position_motor[motor])&&(!state_pmotor[motor]))
{
time_move_motor[motor] = abs(position_motor[motor]-position)*TIME_LINEAL_MAX[motor]/100;
time_refresh[motor] = millis();
if(position>position_motor[motor]) forward(motor,255);
else backward(motor,255);
position_motor[motor] = position;
state_pmotor[motor] = true;
//Serial.println(time_move_motor[motor]);
}
}
bool state_smotor[6] = { false, false, false, false, false, false};
void config_speed_motor(int motor, int direction, int speed) //Configuracion velocidad motor
{
if(direction==FORWARD) forward(motor,speed);
else if(direction==BACKWARD) backward(motor,speed);
if(speed>0) state_smotor[motor] = true;
else state_smotor[motor] = false;
}
int interval_direction[6] = {0, 0, 0, 0, 0, 0};
int interval_frames[6] = {0, 0, 0, 0, 0, 0};
unsigned long interval_time[6] = {0, 0, 0, 0, 0, 0};
int frames_count[6] = {0, 0, 0, 0, 0, 0};
unsigned long time_interval_count[6] = {0, 0, 0, 0, 0, 0};
void config_interval_motor(int motor, int direction, int Frames, int Seconds) //Configuracion velocidad motor
{
interval_direction[motor] = direction;
interval_frames[motor] = Frames;
interval_time[motor] = Seconds*1000;
frames_count[motor] = 0;
time_interval_count[motor] = millis();
}
float inc_position_fade = 0;
int fade_direction = 0;
bool SyncFadeWithInterval = false;
void config_automatic_fade(int shutterFadeFrames, int shutterSyncWithInterval, int shutterFadeInActive, int shutterFadeOutActive) //Configuracion fade
{
//config_position_motor(0, shutterFadeFrames);
inc_position_fade = 100/(float)shutterFadeFrames;
SyncFadeWithInterval = shutterSyncWithInterval;
if((shutterFadeInActive)&&(!shutterFadeOutActive)) fade_direction=IN;
else if((!shutterFadeInActive)&&(shutterFadeOutActive)) fade_direction=OUT;
else if((shutterFadeInActive)&&(shutterFadeOutActive)) fade_direction=IN_OUT;
else fade_direction=STOP;
}
void config_optics(int zoomValue, int focusValue, int diaphragmValue, int syncWithIntervalOptics) //Configuracion de las opticas
{
config_position_motor(1, zoomValue);
config_position_motor(2, focusValue);
config_position_motor(3, map(int(diaphragmValue*10), 19, 220, 0, 100));
}
void secure_stop(int direction)
{
if (digitalRead(20))
{
//config_speed_motor(4, direction, 100);
//delay(7);
while(digitalRead(20))config_speed_motor(4, direction, 100);
if(direction==FORWARD) delay(15);
}
config_speed_motor(4, direction, 0);
}
void next_frame(int direction)
{
if (digitalRead(20))
{
while(digitalRead(20))config_speed_motor(4, direction, 120);
if(direction==FORWARD) delay(15);
}
else
{
while(!digitalRead(20))config_speed_motor(4, direction, 120);
while(digitalRead(20))config_speed_motor(4, direction, 120);
if(direction==FORWARD) delay(15);
}
config_speed_motor(4, direction, 0);
}
void ini_motors()
{
backward(0,255);
backward(1,255);
backward(2,255);
backward(3,255);
delay(TIME_LINEAL_MAX[3]);
stop(0);
stop(1);
stop(2);
stop(3);
}
void refresh_position_motors()
{
for(int i=0; i<6; i++)
{
if(((millis()-time_refresh[i])>time_move_motor[i])&&(state_pmotor[i]))
{
stop(i);
state_pmotor[i] = false;
}
}
}
void refresh_interval_motors()
{
if(((millis()-time_interval_count[4])>=interval_time[4])&&(interval_frames[4]!=frames_count[4]))
{
frames_count[4]++;
time_interval_count[4] = millis();
if (SyncFadeWithInterval)
{
float value_position=0;
if(fade_direction==IN)
{
value_position = position_motor[0] + inc_position_fade;
if (value_position>100) value_position=100;
}
else if(fade_direction==OUT)
{
value_position = position_motor[0] - inc_position_fade;
if (value_position<0) value_position=0;
}
else value_position = position_motor[0];
config_position_motor(0, value_position);
}
next_frame(interval_direction[4]);
}
}
float fps_request = 24;
uint8_t speed_request = 0;
unsigned long time_adjust = millis();
void adjust_fps()
{
if(fps_temp>=(fps_request+0.5))
{
if(speed_request>0) speed_request--;
analogWrite(EN_MOTOR[4], speed_request);
}
else if(fps_temp<(fps_request-0.5))
{
if(speed_request<255) speed_request++;
analogWrite(EN_MOTOR[4], speed_request);
}
}
int fpsRead() {
int result = fps_read;
return result;
}
int read_value[10];
int* decode_values(String inputString_rpc, int num_dec)
{
String str = inputString_rpc.substring(inputString_rpc.lastIndexOf(":") + 1);
read_value[0] = str.substring(0, str.indexOf(',')).toInt();
for(int i=1; i<num_dec; i++)
{
str = str.substring(str.indexOf(',')+1);
read_value[i] = str.substring(0, str.indexOf(',')).toInt();
}
return read_value;
}
char c_rpc;
String inputString_rpc;
void RPCRead()
{
////////////////////////////////////////////////////////////
/////// RUTINA TRATAMIENTO DE STRINGS DEL UART ///////////
////////////////////////////////////////////////////////////
if (SerialRPC.available())
{
c_rpc = SerialRPC.read();
if ((c_rpc == '\r') || (c_rpc == '\n'))
{
if (inputString_rpc.startsWith("/s_motor:")) //Speed Motor
{
int* value = decode_values(inputString_rpc, 3);
#if DEBUG_M4
SerialRPC.print("Recibido Speed M4: ");
SerialRPC.println(inputString_rpc);
for(int i=0; i<3; i++) RPC.println(value[i]);
#endif
if (value[0]==4)
{
uint8_t value_temp = 0;
if (value[2]>0) value_temp = map(value[2], 24, 48, 146, 192); //Fake fps
if (value_temp==0) secure_stop(value[1]);
else config_speed_motor(value[0], value[1], value_temp);
}
else config_speed_motor(value[0], value[1], value[2]);
}
else if (inputString_rpc.startsWith("/i_motor:")) //Interval Motor
{
int* value = decode_values(inputString_rpc, 4);
#if DEBUG_M4
SerialRPC.print("Recibido Interval M4: ");
SerialRPC.println(inputString_rpc);
for(int i=0; i<4; i++) RPC.println(value[i]);
#endif
config_interval_motor(value[0], value[1], value[2], value[3]);
}
else if (inputString_rpc.startsWith("/fade:")) //Fade configuration
{
int* value = decode_values(inputString_rpc, 4);
#if DEBUG_M4
SerialRPC.print("Recibido fade M4: ");
SerialRPC.println(inputString_rpc);
for(int i=0; i<4; i++) RPC.println(value[i]);
#endif
config_automatic_fade(value[0], value[1], value[2], value[3]);
}
else if (inputString_rpc.startsWith("/optics:")) //Fade configuration
{
int* value = decode_values(inputString_rpc, 4);
#if DEBUG_M4
SerialRPC.print("Recibido optics M4: ");
SerialRPC.println(inputString_rpc);
for(int i=0; i<4; i++) RPC.println(value[i]);
#endif
config_optics(value[0], value[1], value[2], value[3]);
}
else if (inputString_rpc.startsWith("/p_motor:")) //Position motor
{
String str = inputString_rpc.substring(inputString_rpc.lastIndexOf(":") + 1);
int value[3];
value[0] = str.substring(0, str.indexOf(',')).toInt();
str = str.substring(str.indexOf(',')+1);
value[1] = str.substring(0, str.indexOf(',')).toInt();
#if DEBUG_M4
SerialRPC.print("Recibido Position M4: ");
SerialRPC.println(inputString_rpc);
for(int i=0; i<2; i++) RPC.println(value[i]);
#endif
config_position_motor(value[0], value[1]);
}
inputString_rpc = String();
}
else
inputString_rpc += c_rpc;
}
}
void requestReading() {
while (true) {
//delay(100);
RPCRead();
}
}
char c;
String inputString;
void SerialRead()
{
////////////////////////////////////////////////////////////
/////// RUTINA TRATAMIENTO DE STRINGS DEL UART ///////////
////////////////////////////////////////////////////////////
if (command.available())
{
c = command.read();
if ((c == '\r') || (c == '\n'))
{
if (inputString.startsWith("/s_motor:")) //Speed Motor
{
//Serial.print("Rec: ");
//Serial.println(inputString);
String str = inputString.substring(inputString.lastIndexOf(":") + 1);
//Serial.println(str);
int value[3];
value[0] = str.substring(0, str.indexOf(',')).toInt();
//Serial.println(value[0]);
for(int i=1; i<3; i++)
{
str = str.substring(str.indexOf(',')+1);
value[i] = str.substring(0, str.indexOf(',')).toInt();
//Serial.println(value[i]);
}
if (value[0]==4)
{
int value_temp = 0;
if(value[2]==24) value_temp = 146;
else if(value[2]==48) value_temp = 192;
else value_temp = 0;
//config_smotor(value[0], value[1], value_temp);
if (value_temp==0) secure_stop(value[1]);
else config_speed_motor(value[0], value[1], value_temp);
}
else config_speed_motor(value[0], value[1], value[2]);
//config_angle(value[0], value[1], value[2]);
}
else if (inputString.startsWith("/p_motor:")) //Position motor
{
//Serial.print("Motor: ");
String str = inputString.substring(inputString.lastIndexOf(":") + 1);
//Serial.println(str);
int value[3];
value[0] = str.substring(0, str.indexOf(',')).toInt();
str = str.substring(str.indexOf(',')+1);
value[1] = str.substring(0, str.indexOf(',')).toInt();
//Serial.println(value[0]);
//Serial.println(value[1]);
config_position_motor(value[0], value[1]);
}
inputString = String();
}
else
inputString += c;
}
}
void setup() {
//SCB_CleanDCache();
SerialRPC.begin();
command.begin(9600); // set this as high as you can reliably run on your platformRPC.begin(); //boots M4
//delay(5000);
pinMode(20, INPUT_PULLUP);
pinMode(sr_enable, OUTPUT);
for (size_t i = 4; i < 6; i++)
{
pinMode(MA_MOTOR[i], OUTPUT);
pinMode(MB_MOTOR[i], OUTPUT);
}
digitalWrite(sr_enable, LOW);
sr.setAllLow(); // set all pins LOW
ini_motors();
secure_stop(FORWARD);
attachInterrupt(digitalPinToInterrupt(20), fps_count, RISING);
#if PID_ENABLE
outMax = 255.0; // Límite máximo del controlador PID.
outMin = 128.0; // Límite mínimo del controlador PID.
tmp = 5; // Tiempo de muestreo en milisegundos.
kp = 10.0; // Constantes PID iniciales. Los valores son los adecuados para un encoder de 334 ppr,
ki = 3.5; // pero como el lector de encoder está diseñado como x4 equivale a uno de 1336 ppr. (ppr = pulsos por revolución.)
kd = 30.0;
myPID.SetSampleTime(tmp); // Envía a la librería el tiempo de muestreo.
myPID.SetOutputLimits(outMin, outMax);// Límites máximo y mínimo; corresponde a Max.: 0=0V hasta 255=5V (PWMA), y Min.: 0=0V hasta -255=5V (PWMB). Ambos PWM se convertirán a la salida en valores absolutos, nunca negativos.
myPID.SetTunings(kp, ki, kd); // Constantes de sintonización.
myPID.SetMode(AUTOMATIC); // Habilita el control PID (por defecto).
Setpoint = 24; // Para evitar que haga cosas extrañas al inciarse, igualamos los dos valores para que comience estando el motor parado.
#endif
//config_smotor(4, 1, 146);
//delay(5000);
//Bind the sensorRead() function on the M4
//RPC.bind("fpsRead", fpsRead);
/*
Starts a new thread that loops the requestReading() function
*/
sensorThread.start(requestReading);
RPC.println("M4 Inicializado.");
}
void loop()
{
#if PID_ENABLE
/*Input = (double)fps_temp; // Lectura del encoder óptico. El valor del contador se incrementa/decrementa a través de las interrupciones extrenas (pines 2 y 3).
if(myPID.Compute())
analogWrite(EN_MOTOR[4], abs(Output)); // Por el primer pin sale la señal PWM.
*/
#endif
//config_smotor(4, 1, 146); //24 fps
//config_smotor(4, 1, 192); //48 fps
//adjust_fps();
//RPCRead();
SerialRead();
refresh_position_motors();
refresh_interval_motors();
}