Lab_interaccio/2014/CC3000/SFE_CC3000_SPI.cpp

634 lines
17 KiB
C++
Raw Permalink Normal View History

2025-02-25 21:29:42 +01:00
/**
* @file SFE_CC3000_SPI.cpp
* @brief CC3000 library functions to handle SPI
* @author Texas Instruments
* @author Modified by Shawn Hymel (SparkFun Electronics)
*
* This code was originally written by TI to work with their microcontrollers.
* Most of it has been altered to work with the Arduino.
*/
/*****************************************************************************
*
* spi.c - CC3000 Host Driver Implementation.
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <Arduino.h>
#include <SPI.h>
#include "common.h"
#include "SFE_CC3000_SPI.h"
#include "hci.h"
#include "evnt_handler.h"
#define READ 3
#define WRITE 1
#define HI(value) (((value) & 0xFF00) >> 8)
#define LO(value) ((value) & 0x00FF)
#define HEADERS_SIZE_EVNT (SPI_HEADER_SIZE + 5)
#define SPI_HEADER_SIZE (5)
#define eSPI_STATE_POWERUP (0)
#define eSPI_STATE_INITIALIZED (1)
#define eSPI_STATE_IDLE (2)
#define eSPI_STATE_WRITE_IRQ (3)
#define eSPI_STATE_WRITE_FIRST_PORTION (4)
#define eSPI_STATE_WRITE_EOT (5)
#define eSPI_STATE_READ_IRQ (6)
#define eSPI_STATE_READ_FIRST_PORTION (7)
#define eSPI_STATE_READ_EOT (8)
typedef struct
{
gcSpiHandleRx SPIRxHandler;
unsigned short usTxPacketLength;
unsigned short usRxPacketLength;
unsigned long ulSpiState;
unsigned char *pTxPacket;
unsigned char *pRxPacket;
}tSpiInformation;
tSpiInformation sSpiInformation;
// buffer for 5 bytes of SPI HEADER
unsigned char tSpiReadHeader[] = {READ, 0, 0, 0, 0};
// The magic number that resides at the end of the TX/RX buffer (1 byte after
// the allocated size) for the purpose of detection of the overrun. The location
// of the memory where the magic number resides shall never be written. In case
// it is written - the overrun occurred and either receive function or send
// function will stuck forever.
#define CC3000_BUFFER_MAGIC_NUMBER (0xDE)
char spi_buffer[CC3000_RX_BUFFER_SIZE];
unsigned char wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];
//*****************************************************************************
//
//! SpiClose
//!
//! @param none
//!
//! @return none
//!
//! @brief Close Spi interface
//
//*****************************************************************************
void SpiClose(void)
{
if (sSpiInformation.pRxPacket)
{
sSpiInformation.pRxPacket = 0;
}
// Disable Interrupt in GPIOA module...
tSLInformation.WlanInterruptDisable();
}
//*****************************************************************************
//
//! SpiOpen
//!
//! @param none
//!
//! @return none
//!
//! @brief Open Spi interface
//
//*****************************************************************************
void SpiOpen(gcSpiHandleRx pfRxHandler)
{
sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;
sSpiInformation.SPIRxHandler = pfRxHandler;
sSpiInformation.usTxPacketLength = 0;
sSpiInformation.pTxPacket = NULL;
sSpiInformation.pRxPacket = (unsigned char *)spi_buffer;
sSpiInformation.usRxPacketLength = 0;
spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
// Enable interrupt on the GPIOA pin of WLAN IRQ
tSLInformation.WlanInterruptEnable();
}
//*****************************************************************************
//
//! SpiFirstWrite
//!
//! @param ucBuf buffer to write
//! @param usLength buffer's length
//!
//! @return none
//!
//! @brief enter point for first write flow
//
//*****************************************************************************
long SpiFirstWrite(unsigned char *ucBuf, unsigned short usLength)
{
// Save SPI settings
save_spi_params();
// workaround for first transaction
digitalWrite(g_cs_pin, LOW);
// Assuming we are running on 24 MHz ~50 micro delay is 1200 cycles;
delayMicroseconds(50);
// SPI writes first 4 bytes of data
SpiWriteDataSynchronous(ucBuf, 4);
delayMicroseconds(50);
SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);
// From this point on - operate in a regular way
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
return(0);
}
//*****************************************************************************
//
//! SpiWrite
//!
//! @param pUserBuffer buffer to write
//! @param usLength buffer's length
//!
//! @return none
//!
//! @brief Spi write operation
//
//*****************************************************************************
long SpiWrite(unsigned char *pUserBuffer, unsigned short usLength)
{
unsigned char ucPad = 0;
// Figure out the total length of the packet in order to figure out if there
// is padding or not
if(!(usLength & 0x0001))
{
ucPad++;
}
pUserBuffer[0] = WRITE;
pUserBuffer[1] = HI(usLength + ucPad);
pUserBuffer[2] = LO(usLength + ucPad);
pUserBuffer[3] = 0;
pUserBuffer[4] = 0;
usLength += (SPI_HEADER_SIZE + ucPad);
// The magic number that resides at the end of the TX/RX buffer (1 byte after
// the allocated size) for the purpose of detection of the overrun. If the
// magic number is overwritten - buffer overrun occurred - and we will stuck
// here forever!
if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
{
while (1)
;
}
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED)
;
}
if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED)
{
// This is time for first TX/RX transactions over SPI: the IRQ is down -
// so need to send read buffer size command
SpiFirstWrite(pUserBuffer, usLength);
}
else
{
// We need to prevent here race that can occur in case 2 back to back
// packets are sent to the device, so the state will move to IDLE and once
//again to not IDLE due to IRQ
tSLInformation.WlanInterruptDisable();
while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE)
{
;
}
sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
sSpiInformation.pTxPacket = pUserBuffer;
sSpiInformation.usTxPacketLength = usLength;
// Save SPI settings
save_spi_params();
// Assert the CS line and wait till SSI IRQ line is active and then
// initialize write operation
digitalWrite(g_cs_pin, LOW);
// Re-enable IRQ - if it was not disabled - this is not a problem...
tSLInformation.WlanInterruptEnable();
// check for a missing interrupt between the CS assertion and enabling back the interrupts
if (tSLInformation.ReadWlanInterruptPin() == 0)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
}
}
// Due to the fact that we are currently implementing a blocking situation
// here we will wait till end of transaction
while (eSPI_STATE_IDLE != sSpiInformation.ulSpiState)
;
return(0);
}
//*****************************************************************************
//
//! SpiWriteDataSynchronous
//!
//! @param data buffer to write
//! @param size buffer's size
//!
//! @return none
//!
//! @brief Spi write operation
//
//*****************************************************************************
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size)
{
while (size)
{
SPI.transfer(*data);
size --;
data++;
}
}
//*****************************************************************************
//
//! SpiReadDataSynchronous
//!
//! @param data buffer to read
//! @param size buffer's size
//!
//! @return none
//!
//! @brief Spi read operation
//
//*****************************************************************************
void SpiReadDataSynchronous(unsigned char *data, unsigned short size)
{
long i = 0;
unsigned char *data_to_send = tSpiReadHeader;
for (i = 0; i < size; i ++)
{
data[i] = SPI.transfer(0x03);
}
}
//*****************************************************************************
//
//! SpiReadHeader
//!
//! \param buffer
//!
//! \return none
//!
//! \brief This function enter point for read flow: first we read minimal 5
//! SPI header bytes and 5 Event Data bytes
//
//*****************************************************************************
void SpiReadHeader(void)
{
SpiReadDataSynchronous(sSpiInformation.pRxPacket, 10);
}
//*****************************************************************************
//
//! SpiReadDataCont
//!
//! @param None
//!
//! @return None
//!
//! @brief This function processes received SPI Header and in accordance with
//! it - continues reading the packet
//
//*****************************************************************************
long SpiReadDataCont(void)
{
long data_to_recv;
unsigned char *evnt_buff, type;
//determine what type of packet we have
evnt_buff = sSpiInformation.pRxPacket;
data_to_recv = 0;
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_PACKET_TYPE_OFFSET, type);
switch(type)
{
case HCI_TYPE_DATA:
{
// We need to read the rest of data..
STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_DATA_LENGTH_OFFSET, data_to_recv);
if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
break;
}
case HCI_TYPE_EVNT:
{
// Calculate the rest length of the data
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_EVENT_LENGTH_OFFSET, data_to_recv);
data_to_recv -= 1;
// Add padding byte if needed
if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
break;
}
}
return (0);
}
//*****************************************************************************
//
//! SpiPauseSpi
//!
//! @param none
//!
//! @return none
//!
//! @brief Spi pause operation
//
//*****************************************************************************
void SpiPauseSpi(void)
{
detachInterrupt(g_int_num);
}
//*****************************************************************************
//
//! SpiResumeSpi
//!
//! @param none
//!
//! @return none
//!
//! @brief Spi resume operation
//
//*****************************************************************************
void SpiResumeSpi(void)
{
attachInterrupt(g_int_num, cc3000_ISR, FALLING);
}
//*****************************************************************************
//
//! SSIContReadOperation
//!
//! @param none
//!
//! @return none
//!
//! @brief SPI read operation
//
//*****************************************************************************
void SSIContReadOperation(void)
{
// The header was read - continue with the payload read
if (!SpiReadDataCont())
{
// All the data was read - finalize handling by switching to the task
// and calling from task Event Handler
SpiTriggerRxProcessing();
}
}
//*****************************************************************************
//
//! SpiTriggerRxProcessing
//!
//! @param none
//!
//! @return none
//!
//! @brief Spi RX processing
//
//*****************************************************************************
void SpiTriggerRxProcessing(void)
{
// Trigger Rx processing
SpiPauseSpi();
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
// The magic number that resides at the end of the TX/RX buffer (1 byte
// after the allocated size) for the purpose of detection of the overrun.
// If the magic number is overwritten - buffer overrun occurred - and we
// will stuck here forever!
if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] !=
CC3000_BUFFER_MAGIC_NUMBER)
{
while (1)
;
}
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
}
//*****************************************************************************
// Custom functions
//*****************************************************************************
/**
* @brief Gets the SPI mode from the SPI control register
*
* Returns the SPI mode as given by:
* 0x00 = MODE0
* 0x04 = MODE1
* 0x08 = MODE2
* 0x0C = MODE3
*
* @return The SPI mode
*/
uint8_t get_spi_data_mode(void) {
return (SPCR & SPI_MODE_MASK);
}
/**
* @brief Gets the bit order (MSB or LSB first) of SPI transactions
*
* @return 1 for MSB first, 0 for LSB first
*/
uint8_t get_spi_bit_order(void) {
return bitRead(SPCR, DORD) ? 0 : 1;
}
/**
* @brief Gets the clock divider for SPI
*
* Returns the clock divider for SPI based on the SPCR and SPSR registers.
* 0x00 = DIV4
* 0x01 = DIV16
* 0x02 = DIV64
* 0x03 = DIV128
* 0x04 = DIV2
* 0x05 = DIV8
* 0x06 = DIV32
* 0x07 = DIV64 (not implemented in Arduino)
*
* @return value of SPI2X, SPR1, and SPR0 bits as an unsigned 8-bit integer
*/
uint8_t get_spi_clock_div(void) {
uint8_t clock_div;
clock_div = (SPCR & SPI_CLOCK_MASK);
clock_div = clock_div | ((SPSR & SPI_2XCLOCK_MASK) << 2);
return clock_div;
}
/**
* @brief Saves the current SPI parameters in global variables
*/
void save_spi_params(void) {
/* Save current SPI settings */
g_saved_data_mode = get_spi_data_mode();
g_saved_bit_order = get_spi_bit_order();
g_saved_clock_div = get_spi_clock_div();
/* Set SPI settings for CC3000 */
SPI.setDataMode(SPI_MODE1);
SPI.setBitOrder(MSBFIRST);
SPI.setClockDivider(SPI_CLK_DIV);
}
/**
* @brief Restores the previously saved SPI parameters
*/
void restore_spi_params(void) {
SPI.setDataMode(g_saved_data_mode);
SPI.setBitOrder(g_saved_bit_order);
SPI.setClockDivider(g_saved_clock_div);
}
/**
* @brief Interrupt Service Routine for GPIO interrupt
*/
void cc3000_ISR(void)
{
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
//This means IRQ line was low call a callback of HCI Layer to inform
//on event
sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
{
sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
// Save SPI settings
save_spi_params();
//IRQ line goes down - we are start reception
digitalWrite(g_cs_pin, LOW);
// Wait for TX/RX Compete which will come as DMA interrupt
SpiReadHeader();
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
SSIContReadOperation();
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket,
sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
}
}