3D-Renderer-omeka-module/asset/vendor/vue-3d-model/vue-3d-model.umd.js

74837 lines
1.7 MiB

(function webpackUniversalModuleDefinition(root, factory) {
if(typeof exports === 'object' && typeof module === 'object')
module.exports = factory(require("vue"));
else if(typeof define === 'function' && define.amd)
define([], factory);
else if(typeof exports === 'object')
exports["vue-3d-model"] = factory(require("vue"));
else
root["vue-3d-model"] = factory(root["Vue"]);
})((typeof self !== 'undefined' ? self : this), function(__WEBPACK_EXTERNAL_MODULE__8bbf__) {
return /******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, { enumerable: true, get: getter });
/******/ }
/******/ };
/******/
/******/ // define __esModule on exports
/******/ __webpack_require__.r = function(exports) {
/******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) {
/******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });
/******/ }
/******/ Object.defineProperty(exports, '__esModule', { value: true });
/******/ };
/******/
/******/ // create a fake namespace object
/******/ // mode & 1: value is a module id, require it
/******/ // mode & 2: merge all properties of value into the ns
/******/ // mode & 4: return value when already ns object
/******/ // mode & 8|1: behave like require
/******/ __webpack_require__.t = function(value, mode) {
/******/ if(mode & 1) value = __webpack_require__(value);
/******/ if(mode & 8) return value;
/******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value;
/******/ var ns = Object.create(null);
/******/ __webpack_require__.r(ns);
/******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value });
/******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key));
/******/ return ns;
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = "9896");
/******/ })
/************************************************************************/
/******/ ({
/***/ "053b":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var defineProperty = __webpack_require__("d910").f;
var FunctionPrototype = Function.prototype;
var FunctionPrototypeToString = FunctionPrototype.toString;
var nameRE = /^\s*function ([^ (]*)/;
var NAME = 'name';
// Function instances `.name` property
// https://tc39.github.io/ecma262/#sec-function-instances-name
if (DESCRIPTORS && !(NAME in FunctionPrototype)) {
defineProperty(FunctionPrototype, NAME, {
configurable: true,
get: function () {
try {
return FunctionPrototypeToString.call(this).match(nameRE)[1];
} catch (error) {
return '';
}
}
});
}
/***/ }),
/***/ "064b":
/***/ (function(module, exports) {
// iterable DOM collections
// flag - `iterable` interface - 'entries', 'keys', 'values', 'forEach' methods
module.exports = {
CSSRuleList: 0,
CSSStyleDeclaration: 0,
CSSValueList: 0,
ClientRectList: 0,
DOMRectList: 0,
DOMStringList: 0,
DOMTokenList: 1,
DataTransferItemList: 0,
FileList: 0,
HTMLAllCollection: 0,
HTMLCollection: 0,
HTMLFormElement: 0,
HTMLSelectElement: 0,
MediaList: 0,
MimeTypeArray: 0,
NamedNodeMap: 0,
NodeList: 1,
PaintRequestList: 0,
Plugin: 0,
PluginArray: 0,
SVGLengthList: 0,
SVGNumberList: 0,
SVGPathSegList: 0,
SVGPointList: 0,
SVGStringList: 0,
SVGTransformList: 0,
SourceBufferList: 0,
StyleSheetList: 0,
TextTrackCueList: 0,
TextTrackList: 0,
TouchList: 0
};
/***/ }),
/***/ "08ba":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var DOMIterables = __webpack_require__("064b");
var forEach = __webpack_require__("3c10");
var createNonEnumerableProperty = __webpack_require__("0fc1");
for (var COLLECTION_NAME in DOMIterables) {
var Collection = global[COLLECTION_NAME];
var CollectionPrototype = Collection && Collection.prototype;
// some Chrome versions have non-configurable methods on DOMTokenList
if (CollectionPrototype && CollectionPrototype.forEach !== forEach) try {
createNonEnumerableProperty(CollectionPrototype, 'forEach', forEach);
} catch (error) {
CollectionPrototype.forEach = forEach;
}
}
/***/ }),
/***/ "0a51":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
// `Symbol.prototype.description` getter
// https://tc39.github.io/ecma262/#sec-symbol.prototype.description
var $ = __webpack_require__("1c8b");
var DESCRIPTORS = __webpack_require__("1e2c");
var global = __webpack_require__("d890");
var has = __webpack_require__("faa8");
var isObject = __webpack_require__("a719");
var defineProperty = __webpack_require__("d910").f;
var copyConstructorProperties = __webpack_require__("c69d");
var NativeSymbol = global.Symbol;
if (DESCRIPTORS && typeof NativeSymbol == 'function' && (!('description' in NativeSymbol.prototype) ||
// Safari 12 bug
NativeSymbol().description !== undefined
)) {
var EmptyStringDescriptionStore = {};
// wrap Symbol constructor for correct work with undefined description
var SymbolWrapper = function Symbol() {
var description = arguments.length < 1 || arguments[0] === undefined ? undefined : String(arguments[0]);
var result = this instanceof SymbolWrapper
? new NativeSymbol(description)
// in Edge 13, String(Symbol(undefined)) === 'Symbol(undefined)'
: description === undefined ? NativeSymbol() : NativeSymbol(description);
if (description === '') EmptyStringDescriptionStore[result] = true;
return result;
};
copyConstructorProperties(SymbolWrapper, NativeSymbol);
var symbolPrototype = SymbolWrapper.prototype = NativeSymbol.prototype;
symbolPrototype.constructor = SymbolWrapper;
var symbolToString = symbolPrototype.toString;
var native = String(NativeSymbol('test')) == 'Symbol(test)';
var regexp = /^Symbol\((.*)\)[^)]+$/;
defineProperty(symbolPrototype, 'description', {
configurable: true,
get: function description() {
var symbol = isObject(this) ? this.valueOf() : this;
var string = symbolToString.call(symbol);
if (has(EmptyStringDescriptionStore, symbol)) return '';
var desc = native ? string.slice(7, -1) : string.replace(regexp, '$1');
return desc === '' ? undefined : desc;
}
});
$({ global: true, forced: true }, {
Symbol: SymbolWrapper
});
}
/***/ }),
/***/ "0a60":
/***/ (function(module, exports) {
exports.f = Object.getOwnPropertySymbols;
/***/ }),
/***/ "0c3c":
/***/ (function(module, exports) {
module.exports = function (it) {
if (typeof it != 'function') {
throw TypeError(String(it) + ' is not a function');
} return it;
};
/***/ }),
/***/ "0fc1":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var definePropertyModule = __webpack_require__("d910");
var createPropertyDescriptor = __webpack_require__("38b9");
module.exports = DESCRIPTORS ? function (object, key, value) {
return definePropertyModule.f(object, key, createPropertyDescriptor(1, value));
} : function (object, key, value) {
object[key] = value;
return object;
};
/***/ }),
/***/ "1025":
/***/ (function(module, exports, __webpack_require__) {
var store = __webpack_require__("3a08");
var functionToString = Function.toString;
// this helper broken in `3.4.1-3.4.4`, so we can't use `shared` helper
if (typeof store.inspectSource != 'function') {
store.inspectSource = function (it) {
return functionToString.call(it);
};
}
module.exports = store.inspectSource;
/***/ }),
/***/ "18f6":
/***/ (function(module, exports) {
// IE8- don't enum bug keys
module.exports = [
'constructor',
'hasOwnProperty',
'isPrototypeOf',
'propertyIsEnumerable',
'toLocaleString',
'toString',
'valueOf'
];
/***/ }),
/***/ "1944":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var has = __webpack_require__("faa8");
var setGlobal = __webpack_require__("e4db");
var inspectSource = __webpack_require__("1025");
var InternalStateModule = __webpack_require__("b702");
var getInternalState = InternalStateModule.get;
var enforceInternalState = InternalStateModule.enforce;
var TEMPLATE = String(String).split('String');
(module.exports = function (O, key, value, options) {
var unsafe = options ? !!options.unsafe : false;
var simple = options ? !!options.enumerable : false;
var noTargetGet = options ? !!options.noTargetGet : false;
if (typeof value == 'function') {
if (typeof key == 'string' && !has(value, 'name')) createNonEnumerableProperty(value, 'name', key);
enforceInternalState(value).source = TEMPLATE.join(typeof key == 'string' ? key : '');
}
if (O === global) {
if (simple) O[key] = value;
else setGlobal(key, value);
return;
} else if (!unsafe) {
delete O[key];
} else if (!noTargetGet && O[key]) {
simple = true;
}
if (simple) O[key] = value;
else createNonEnumerableProperty(O, key, value);
// add fake Function#toString for correct work wrapped methods / constructors with methods like LoDash isNative
})(Function.prototype, 'toString', function toString() {
return typeof this == 'function' && getInternalState(this).source || inspectSource(this);
});
/***/ }),
/***/ "19fc":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var toObject = __webpack_require__("3553");
var toAbsoluteIndex = __webpack_require__("e1d6");
var toLength = __webpack_require__("d88d");
var min = Math.min;
// `Array.prototype.copyWithin` method implementation
// https://tc39.github.io/ecma262/#sec-array.prototype.copywithin
module.exports = [].copyWithin || function copyWithin(target /* = 0 */, start /* = 0, end = @length */) {
var O = toObject(this);
var len = toLength(O.length);
var to = toAbsoluteIndex(target, len);
var from = toAbsoluteIndex(start, len);
var end = arguments.length > 2 ? arguments[2] : undefined;
var count = min((end === undefined ? len : toAbsoluteIndex(end, len)) - from, len - to);
var inc = 1;
if (from < to && to < from + count) {
inc = -1;
from += count - 1;
to += count - 1;
}
while (count-- > 0) {
if (from in O) O[to] = O[from];
else delete O[to];
to += inc;
from += inc;
} return O;
};
/***/ }),
/***/ "1b99":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
module.exports = global;
/***/ }),
/***/ "1bb1":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var global = __webpack_require__("d890");
var ArrayBufferViewCore = __webpack_require__("5a9e");
var fails = __webpack_require__("efe2");
var Int8Array = global.Int8Array;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var $toLocaleString = [].toLocaleString;
var $slice = [].slice;
// iOS Safari 6.x fails here
var TO_LOCALE_STRING_BUG = !!Int8Array && fails(function () {
$toLocaleString.call(new Int8Array(1));
});
var FORCED = fails(function () {
return [1, 2].toLocaleString() != new Int8Array([1, 2]).toLocaleString();
}) || !fails(function () {
Int8Array.prototype.toLocaleString.call([1, 2]);
});
// `%TypedArray%.prototype.toLocaleString` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.tolocalestring
exportTypedArrayMethod('toLocaleString', function toLocaleString() {
return $toLocaleString.apply(TO_LOCALE_STRING_BUG ? $slice.call(aTypedArray(this)) : aTypedArray(this), arguments);
}, FORCED);
/***/ }),
/***/ "1bbd":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var toPrimitive = __webpack_require__("9f67");
var definePropertyModule = __webpack_require__("d910");
var createPropertyDescriptor = __webpack_require__("38b9");
module.exports = function (object, key, value) {
var propertyKey = toPrimitive(key);
if (propertyKey in object) definePropertyModule.f(object, propertyKey, createPropertyDescriptor(0, value));
else object[propertyKey] = value;
};
/***/ }),
/***/ "1c2e":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var global = __webpack_require__("d890");
var DESCRIPTORS = __webpack_require__("1e2c");
var NATIVE_ARRAY_BUFFER = __webpack_require__("d77f");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var redefineAll = __webpack_require__("99ab");
var fails = __webpack_require__("efe2");
var anInstance = __webpack_require__("c4e4");
var toInteger = __webpack_require__("3da3");
var toLength = __webpack_require__("d88d");
var toIndex = __webpack_require__("3ccd");
var IEEE754 = __webpack_require__("e026");
var getPrototypeOf = __webpack_require__("908e");
var setPrototypeOf = __webpack_require__("50fb");
var getOwnPropertyNames = __webpack_require__("b338").f;
var defineProperty = __webpack_require__("d910").f;
var arrayFill = __webpack_require__("fa41");
var setToStringTag = __webpack_require__("27b5");
var InternalStateModule = __webpack_require__("b702");
var getInternalState = InternalStateModule.get;
var setInternalState = InternalStateModule.set;
var ARRAY_BUFFER = 'ArrayBuffer';
var DATA_VIEW = 'DataView';
var PROTOTYPE = 'prototype';
var WRONG_LENGTH = 'Wrong length';
var WRONG_INDEX = 'Wrong index';
var NativeArrayBuffer = global[ARRAY_BUFFER];
var $ArrayBuffer = NativeArrayBuffer;
var $DataView = global[DATA_VIEW];
var $DataViewPrototype = $DataView && $DataView[PROTOTYPE];
var ObjectPrototype = Object.prototype;
var RangeError = global.RangeError;
var packIEEE754 = IEEE754.pack;
var unpackIEEE754 = IEEE754.unpack;
var packInt8 = function (number) {
return [number & 0xFF];
};
var packInt16 = function (number) {
return [number & 0xFF, number >> 8 & 0xFF];
};
var packInt32 = function (number) {
return [number & 0xFF, number >> 8 & 0xFF, number >> 16 & 0xFF, number >> 24 & 0xFF];
};
var unpackInt32 = function (buffer) {
return buffer[3] << 24 | buffer[2] << 16 | buffer[1] << 8 | buffer[0];
};
var packFloat32 = function (number) {
return packIEEE754(number, 23, 4);
};
var packFloat64 = function (number) {
return packIEEE754(number, 52, 8);
};
var addGetter = function (Constructor, key) {
defineProperty(Constructor[PROTOTYPE], key, { get: function () { return getInternalState(this)[key]; } });
};
var get = function (view, count, index, isLittleEndian) {
var intIndex = toIndex(index);
var store = getInternalState(view);
if (intIndex + count > store.byteLength) throw RangeError(WRONG_INDEX);
var bytes = getInternalState(store.buffer).bytes;
var start = intIndex + store.byteOffset;
var pack = bytes.slice(start, start + count);
return isLittleEndian ? pack : pack.reverse();
};
var set = function (view, count, index, conversion, value, isLittleEndian) {
var intIndex = toIndex(index);
var store = getInternalState(view);
if (intIndex + count > store.byteLength) throw RangeError(WRONG_INDEX);
var bytes = getInternalState(store.buffer).bytes;
var start = intIndex + store.byteOffset;
var pack = conversion(+value);
for (var i = 0; i < count; i++) bytes[start + i] = pack[isLittleEndian ? i : count - i - 1];
};
if (!NATIVE_ARRAY_BUFFER) {
$ArrayBuffer = function ArrayBuffer(length) {
anInstance(this, $ArrayBuffer, ARRAY_BUFFER);
var byteLength = toIndex(length);
setInternalState(this, {
bytes: arrayFill.call(new Array(byteLength), 0),
byteLength: byteLength
});
if (!DESCRIPTORS) this.byteLength = byteLength;
};
$DataView = function DataView(buffer, byteOffset, byteLength) {
anInstance(this, $DataView, DATA_VIEW);
anInstance(buffer, $ArrayBuffer, DATA_VIEW);
var bufferLength = getInternalState(buffer).byteLength;
var offset = toInteger(byteOffset);
if (offset < 0 || offset > bufferLength) throw RangeError('Wrong offset');
byteLength = byteLength === undefined ? bufferLength - offset : toLength(byteLength);
if (offset + byteLength > bufferLength) throw RangeError(WRONG_LENGTH);
setInternalState(this, {
buffer: buffer,
byteLength: byteLength,
byteOffset: offset
});
if (!DESCRIPTORS) {
this.buffer = buffer;
this.byteLength = byteLength;
this.byteOffset = offset;
}
};
if (DESCRIPTORS) {
addGetter($ArrayBuffer, 'byteLength');
addGetter($DataView, 'buffer');
addGetter($DataView, 'byteLength');
addGetter($DataView, 'byteOffset');
}
redefineAll($DataView[PROTOTYPE], {
getInt8: function getInt8(byteOffset) {
return get(this, 1, byteOffset)[0] << 24 >> 24;
},
getUint8: function getUint8(byteOffset) {
return get(this, 1, byteOffset)[0];
},
getInt16: function getInt16(byteOffset /* , littleEndian */) {
var bytes = get(this, 2, byteOffset, arguments.length > 1 ? arguments[1] : undefined);
return (bytes[1] << 8 | bytes[0]) << 16 >> 16;
},
getUint16: function getUint16(byteOffset /* , littleEndian */) {
var bytes = get(this, 2, byteOffset, arguments.length > 1 ? arguments[1] : undefined);
return bytes[1] << 8 | bytes[0];
},
getInt32: function getInt32(byteOffset /* , littleEndian */) {
return unpackInt32(get(this, 4, byteOffset, arguments.length > 1 ? arguments[1] : undefined));
},
getUint32: function getUint32(byteOffset /* , littleEndian */) {
return unpackInt32(get(this, 4, byteOffset, arguments.length > 1 ? arguments[1] : undefined)) >>> 0;
},
getFloat32: function getFloat32(byteOffset /* , littleEndian */) {
return unpackIEEE754(get(this, 4, byteOffset, arguments.length > 1 ? arguments[1] : undefined), 23);
},
getFloat64: function getFloat64(byteOffset /* , littleEndian */) {
return unpackIEEE754(get(this, 8, byteOffset, arguments.length > 1 ? arguments[1] : undefined), 52);
},
setInt8: function setInt8(byteOffset, value) {
set(this, 1, byteOffset, packInt8, value);
},
setUint8: function setUint8(byteOffset, value) {
set(this, 1, byteOffset, packInt8, value);
},
setInt16: function setInt16(byteOffset, value /* , littleEndian */) {
set(this, 2, byteOffset, packInt16, value, arguments.length > 2 ? arguments[2] : undefined);
},
setUint16: function setUint16(byteOffset, value /* , littleEndian */) {
set(this, 2, byteOffset, packInt16, value, arguments.length > 2 ? arguments[2] : undefined);
},
setInt32: function setInt32(byteOffset, value /* , littleEndian */) {
set(this, 4, byteOffset, packInt32, value, arguments.length > 2 ? arguments[2] : undefined);
},
setUint32: function setUint32(byteOffset, value /* , littleEndian */) {
set(this, 4, byteOffset, packInt32, value, arguments.length > 2 ? arguments[2] : undefined);
},
setFloat32: function setFloat32(byteOffset, value /* , littleEndian */) {
set(this, 4, byteOffset, packFloat32, value, arguments.length > 2 ? arguments[2] : undefined);
},
setFloat64: function setFloat64(byteOffset, value /* , littleEndian */) {
set(this, 8, byteOffset, packFloat64, value, arguments.length > 2 ? arguments[2] : undefined);
}
});
} else {
if (!fails(function () {
NativeArrayBuffer(1);
}) || !fails(function () {
new NativeArrayBuffer(-1); // eslint-disable-line no-new
}) || fails(function () {
new NativeArrayBuffer(); // eslint-disable-line no-new
new NativeArrayBuffer(1.5); // eslint-disable-line no-new
new NativeArrayBuffer(NaN); // eslint-disable-line no-new
return NativeArrayBuffer.name != ARRAY_BUFFER;
})) {
$ArrayBuffer = function ArrayBuffer(length) {
anInstance(this, $ArrayBuffer);
return new NativeArrayBuffer(toIndex(length));
};
var ArrayBufferPrototype = $ArrayBuffer[PROTOTYPE] = NativeArrayBuffer[PROTOTYPE];
for (var keys = getOwnPropertyNames(NativeArrayBuffer), j = 0, key; keys.length > j;) {
if (!((key = keys[j++]) in $ArrayBuffer)) {
createNonEnumerableProperty($ArrayBuffer, key, NativeArrayBuffer[key]);
}
}
ArrayBufferPrototype.constructor = $ArrayBuffer;
}
// WebKit bug - the same parent prototype for typed arrays and data view
if (setPrototypeOf && getPrototypeOf($DataViewPrototype) !== ObjectPrototype) {
setPrototypeOf($DataViewPrototype, ObjectPrototype);
}
// iOS Safari 7.x bug
var testView = new $DataView(new $ArrayBuffer(2));
var nativeSetInt8 = $DataViewPrototype.setInt8;
testView.setInt8(0, 2147483648);
testView.setInt8(1, 2147483649);
if (testView.getInt8(0) || !testView.getInt8(1)) redefineAll($DataViewPrototype, {
setInt8: function setInt8(byteOffset, value) {
nativeSetInt8.call(this, byteOffset, value << 24 >> 24);
},
setUint8: function setUint8(byteOffset, value) {
nativeSetInt8.call(this, byteOffset, value << 24 >> 24);
}
}, { unsafe: true });
}
setToStringTag($ArrayBuffer, ARRAY_BUFFER);
setToStringTag($DataView, DATA_VIEW);
module.exports = {
ArrayBuffer: $ArrayBuffer,
DataView: $DataView
};
/***/ }),
/***/ "1c2e8":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var redefine = __webpack_require__("1944");
var anObject = __webpack_require__("857c");
var fails = __webpack_require__("efe2");
var flags = __webpack_require__("99ad");
var TO_STRING = 'toString';
var RegExpPrototype = RegExp.prototype;
var nativeToString = RegExpPrototype[TO_STRING];
var NOT_GENERIC = fails(function () { return nativeToString.call({ source: 'a', flags: 'b' }) != '/a/b'; });
// FF44- RegExp#toString has a wrong name
var INCORRECT_NAME = nativeToString.name != TO_STRING;
// `RegExp.prototype.toString` method
// https://tc39.github.io/ecma262/#sec-regexp.prototype.tostring
if (NOT_GENERIC || INCORRECT_NAME) {
redefine(RegExp.prototype, TO_STRING, function toString() {
var R = anObject(this);
var p = String(R.source);
var rf = R.flags;
var f = String(rf === undefined && R instanceof RegExp && !('flags' in RegExpPrototype) ? flags.call(R) : rf);
return '/' + p + '/' + f;
}, { unsafe: true });
}
/***/ }),
/***/ "1c8b":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var getOwnPropertyDescriptor = __webpack_require__("aa6b").f;
var createNonEnumerableProperty = __webpack_require__("0fc1");
var redefine = __webpack_require__("1944");
var setGlobal = __webpack_require__("e4db");
var copyConstructorProperties = __webpack_require__("c69d");
var isForced = __webpack_require__("e8d6");
/*
options.target - name of the target object
options.global - target is the global object
options.stat - export as static methods of target
options.proto - export as prototype methods of target
options.real - real prototype method for the `pure` version
options.forced - export even if the native feature is available
options.bind - bind methods to the target, required for the `pure` version
options.wrap - wrap constructors to preventing global pollution, required for the `pure` version
options.unsafe - use the simple assignment of property instead of delete + defineProperty
options.sham - add a flag to not completely full polyfills
options.enumerable - export as enumerable property
options.noTargetGet - prevent calling a getter on target
*/
module.exports = function (options, source) {
var TARGET = options.target;
var GLOBAL = options.global;
var STATIC = options.stat;
var FORCED, target, key, targetProperty, sourceProperty, descriptor;
if (GLOBAL) {
target = global;
} else if (STATIC) {
target = global[TARGET] || setGlobal(TARGET, {});
} else {
target = (global[TARGET] || {}).prototype;
}
if (target) for (key in source) {
sourceProperty = source[key];
if (options.noTargetGet) {
descriptor = getOwnPropertyDescriptor(target, key);
targetProperty = descriptor && descriptor.value;
} else targetProperty = target[key];
FORCED = isForced(GLOBAL ? key : TARGET + (STATIC ? '.' : '#') + key, options.forced);
// contained in target
if (!FORCED && targetProperty !== undefined) {
if (typeof sourceProperty === typeof targetProperty) continue;
copyConstructorProperties(sourceProperty, targetProperty);
}
// add a flag to not completely full polyfills
if (options.sham || (targetProperty && targetProperty.sham)) {
createNonEnumerableProperty(sourceProperty, 'sham', true);
}
// extend global
redefine(target, key, sourceProperty, options);
}
};
/***/ }),
/***/ "1ca1":
/***/ (function(module, exports, __webpack_require__) {
var isObject = __webpack_require__("a719");
var isArray = __webpack_require__("74e7");
var wellKnownSymbol = __webpack_require__("90fb");
var SPECIES = wellKnownSymbol('species');
// `ArraySpeciesCreate` abstract operation
// https://tc39.github.io/ecma262/#sec-arrayspeciescreate
module.exports = function (originalArray, length) {
var C;
if (isArray(originalArray)) {
C = originalArray.constructor;
// cross-realm fallback
if (typeof C == 'function' && (C === Array || isArray(C.prototype))) C = undefined;
else if (isObject(C)) {
C = C[SPECIES];
if (C === null) C = undefined;
}
} return new (C === undefined ? Array : C)(length === 0 ? 0 : length);
};
/***/ }),
/***/ "1cc1":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $find = __webpack_require__("5dfd").find;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.find` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.find
exportTypedArrayMethod('find', function find(predicate /* , thisArg */) {
return $find(aTypedArray(this), predicate, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "1e2c":
/***/ (function(module, exports, __webpack_require__) {
var fails = __webpack_require__("efe2");
// Thank's IE8 for his funny defineProperty
module.exports = !fails(function () {
return Object.defineProperty({}, 1, { get: function () { return 7; } })[1] != 7;
});
/***/ }),
/***/ "1ea7":
/***/ (function(module, exports, __webpack_require__) {
var fails = __webpack_require__("efe2");
var wellKnownSymbol = __webpack_require__("90fb");
var V8_VERSION = __webpack_require__("f594");
var SPECIES = wellKnownSymbol('species');
module.exports = function (METHOD_NAME) {
// We can't use this feature detection in V8 since it causes
// deoptimization and serious performance degradation
// https://github.com/zloirock/core-js/issues/677
return V8_VERSION >= 51 || !fails(function () {
var array = [];
var constructor = array.constructor = {};
constructor[SPECIES] = function () {
return { foo: 1 };
};
return array[METHOD_NAME](Boolean).foo !== 1;
});
};
/***/ }),
/***/ "2039":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var fails = __webpack_require__("efe2");
var createElement = __webpack_require__("ae25");
// Thank's IE8 for his funny defineProperty
module.exports = !DESCRIPTORS && !fails(function () {
return Object.defineProperty(createElement('div'), 'a', {
get: function () { return 7; }
}).a != 7;
});
/***/ }),
/***/ "2118":
/***/ (function(module, exports) {
var toString = {}.toString;
module.exports = function (it) {
return toString.call(it).slice(8, -1);
};
/***/ }),
/***/ "22ef":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var fails = __webpack_require__("efe2");
// babel-minify transpiles RegExp('a', 'y') -> /a/y and it causes SyntaxError,
// so we use an intermediate function.
function RE(s, f) {
return RegExp(s, f);
}
exports.UNSUPPORTED_Y = fails(function () {
// babel-minify transpiles RegExp('a', 'y') -> /a/y and it causes SyntaxError
var re = RE('a', 'y');
re.lastIndex = 2;
return re.exec('abcd') != null;
});
exports.BROKEN_CARET = fails(function () {
// https://bugzilla.mozilla.org/show_bug.cgi?id=773687
var re = RE('^r', 'gy');
re.lastIndex = 2;
return re.exec('str') != null;
});
/***/ }),
/***/ "258f":
/***/ (function(module, exports, __webpack_require__) {
var wellKnownSymbol = __webpack_require__("90fb");
var create = __webpack_require__("6d60");
var definePropertyModule = __webpack_require__("d910");
var UNSCOPABLES = wellKnownSymbol('unscopables');
var ArrayPrototype = Array.prototype;
// Array.prototype[@@unscopables]
// https://tc39.github.io/ecma262/#sec-array.prototype-@@unscopables
if (ArrayPrototype[UNSCOPABLES] == undefined) {
definePropertyModule.f(ArrayPrototype, UNSCOPABLES, {
configurable: true,
value: create(null)
});
}
// add a key to Array.prototype[@@unscopables]
module.exports = function (key) {
ArrayPrototype[UNSCOPABLES][key] = true;
};
/***/ }),
/***/ "26a2":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var global = __webpack_require__("d890");
var DESCRIPTORS = __webpack_require__("1e2c");
var TYPED_ARRAYS_CONSTRUCTORS_REQUIRES_WRAPPERS = __webpack_require__("a4c7");
var ArrayBufferViewCore = __webpack_require__("5a9e");
var ArrayBufferModule = __webpack_require__("1c2e");
var anInstance = __webpack_require__("c4e4");
var createPropertyDescriptor = __webpack_require__("38b9");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var toLength = __webpack_require__("d88d");
var toIndex = __webpack_require__("3ccd");
var toOffset = __webpack_require__("7aeb");
var toPrimitive = __webpack_require__("9f67");
var has = __webpack_require__("faa8");
var classof = __webpack_require__("2a91");
var isObject = __webpack_require__("a719");
var create = __webpack_require__("6d60");
var setPrototypeOf = __webpack_require__("50fb");
var getOwnPropertyNames = __webpack_require__("b338").f;
var typedArrayFrom = __webpack_require__("6f82");
var forEach = __webpack_require__("5dfd").forEach;
var setSpecies = __webpack_require__("403f");
var definePropertyModule = __webpack_require__("d910");
var getOwnPropertyDescriptorModule = __webpack_require__("aa6b");
var InternalStateModule = __webpack_require__("b702");
var inheritIfRequired = __webpack_require__("7063");
var getInternalState = InternalStateModule.get;
var setInternalState = InternalStateModule.set;
var nativeDefineProperty = definePropertyModule.f;
var nativeGetOwnPropertyDescriptor = getOwnPropertyDescriptorModule.f;
var round = Math.round;
var RangeError = global.RangeError;
var ArrayBuffer = ArrayBufferModule.ArrayBuffer;
var DataView = ArrayBufferModule.DataView;
var NATIVE_ARRAY_BUFFER_VIEWS = ArrayBufferViewCore.NATIVE_ARRAY_BUFFER_VIEWS;
var TYPED_ARRAY_TAG = ArrayBufferViewCore.TYPED_ARRAY_TAG;
var TypedArray = ArrayBufferViewCore.TypedArray;
var TypedArrayPrototype = ArrayBufferViewCore.TypedArrayPrototype;
var aTypedArrayConstructor = ArrayBufferViewCore.aTypedArrayConstructor;
var isTypedArray = ArrayBufferViewCore.isTypedArray;
var BYTES_PER_ELEMENT = 'BYTES_PER_ELEMENT';
var WRONG_LENGTH = 'Wrong length';
var fromList = function (C, list) {
var index = 0;
var length = list.length;
var result = new (aTypedArrayConstructor(C))(length);
while (length > index) result[index] = list[index++];
return result;
};
var addGetter = function (it, key) {
nativeDefineProperty(it, key, { get: function () {
return getInternalState(this)[key];
} });
};
var isArrayBuffer = function (it) {
var klass;
return it instanceof ArrayBuffer || (klass = classof(it)) == 'ArrayBuffer' || klass == 'SharedArrayBuffer';
};
var isTypedArrayIndex = function (target, key) {
return isTypedArray(target)
&& typeof key != 'symbol'
&& key in target
&& String(+key) == String(key);
};
var wrappedGetOwnPropertyDescriptor = function getOwnPropertyDescriptor(target, key) {
return isTypedArrayIndex(target, key = toPrimitive(key, true))
? createPropertyDescriptor(2, target[key])
: nativeGetOwnPropertyDescriptor(target, key);
};
var wrappedDefineProperty = function defineProperty(target, key, descriptor) {
if (isTypedArrayIndex(target, key = toPrimitive(key, true))
&& isObject(descriptor)
&& has(descriptor, 'value')
&& !has(descriptor, 'get')
&& !has(descriptor, 'set')
// TODO: add validation descriptor w/o calling accessors
&& !descriptor.configurable
&& (!has(descriptor, 'writable') || descriptor.writable)
&& (!has(descriptor, 'enumerable') || descriptor.enumerable)
) {
target[key] = descriptor.value;
return target;
} return nativeDefineProperty(target, key, descriptor);
};
if (DESCRIPTORS) {
if (!NATIVE_ARRAY_BUFFER_VIEWS) {
getOwnPropertyDescriptorModule.f = wrappedGetOwnPropertyDescriptor;
definePropertyModule.f = wrappedDefineProperty;
addGetter(TypedArrayPrototype, 'buffer');
addGetter(TypedArrayPrototype, 'byteOffset');
addGetter(TypedArrayPrototype, 'byteLength');
addGetter(TypedArrayPrototype, 'length');
}
$({ target: 'Object', stat: true, forced: !NATIVE_ARRAY_BUFFER_VIEWS }, {
getOwnPropertyDescriptor: wrappedGetOwnPropertyDescriptor,
defineProperty: wrappedDefineProperty
});
module.exports = function (TYPE, wrapper, CLAMPED) {
var BYTES = TYPE.match(/\d+$/)[0] / 8;
var CONSTRUCTOR_NAME = TYPE + (CLAMPED ? 'Clamped' : '') + 'Array';
var GETTER = 'get' + TYPE;
var SETTER = 'set' + TYPE;
var NativeTypedArrayConstructor = global[CONSTRUCTOR_NAME];
var TypedArrayConstructor = NativeTypedArrayConstructor;
var TypedArrayConstructorPrototype = TypedArrayConstructor && TypedArrayConstructor.prototype;
var exported = {};
var getter = function (that, index) {
var data = getInternalState(that);
return data.view[GETTER](index * BYTES + data.byteOffset, true);
};
var setter = function (that, index, value) {
var data = getInternalState(that);
if (CLAMPED) value = (value = round(value)) < 0 ? 0 : value > 0xFF ? 0xFF : value & 0xFF;
data.view[SETTER](index * BYTES + data.byteOffset, value, true);
};
var addElement = function (that, index) {
nativeDefineProperty(that, index, {
get: function () {
return getter(this, index);
},
set: function (value) {
return setter(this, index, value);
},
enumerable: true
});
};
if (!NATIVE_ARRAY_BUFFER_VIEWS) {
TypedArrayConstructor = wrapper(function (that, data, offset, $length) {
anInstance(that, TypedArrayConstructor, CONSTRUCTOR_NAME);
var index = 0;
var byteOffset = 0;
var buffer, byteLength, length;
if (!isObject(data)) {
length = toIndex(data);
byteLength = length * BYTES;
buffer = new ArrayBuffer(byteLength);
} else if (isArrayBuffer(data)) {
buffer = data;
byteOffset = toOffset(offset, BYTES);
var $len = data.byteLength;
if ($length === undefined) {
if ($len % BYTES) throw RangeError(WRONG_LENGTH);
byteLength = $len - byteOffset;
if (byteLength < 0) throw RangeError(WRONG_LENGTH);
} else {
byteLength = toLength($length) * BYTES;
if (byteLength + byteOffset > $len) throw RangeError(WRONG_LENGTH);
}
length = byteLength / BYTES;
} else if (isTypedArray(data)) {
return fromList(TypedArrayConstructor, data);
} else {
return typedArrayFrom.call(TypedArrayConstructor, data);
}
setInternalState(that, {
buffer: buffer,
byteOffset: byteOffset,
byteLength: byteLength,
length: length,
view: new DataView(buffer)
});
while (index < length) addElement(that, index++);
});
if (setPrototypeOf) setPrototypeOf(TypedArrayConstructor, TypedArray);
TypedArrayConstructorPrototype = TypedArrayConstructor.prototype = create(TypedArrayPrototype);
} else if (TYPED_ARRAYS_CONSTRUCTORS_REQUIRES_WRAPPERS) {
TypedArrayConstructor = wrapper(function (dummy, data, typedArrayOffset, $length) {
anInstance(dummy, TypedArrayConstructor, CONSTRUCTOR_NAME);
return inheritIfRequired(function () {
if (!isObject(data)) return new NativeTypedArrayConstructor(toIndex(data));
if (isArrayBuffer(data)) return $length !== undefined
? new NativeTypedArrayConstructor(data, toOffset(typedArrayOffset, BYTES), $length)
: typedArrayOffset !== undefined
? new NativeTypedArrayConstructor(data, toOffset(typedArrayOffset, BYTES))
: new NativeTypedArrayConstructor(data);
if (isTypedArray(data)) return fromList(TypedArrayConstructor, data);
return typedArrayFrom.call(TypedArrayConstructor, data);
}(), dummy, TypedArrayConstructor);
});
if (setPrototypeOf) setPrototypeOf(TypedArrayConstructor, TypedArray);
forEach(getOwnPropertyNames(NativeTypedArrayConstructor), function (key) {
if (!(key in TypedArrayConstructor)) {
createNonEnumerableProperty(TypedArrayConstructor, key, NativeTypedArrayConstructor[key]);
}
});
TypedArrayConstructor.prototype = TypedArrayConstructorPrototype;
}
if (TypedArrayConstructorPrototype.constructor !== TypedArrayConstructor) {
createNonEnumerableProperty(TypedArrayConstructorPrototype, 'constructor', TypedArrayConstructor);
}
if (TYPED_ARRAY_TAG) {
createNonEnumerableProperty(TypedArrayConstructorPrototype, TYPED_ARRAY_TAG, CONSTRUCTOR_NAME);
}
exported[CONSTRUCTOR_NAME] = TypedArrayConstructor;
$({
global: true, forced: TypedArrayConstructor != NativeTypedArrayConstructor, sham: !NATIVE_ARRAY_BUFFER_VIEWS
}, exported);
if (!(BYTES_PER_ELEMENT in TypedArrayConstructor)) {
createNonEnumerableProperty(TypedArrayConstructor, BYTES_PER_ELEMENT, BYTES);
}
if (!(BYTES_PER_ELEMENT in TypedArrayConstructorPrototype)) {
createNonEnumerableProperty(TypedArrayConstructorPrototype, BYTES_PER_ELEMENT, BYTES);
}
setSpecies(CONSTRUCTOR_NAME);
};
} else module.exports = function () { /* empty */ };
/***/ }),
/***/ "2732":
/***/ (function(module, exports) {
// `RequireObjectCoercible` abstract operation
// https://tc39.github.io/ecma262/#sec-requireobjectcoercible
module.exports = function (it) {
if (it == undefined) throw TypeError("Can't call method on " + it);
return it;
};
/***/ }),
/***/ "27b5":
/***/ (function(module, exports, __webpack_require__) {
var defineProperty = __webpack_require__("d910").f;
var has = __webpack_require__("faa8");
var wellKnownSymbol = __webpack_require__("90fb");
var TO_STRING_TAG = wellKnownSymbol('toStringTag');
module.exports = function (it, TAG, STATIC) {
if (it && !has(it = STATIC ? it : it.prototype, TO_STRING_TAG)) {
defineProperty(it, TO_STRING_TAG, { configurable: true, value: TAG });
}
};
/***/ }),
/***/ "2909":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $reduce = __webpack_require__("58d8").left;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.reduce` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.reduce
exportTypedArrayMethod('reduce', function reduce(callbackfn /* , initialValue */) {
return $reduce(aTypedArray(this), callbackfn, arguments.length, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "2a91":
/***/ (function(module, exports, __webpack_require__) {
var TO_STRING_TAG_SUPPORT = __webpack_require__("47ae");
var classofRaw = __webpack_require__("2118");
var wellKnownSymbol = __webpack_require__("90fb");
var TO_STRING_TAG = wellKnownSymbol('toStringTag');
// ES3 wrong here
var CORRECT_ARGUMENTS = classofRaw(function () { return arguments; }()) == 'Arguments';
// fallback for IE11 Script Access Denied error
var tryGet = function (it, key) {
try {
return it[key];
} catch (error) { /* empty */ }
};
// getting tag from ES6+ `Object.prototype.toString`
module.exports = TO_STRING_TAG_SUPPORT ? classofRaw : function (it) {
var O, tag, result;
return it === undefined ? 'Undefined' : it === null ? 'Null'
// @@toStringTag case
: typeof (tag = tryGet(O = Object(it), TO_STRING_TAG)) == 'string' ? tag
// builtinTag case
: CORRECT_ARGUMENTS ? classofRaw(O)
// ES3 arguments fallback
: (result = classofRaw(O)) == 'Object' && typeof O.callee == 'function' ? 'Arguments' : result;
};
/***/ }),
/***/ "2abc":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var getPrototypeOf = __webpack_require__("908e");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var has = __webpack_require__("faa8");
var wellKnownSymbol = __webpack_require__("90fb");
var IS_PURE = __webpack_require__("9b9d");
var ITERATOR = wellKnownSymbol('iterator');
var BUGGY_SAFARI_ITERATORS = false;
var returnThis = function () { return this; };
// `%IteratorPrototype%` object
// https://tc39.github.io/ecma262/#sec-%iteratorprototype%-object
var IteratorPrototype, PrototypeOfArrayIteratorPrototype, arrayIterator;
if ([].keys) {
arrayIterator = [].keys();
// Safari 8 has buggy iterators w/o `next`
if (!('next' in arrayIterator)) BUGGY_SAFARI_ITERATORS = true;
else {
PrototypeOfArrayIteratorPrototype = getPrototypeOf(getPrototypeOf(arrayIterator));
if (PrototypeOfArrayIteratorPrototype !== Object.prototype) IteratorPrototype = PrototypeOfArrayIteratorPrototype;
}
}
if (IteratorPrototype == undefined) IteratorPrototype = {};
// 25.1.2.1.1 %IteratorPrototype%[@@iterator]()
if (!IS_PURE && !has(IteratorPrototype, ITERATOR)) {
createNonEnumerableProperty(IteratorPrototype, ITERATOR, returnThis);
}
module.exports = {
IteratorPrototype: IteratorPrototype,
BUGGY_SAFARI_ITERATORS: BUGGY_SAFARI_ITERATORS
};
/***/ }),
/***/ "3553":
/***/ (function(module, exports, __webpack_require__) {
var requireObjectCoercible = __webpack_require__("2732");
// `ToObject` abstract operation
// https://tc39.github.io/ecma262/#sec-toobject
module.exports = function (argument) {
return Object(requireObjectCoercible(argument));
};
/***/ }),
/***/ "3598":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $lastIndexOf = __webpack_require__("8d7b");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.lastIndexOf` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.lastindexof
// eslint-disable-next-line no-unused-vars
exportTypedArrayMethod('lastIndexOf', function lastIndexOf(searchElement /* , fromIndex */) {
return $lastIndexOf.apply(aTypedArray(this), arguments);
});
/***/ }),
/***/ "38b9":
/***/ (function(module, exports) {
module.exports = function (bitmap, value) {
return {
enumerable: !(bitmap & 1),
configurable: !(bitmap & 2),
writable: !(bitmap & 4),
value: value
};
};
/***/ }),
/***/ "3a08":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var setGlobal = __webpack_require__("e4db");
var SHARED = '__core-js_shared__';
var store = global[SHARED] || setGlobal(SHARED, {});
module.exports = store;
/***/ }),
/***/ "3c10":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $forEach = __webpack_require__("5dfd").forEach;
var arrayMethodIsStrict = __webpack_require__("d7e1");
var arrayMethodUsesToLength = __webpack_require__("ff9c");
var STRICT_METHOD = arrayMethodIsStrict('forEach');
var USES_TO_LENGTH = arrayMethodUsesToLength('forEach');
// `Array.prototype.forEach` method implementation
// https://tc39.github.io/ecma262/#sec-array.prototype.foreach
module.exports = (!STRICT_METHOD || !USES_TO_LENGTH) ? function forEach(callbackfn /* , thisArg */) {
return $forEach(this, callbackfn, arguments.length > 1 ? arguments[1] : undefined);
} : [].forEach;
/***/ }),
/***/ "3c51":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $fill = __webpack_require__("fa41");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.fill` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.fill
// eslint-disable-next-line no-unused-vars
exportTypedArrayMethod('fill', function fill(value /* , start, end */) {
return $fill.apply(aTypedArray(this), arguments);
});
/***/ }),
/***/ "3ccd":
/***/ (function(module, exports, __webpack_require__) {
var toInteger = __webpack_require__("3da3");
var toLength = __webpack_require__("d88d");
// `ToIndex` abstract operation
// https://tc39.github.io/ecma262/#sec-toindex
module.exports = function (it) {
if (it === undefined) return 0;
var number = toInteger(it);
var length = toLength(number);
if (number !== length) throw RangeError('Wrong length or index');
return length;
};
/***/ }),
/***/ "3da3":
/***/ (function(module, exports) {
var ceil = Math.ceil;
var floor = Math.floor;
// `ToInteger` abstract operation
// https://tc39.github.io/ecma262/#sec-tointeger
module.exports = function (argument) {
return isNaN(argument = +argument) ? 0 : (argument > 0 ? floor : ceil)(argument);
};
/***/ }),
/***/ "3e54":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var fails = __webpack_require__("efe2");
var ArrayBufferModule = __webpack_require__("1c2e");
var anObject = __webpack_require__("857c");
var toAbsoluteIndex = __webpack_require__("e1d6");
var toLength = __webpack_require__("d88d");
var speciesConstructor = __webpack_require__("ef4c");
var ArrayBuffer = ArrayBufferModule.ArrayBuffer;
var DataView = ArrayBufferModule.DataView;
var nativeArrayBufferSlice = ArrayBuffer.prototype.slice;
var INCORRECT_SLICE = fails(function () {
return !new ArrayBuffer(2).slice(1, undefined).byteLength;
});
// `ArrayBuffer.prototype.slice` method
// https://tc39.github.io/ecma262/#sec-arraybuffer.prototype.slice
$({ target: 'ArrayBuffer', proto: true, unsafe: true, forced: INCORRECT_SLICE }, {
slice: function slice(start, end) {
if (nativeArrayBufferSlice !== undefined && end === undefined) {
return nativeArrayBufferSlice.call(anObject(this), start); // FF fix
}
var length = anObject(this).byteLength;
var first = toAbsoluteIndex(start, length);
var fin = toAbsoluteIndex(end === undefined ? length : end, length);
var result = new (speciesConstructor(this, ArrayBuffer))(toLength(fin - first));
var viewSource = new DataView(this);
var viewTarget = new DataView(result);
var index = 0;
while (first < fin) {
viewTarget.setUint8(index++, viewSource.getUint8(first++));
} return result;
}
});
/***/ }),
/***/ "403f":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var getBuiltIn = __webpack_require__("6d7a");
var definePropertyModule = __webpack_require__("d910");
var wellKnownSymbol = __webpack_require__("90fb");
var DESCRIPTORS = __webpack_require__("1e2c");
var SPECIES = wellKnownSymbol('species');
module.exports = function (CONSTRUCTOR_NAME) {
var Constructor = getBuiltIn(CONSTRUCTOR_NAME);
var defineProperty = definePropertyModule.f;
if (DESCRIPTORS && Constructor && !Constructor[SPECIES]) {
defineProperty(Constructor, SPECIES, {
configurable: true,
get: function () { return this; }
});
}
};
/***/ }),
/***/ "4140":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var speciesConstructor = __webpack_require__("ef4c");
var fails = __webpack_require__("efe2");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var aTypedArrayConstructor = ArrayBufferViewCore.aTypedArrayConstructor;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var $slice = [].slice;
var FORCED = fails(function () {
// eslint-disable-next-line no-undef
new Int8Array(1).slice();
});
// `%TypedArray%.prototype.slice` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.slice
exportTypedArrayMethod('slice', function slice(start, end) {
var list = $slice.call(aTypedArray(this), start, end);
var C = speciesConstructor(this, this.constructor);
var index = 0;
var length = list.length;
var result = new (aTypedArrayConstructor(C))(length);
while (length > index) result[index] = list[index++];
return result;
}, FORCED);
/***/ }),
/***/ "4350":
/***/ (function(module, exports, __webpack_require__) {
var wellKnownSymbol = __webpack_require__("90fb");
exports.f = wellKnownSymbol;
/***/ }),
/***/ "45af":
/***/ (function(module, exports, __webpack_require__) {
var toIndexedObject = __webpack_require__("da10");
var toLength = __webpack_require__("d88d");
var toAbsoluteIndex = __webpack_require__("e1d6");
// `Array.prototype.{ indexOf, includes }` methods implementation
var createMethod = function (IS_INCLUDES) {
return function ($this, el, fromIndex) {
var O = toIndexedObject($this);
var length = toLength(O.length);
var index = toAbsoluteIndex(fromIndex, length);
var value;
// Array#includes uses SameValueZero equality algorithm
// eslint-disable-next-line no-self-compare
if (IS_INCLUDES && el != el) while (length > index) {
value = O[index++];
// eslint-disable-next-line no-self-compare
if (value != value) return true;
// Array#indexOf ignores holes, Array#includes - not
} else for (;length > index; index++) {
if ((IS_INCLUDES || index in O) && O[index] === el) return IS_INCLUDES || index || 0;
} return !IS_INCLUDES && -1;
};
};
module.exports = {
// `Array.prototype.includes` method
// https://tc39.github.io/ecma262/#sec-array.prototype.includes
includes: createMethod(true),
// `Array.prototype.indexOf` method
// https://tc39.github.io/ecma262/#sec-array.prototype.indexof
indexOf: createMethod(false)
};
/***/ }),
/***/ "47ae":
/***/ (function(module, exports, __webpack_require__) {
var wellKnownSymbol = __webpack_require__("90fb");
var TO_STRING_TAG = wellKnownSymbol('toStringTag');
var test = {};
test[TO_STRING_TAG] = 'z';
module.exports = String(test) === '[object z]';
/***/ }),
/***/ "4fda":
/***/ (function(module, exports, __webpack_require__) {
var getBuiltIn = __webpack_require__("6d7a");
module.exports = getBuiltIn('navigator', 'userAgent') || '';
/***/ }),
/***/ "50fb":
/***/ (function(module, exports, __webpack_require__) {
var anObject = __webpack_require__("857c");
var aPossiblePrototype = __webpack_require__("d1fd");
// `Object.setPrototypeOf` method
// https://tc39.github.io/ecma262/#sec-object.setprototypeof
// Works with __proto__ only. Old v8 can't work with null proto objects.
/* eslint-disable no-proto */
module.exports = Object.setPrototypeOf || ('__proto__' in {} ? function () {
var CORRECT_SETTER = false;
var test = {};
var setter;
try {
setter = Object.getOwnPropertyDescriptor(Object.prototype, '__proto__').set;
setter.call(test, []);
CORRECT_SETTER = test instanceof Array;
} catch (error) { /* empty */ }
return function setPrototypeOf(O, proto) {
anObject(O);
aPossiblePrototype(proto);
if (CORRECT_SETTER) setter.call(O, proto);
else O.__proto__ = proto;
return O;
};
}() : undefined);
/***/ }),
/***/ "5139":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var regexpFlags = __webpack_require__("99ad");
var stickyHelpers = __webpack_require__("22ef");
var nativeExec = RegExp.prototype.exec;
// This always refers to the native implementation, because the
// String#replace polyfill uses ./fix-regexp-well-known-symbol-logic.js,
// which loads this file before patching the method.
var nativeReplace = String.prototype.replace;
var patchedExec = nativeExec;
var UPDATES_LAST_INDEX_WRONG = (function () {
var re1 = /a/;
var re2 = /b*/g;
nativeExec.call(re1, 'a');
nativeExec.call(re2, 'a');
return re1.lastIndex !== 0 || re2.lastIndex !== 0;
})();
var UNSUPPORTED_Y = stickyHelpers.UNSUPPORTED_Y || stickyHelpers.BROKEN_CARET;
// nonparticipating capturing group, copied from es5-shim's String#split patch.
var NPCG_INCLUDED = /()??/.exec('')[1] !== undefined;
var PATCH = UPDATES_LAST_INDEX_WRONG || NPCG_INCLUDED || UNSUPPORTED_Y;
if (PATCH) {
patchedExec = function exec(str) {
var re = this;
var lastIndex, reCopy, match, i;
var sticky = UNSUPPORTED_Y && re.sticky;
var flags = regexpFlags.call(re);
var source = re.source;
var charsAdded = 0;
var strCopy = str;
if (sticky) {
flags = flags.replace('y', '');
if (flags.indexOf('g') === -1) {
flags += 'g';
}
strCopy = String(str).slice(re.lastIndex);
// Support anchored sticky behavior.
if (re.lastIndex > 0 && (!re.multiline || re.multiline && str[re.lastIndex - 1] !== '\n')) {
source = '(?: ' + source + ')';
strCopy = ' ' + strCopy;
charsAdded++;
}
// ^(? + rx + ) is needed, in combination with some str slicing, to
// simulate the 'y' flag.
reCopy = new RegExp('^(?:' + source + ')', flags);
}
if (NPCG_INCLUDED) {
reCopy = new RegExp('^' + source + '$(?!\\s)', flags);
}
if (UPDATES_LAST_INDEX_WRONG) lastIndex = re.lastIndex;
match = nativeExec.call(sticky ? reCopy : re, strCopy);
if (sticky) {
if (match) {
match.input = match.input.slice(charsAdded);
match[0] = match[0].slice(charsAdded);
match.index = re.lastIndex;
re.lastIndex += match[0].length;
} else re.lastIndex = 0;
} else if (UPDATES_LAST_INDEX_WRONG && match) {
re.lastIndex = re.global ? match.index + match[0].length : lastIndex;
}
if (NPCG_INCLUDED && match && match.length > 1) {
// Fix browsers whose `exec` methods don't consistently return `undefined`
// for NPCG, like IE8. NOTE: This doesn' work for /(.?)?/
nativeReplace.call(match[0], reCopy, function () {
for (i = 1; i < arguments.length - 2; i++) {
if (arguments[i] === undefined) match[i] = undefined;
}
});
}
return match;
};
}
module.exports = patchedExec;
/***/ }),
/***/ "513c":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var DESCRIPTORS = __webpack_require__("1e2c");
var global = __webpack_require__("d890");
var isForced = __webpack_require__("e8d6");
var redefine = __webpack_require__("1944");
var has = __webpack_require__("faa8");
var classof = __webpack_require__("2118");
var inheritIfRequired = __webpack_require__("7063");
var toPrimitive = __webpack_require__("9f67");
var fails = __webpack_require__("efe2");
var create = __webpack_require__("6d60");
var getOwnPropertyNames = __webpack_require__("b338").f;
var getOwnPropertyDescriptor = __webpack_require__("aa6b").f;
var defineProperty = __webpack_require__("d910").f;
var trim = __webpack_require__("c10f").trim;
var NUMBER = 'Number';
var NativeNumber = global[NUMBER];
var NumberPrototype = NativeNumber.prototype;
// Opera ~12 has broken Object#toString
var BROKEN_CLASSOF = classof(create(NumberPrototype)) == NUMBER;
// `ToNumber` abstract operation
// https://tc39.github.io/ecma262/#sec-tonumber
var toNumber = function (argument) {
var it = toPrimitive(argument, false);
var first, third, radix, maxCode, digits, length, index, code;
if (typeof it == 'string' && it.length > 2) {
it = trim(it);
first = it.charCodeAt(0);
if (first === 43 || first === 45) {
third = it.charCodeAt(2);
if (third === 88 || third === 120) return NaN; // Number('+0x1') should be NaN, old V8 fix
} else if (first === 48) {
switch (it.charCodeAt(1)) {
case 66: case 98: radix = 2; maxCode = 49; break; // fast equal of /^0b[01]+$/i
case 79: case 111: radix = 8; maxCode = 55; break; // fast equal of /^0o[0-7]+$/i
default: return +it;
}
digits = it.slice(2);
length = digits.length;
for (index = 0; index < length; index++) {
code = digits.charCodeAt(index);
// parseInt parses a string to a first unavailable symbol
// but ToNumber should return NaN if a string contains unavailable symbols
if (code < 48 || code > maxCode) return NaN;
} return parseInt(digits, radix);
}
} return +it;
};
// `Number` constructor
// https://tc39.github.io/ecma262/#sec-number-constructor
if (isForced(NUMBER, !NativeNumber(' 0o1') || !NativeNumber('0b1') || NativeNumber('+0x1'))) {
var NumberWrapper = function Number(value) {
var it = arguments.length < 1 ? 0 : value;
var dummy = this;
return dummy instanceof NumberWrapper
// check on 1..constructor(foo) case
&& (BROKEN_CLASSOF ? fails(function () { NumberPrototype.valueOf.call(dummy); }) : classof(dummy) != NUMBER)
? inheritIfRequired(new NativeNumber(toNumber(it)), dummy, NumberWrapper) : toNumber(it);
};
for (var keys = DESCRIPTORS ? getOwnPropertyNames(NativeNumber) : (
// ES3:
'MAX_VALUE,MIN_VALUE,NaN,NEGATIVE_INFINITY,POSITIVE_INFINITY,' +
// ES2015 (in case, if modules with ES2015 Number statics required before):
'EPSILON,isFinite,isInteger,isNaN,isSafeInteger,MAX_SAFE_INTEGER,' +
'MIN_SAFE_INTEGER,parseFloat,parseInt,isInteger'
).split(','), j = 0, key; keys.length > j; j++) {
if (has(NativeNumber, key = keys[j]) && !has(NumberWrapper, key)) {
defineProperty(NumberWrapper, key, getOwnPropertyDescriptor(NativeNumber, key));
}
}
NumberWrapper.prototype = NumberPrototype;
NumberPrototype.constructor = NumberWrapper;
redefine(global, NUMBER, NumberWrapper);
}
/***/ }),
/***/ "52f9":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var TO_STRING_TAG_SUPPORT = __webpack_require__("47ae");
var classof = __webpack_require__("2a91");
// `Object.prototype.toString` method implementation
// https://tc39.github.io/ecma262/#sec-object.prototype.tostring
module.exports = TO_STRING_TAG_SUPPORT ? {}.toString : function toString() {
return '[object ' + classof(this) + ']';
};
/***/ }),
/***/ "58d8":
/***/ (function(module, exports, __webpack_require__) {
var aFunction = __webpack_require__("0c3c");
var toObject = __webpack_require__("3553");
var IndexedObject = __webpack_require__("692f");
var toLength = __webpack_require__("d88d");
// `Array.prototype.{ reduce, reduceRight }` methods implementation
var createMethod = function (IS_RIGHT) {
return function (that, callbackfn, argumentsLength, memo) {
aFunction(callbackfn);
var O = toObject(that);
var self = IndexedObject(O);
var length = toLength(O.length);
var index = IS_RIGHT ? length - 1 : 0;
var i = IS_RIGHT ? -1 : 1;
if (argumentsLength < 2) while (true) {
if (index in self) {
memo = self[index];
index += i;
break;
}
index += i;
if (IS_RIGHT ? index < 0 : length <= index) {
throw TypeError('Reduce of empty array with no initial value');
}
}
for (;IS_RIGHT ? index >= 0 : length > index; index += i) if (index in self) {
memo = callbackfn(memo, self[index], index, O);
}
return memo;
};
};
module.exports = {
// `Array.prototype.reduce` method
// https://tc39.github.io/ecma262/#sec-array.prototype.reduce
left: createMethod(false),
// `Array.prototype.reduceRight` method
// https://tc39.github.io/ecma262/#sec-array.prototype.reduceright
right: createMethod(true)
};
/***/ }),
/***/ "5a9e":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var NATIVE_ARRAY_BUFFER = __webpack_require__("d77f");
var DESCRIPTORS = __webpack_require__("1e2c");
var global = __webpack_require__("d890");
var isObject = __webpack_require__("a719");
var has = __webpack_require__("faa8");
var classof = __webpack_require__("2a91");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var redefine = __webpack_require__("1944");
var defineProperty = __webpack_require__("d910").f;
var getPrototypeOf = __webpack_require__("908e");
var setPrototypeOf = __webpack_require__("50fb");
var wellKnownSymbol = __webpack_require__("90fb");
var uid = __webpack_require__("7e8b");
var Int8Array = global.Int8Array;
var Int8ArrayPrototype = Int8Array && Int8Array.prototype;
var Uint8ClampedArray = global.Uint8ClampedArray;
var Uint8ClampedArrayPrototype = Uint8ClampedArray && Uint8ClampedArray.prototype;
var TypedArray = Int8Array && getPrototypeOf(Int8Array);
var TypedArrayPrototype = Int8ArrayPrototype && getPrototypeOf(Int8ArrayPrototype);
var ObjectPrototype = Object.prototype;
var isPrototypeOf = ObjectPrototype.isPrototypeOf;
var TO_STRING_TAG = wellKnownSymbol('toStringTag');
var TYPED_ARRAY_TAG = uid('TYPED_ARRAY_TAG');
// Fixing native typed arrays in Opera Presto crashes the browser, see #595
var NATIVE_ARRAY_BUFFER_VIEWS = NATIVE_ARRAY_BUFFER && !!setPrototypeOf && classof(global.opera) !== 'Opera';
var TYPED_ARRAY_TAG_REQIRED = false;
var NAME;
var TypedArrayConstructorsList = {
Int8Array: 1,
Uint8Array: 1,
Uint8ClampedArray: 1,
Int16Array: 2,
Uint16Array: 2,
Int32Array: 4,
Uint32Array: 4,
Float32Array: 4,
Float64Array: 8
};
var isView = function isView(it) {
var klass = classof(it);
return klass === 'DataView' || has(TypedArrayConstructorsList, klass);
};
var isTypedArray = function (it) {
return isObject(it) && has(TypedArrayConstructorsList, classof(it));
};
var aTypedArray = function (it) {
if (isTypedArray(it)) return it;
throw TypeError('Target is not a typed array');
};
var aTypedArrayConstructor = function (C) {
if (setPrototypeOf) {
if (isPrototypeOf.call(TypedArray, C)) return C;
} else for (var ARRAY in TypedArrayConstructorsList) if (has(TypedArrayConstructorsList, NAME)) {
var TypedArrayConstructor = global[ARRAY];
if (TypedArrayConstructor && (C === TypedArrayConstructor || isPrototypeOf.call(TypedArrayConstructor, C))) {
return C;
}
} throw TypeError('Target is not a typed array constructor');
};
var exportTypedArrayMethod = function (KEY, property, forced) {
if (!DESCRIPTORS) return;
if (forced) for (var ARRAY in TypedArrayConstructorsList) {
var TypedArrayConstructor = global[ARRAY];
if (TypedArrayConstructor && has(TypedArrayConstructor.prototype, KEY)) {
delete TypedArrayConstructor.prototype[KEY];
}
}
if (!TypedArrayPrototype[KEY] || forced) {
redefine(TypedArrayPrototype, KEY, forced ? property
: NATIVE_ARRAY_BUFFER_VIEWS && Int8ArrayPrototype[KEY] || property);
}
};
var exportTypedArrayStaticMethod = function (KEY, property, forced) {
var ARRAY, TypedArrayConstructor;
if (!DESCRIPTORS) return;
if (setPrototypeOf) {
if (forced) for (ARRAY in TypedArrayConstructorsList) {
TypedArrayConstructor = global[ARRAY];
if (TypedArrayConstructor && has(TypedArrayConstructor, KEY)) {
delete TypedArrayConstructor[KEY];
}
}
if (!TypedArray[KEY] || forced) {
// V8 ~ Chrome 49-50 `%TypedArray%` methods are non-writable non-configurable
try {
return redefine(TypedArray, KEY, forced ? property : NATIVE_ARRAY_BUFFER_VIEWS && Int8Array[KEY] || property);
} catch (error) { /* empty */ }
} else return;
}
for (ARRAY in TypedArrayConstructorsList) {
TypedArrayConstructor = global[ARRAY];
if (TypedArrayConstructor && (!TypedArrayConstructor[KEY] || forced)) {
redefine(TypedArrayConstructor, KEY, property);
}
}
};
for (NAME in TypedArrayConstructorsList) {
if (!global[NAME]) NATIVE_ARRAY_BUFFER_VIEWS = false;
}
// WebKit bug - typed arrays constructors prototype is Object.prototype
if (!NATIVE_ARRAY_BUFFER_VIEWS || typeof TypedArray != 'function' || TypedArray === Function.prototype) {
// eslint-disable-next-line no-shadow
TypedArray = function TypedArray() {
throw TypeError('Incorrect invocation');
};
if (NATIVE_ARRAY_BUFFER_VIEWS) for (NAME in TypedArrayConstructorsList) {
if (global[NAME]) setPrototypeOf(global[NAME], TypedArray);
}
}
if (!NATIVE_ARRAY_BUFFER_VIEWS || !TypedArrayPrototype || TypedArrayPrototype === ObjectPrototype) {
TypedArrayPrototype = TypedArray.prototype;
if (NATIVE_ARRAY_BUFFER_VIEWS) for (NAME in TypedArrayConstructorsList) {
if (global[NAME]) setPrototypeOf(global[NAME].prototype, TypedArrayPrototype);
}
}
// WebKit bug - one more object in Uint8ClampedArray prototype chain
if (NATIVE_ARRAY_BUFFER_VIEWS && getPrototypeOf(Uint8ClampedArrayPrototype) !== TypedArrayPrototype) {
setPrototypeOf(Uint8ClampedArrayPrototype, TypedArrayPrototype);
}
if (DESCRIPTORS && !has(TypedArrayPrototype, TO_STRING_TAG)) {
TYPED_ARRAY_TAG_REQIRED = true;
defineProperty(TypedArrayPrototype, TO_STRING_TAG, { get: function () {
return isObject(this) ? this[TYPED_ARRAY_TAG] : undefined;
} });
for (NAME in TypedArrayConstructorsList) if (global[NAME]) {
createNonEnumerableProperty(global[NAME], TYPED_ARRAY_TAG, NAME);
}
}
module.exports = {
NATIVE_ARRAY_BUFFER_VIEWS: NATIVE_ARRAY_BUFFER_VIEWS,
TYPED_ARRAY_TAG: TYPED_ARRAY_TAG_REQIRED && TYPED_ARRAY_TAG,
aTypedArray: aTypedArray,
aTypedArrayConstructor: aTypedArrayConstructor,
exportTypedArrayMethod: exportTypedArrayMethod,
exportTypedArrayStaticMethod: exportTypedArrayStaticMethod,
isView: isView,
isTypedArray: isTypedArray,
TypedArray: TypedArray,
TypedArrayPrototype: TypedArrayPrototype
};
/***/ }),
/***/ "5dfd":
/***/ (function(module, exports, __webpack_require__) {
var bind = __webpack_require__("e349");
var IndexedObject = __webpack_require__("692f");
var toObject = __webpack_require__("3553");
var toLength = __webpack_require__("d88d");
var arraySpeciesCreate = __webpack_require__("1ca1");
var push = [].push;
// `Array.prototype.{ forEach, map, filter, some, every, find, findIndex }` methods implementation
var createMethod = function (TYPE) {
var IS_MAP = TYPE == 1;
var IS_FILTER = TYPE == 2;
var IS_SOME = TYPE == 3;
var IS_EVERY = TYPE == 4;
var IS_FIND_INDEX = TYPE == 6;
var NO_HOLES = TYPE == 5 || IS_FIND_INDEX;
return function ($this, callbackfn, that, specificCreate) {
var O = toObject($this);
var self = IndexedObject(O);
var boundFunction = bind(callbackfn, that, 3);
var length = toLength(self.length);
var index = 0;
var create = specificCreate || arraySpeciesCreate;
var target = IS_MAP ? create($this, length) : IS_FILTER ? create($this, 0) : undefined;
var value, result;
for (;length > index; index++) if (NO_HOLES || index in self) {
value = self[index];
result = boundFunction(value, index, O);
if (TYPE) {
if (IS_MAP) target[index] = result; // map
else if (result) switch (TYPE) {
case 3: return true; // some
case 5: return value; // find
case 6: return index; // findIndex
case 2: push.call(target, value); // filter
} else if (IS_EVERY) return false; // every
}
}
return IS_FIND_INDEX ? -1 : IS_SOME || IS_EVERY ? IS_EVERY : target;
};
};
module.exports = {
// `Array.prototype.forEach` method
// https://tc39.github.io/ecma262/#sec-array.prototype.foreach
forEach: createMethod(0),
// `Array.prototype.map` method
// https://tc39.github.io/ecma262/#sec-array.prototype.map
map: createMethod(1),
// `Array.prototype.filter` method
// https://tc39.github.io/ecma262/#sec-array.prototype.filter
filter: createMethod(2),
// `Array.prototype.some` method
// https://tc39.github.io/ecma262/#sec-array.prototype.some
some: createMethod(3),
// `Array.prototype.every` method
// https://tc39.github.io/ecma262/#sec-array.prototype.every
every: createMethod(4),
// `Array.prototype.find` method
// https://tc39.github.io/ecma262/#sec-array.prototype.find
find: createMethod(5),
// `Array.prototype.findIndex` method
// https://tc39.github.io/ecma262/#sec-array.prototype.findIndex
findIndex: createMethod(6)
};
/***/ }),
/***/ "604f":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var inspectSource = __webpack_require__("1025");
var WeakMap = global.WeakMap;
module.exports = typeof WeakMap === 'function' && /native code/.test(inspectSource(WeakMap));
/***/ }),
/***/ "6176":
/***/ (function(module, exports, __webpack_require__) {
var toInteger = __webpack_require__("3da3");
module.exports = function (it) {
var result = toInteger(it);
if (result < 0) throw RangeError("The argument can't be less than 0");
return result;
};
/***/ }),
/***/ "692f":
/***/ (function(module, exports, __webpack_require__) {
var fails = __webpack_require__("efe2");
var classof = __webpack_require__("2118");
var split = ''.split;
// fallback for non-array-like ES3 and non-enumerable old V8 strings
module.exports = fails(function () {
// throws an error in rhino, see https://github.com/mozilla/rhino/issues/346
// eslint-disable-next-line no-prototype-builtins
return !Object('z').propertyIsEnumerable(0);
}) ? function (it) {
return classof(it) == 'String' ? split.call(it, '') : Object(it);
} : Object;
/***/ }),
/***/ "69c5":
/***/ (function(module, exports, __webpack_require__) {
var anObject = __webpack_require__("857c");
// call something on iterator step with safe closing on error
module.exports = function (iterator, fn, value, ENTRIES) {
try {
return ENTRIES ? fn(anObject(value)[0], value[1]) : fn(value);
// 7.4.6 IteratorClose(iterator, completion)
} catch (error) {
var returnMethod = iterator['return'];
if (returnMethod !== undefined) anObject(returnMethod.call(iterator));
throw error;
}
};
/***/ }),
/***/ "69fa":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var IteratorPrototype = __webpack_require__("2abc").IteratorPrototype;
var create = __webpack_require__("6d60");
var createPropertyDescriptor = __webpack_require__("38b9");
var setToStringTag = __webpack_require__("27b5");
var Iterators = __webpack_require__("9806");
var returnThis = function () { return this; };
module.exports = function (IteratorConstructor, NAME, next) {
var TO_STRING_TAG = NAME + ' Iterator';
IteratorConstructor.prototype = create(IteratorPrototype, { next: createPropertyDescriptor(1, next) });
setToStringTag(IteratorConstructor, TO_STRING_TAG, false, true);
Iterators[TO_STRING_TAG] = returnThis;
return IteratorConstructor;
};
/***/ }),
/***/ "6d28":
/***/ (function(module, exports, __webpack_require__) {
var IS_PURE = __webpack_require__("9b9d");
var store = __webpack_require__("3a08");
(module.exports = function (key, value) {
return store[key] || (store[key] = value !== undefined ? value : {});
})('versions', []).push({
version: '3.6.5',
mode: IS_PURE ? 'pure' : 'global',
copyright: '© 2020 Denis Pushkarev (zloirock.ru)'
});
/***/ }),
/***/ "6d51":
/***/ (function(module, exports, __webpack_require__) {
var path = __webpack_require__("1b99");
var has = __webpack_require__("faa8");
var wrappedWellKnownSymbolModule = __webpack_require__("4350");
var defineProperty = __webpack_require__("d910").f;
module.exports = function (NAME) {
var Symbol = path.Symbol || (path.Symbol = {});
if (!has(Symbol, NAME)) defineProperty(Symbol, NAME, {
value: wrappedWellKnownSymbolModule.f(NAME)
});
};
/***/ }),
/***/ "6d60":
/***/ (function(module, exports, __webpack_require__) {
var anObject = __webpack_require__("857c");
var defineProperties = __webpack_require__("dbe8");
var enumBugKeys = __webpack_require__("18f6");
var hiddenKeys = __webpack_require__("d5a8");
var html = __webpack_require__("6fdf");
var documentCreateElement = __webpack_require__("ae25");
var sharedKey = __webpack_require__("7db2");
var GT = '>';
var LT = '<';
var PROTOTYPE = 'prototype';
var SCRIPT = 'script';
var IE_PROTO = sharedKey('IE_PROTO');
var EmptyConstructor = function () { /* empty */ };
var scriptTag = function (content) {
return LT + SCRIPT + GT + content + LT + '/' + SCRIPT + GT;
};
// Create object with fake `null` prototype: use ActiveX Object with cleared prototype
var NullProtoObjectViaActiveX = function (activeXDocument) {
activeXDocument.write(scriptTag(''));
activeXDocument.close();
var temp = activeXDocument.parentWindow.Object;
activeXDocument = null; // avoid memory leak
return temp;
};
// Create object with fake `null` prototype: use iframe Object with cleared prototype
var NullProtoObjectViaIFrame = function () {
// Thrash, waste and sodomy: IE GC bug
var iframe = documentCreateElement('iframe');
var JS = 'java' + SCRIPT + ':';
var iframeDocument;
iframe.style.display = 'none';
html.appendChild(iframe);
// https://github.com/zloirock/core-js/issues/475
iframe.src = String(JS);
iframeDocument = iframe.contentWindow.document;
iframeDocument.open();
iframeDocument.write(scriptTag('document.F=Object'));
iframeDocument.close();
return iframeDocument.F;
};
// Check for document.domain and active x support
// No need to use active x approach when document.domain is not set
// see https://github.com/es-shims/es5-shim/issues/150
// variation of https://github.com/kitcambridge/es5-shim/commit/4f738ac066346
// avoid IE GC bug
var activeXDocument;
var NullProtoObject = function () {
try {
/* global ActiveXObject */
activeXDocument = document.domain && new ActiveXObject('htmlfile');
} catch (error) { /* ignore */ }
NullProtoObject = activeXDocument ? NullProtoObjectViaActiveX(activeXDocument) : NullProtoObjectViaIFrame();
var length = enumBugKeys.length;
while (length--) delete NullProtoObject[PROTOTYPE][enumBugKeys[length]];
return NullProtoObject();
};
hiddenKeys[IE_PROTO] = true;
// `Object.create` method
// https://tc39.github.io/ecma262/#sec-object.create
module.exports = Object.create || function create(O, Properties) {
var result;
if (O !== null) {
EmptyConstructor[PROTOTYPE] = anObject(O);
result = new EmptyConstructor();
EmptyConstructor[PROTOTYPE] = null;
// add "__proto__" for Object.getPrototypeOf polyfill
result[IE_PROTO] = O;
} else result = NullProtoObject();
return Properties === undefined ? result : defineProperties(result, Properties);
};
/***/ }),
/***/ "6d7a":
/***/ (function(module, exports, __webpack_require__) {
var path = __webpack_require__("1b99");
var global = __webpack_require__("d890");
var aFunction = function (variable) {
return typeof variable == 'function' ? variable : undefined;
};
module.exports = function (namespace, method) {
return arguments.length < 2 ? aFunction(path[namespace]) || aFunction(global[namespace])
: path[namespace] && path[namespace][method] || global[namespace] && global[namespace][method];
};
/***/ }),
/***/ "6f82":
/***/ (function(module, exports, __webpack_require__) {
var toObject = __webpack_require__("3553");
var toLength = __webpack_require__("d88d");
var getIteratorMethod = __webpack_require__("b60f");
var isArrayIteratorMethod = __webpack_require__("98a9");
var bind = __webpack_require__("e349");
var aTypedArrayConstructor = __webpack_require__("5a9e").aTypedArrayConstructor;
module.exports = function from(source /* , mapfn, thisArg */) {
var O = toObject(source);
var argumentsLength = arguments.length;
var mapfn = argumentsLength > 1 ? arguments[1] : undefined;
var mapping = mapfn !== undefined;
var iteratorMethod = getIteratorMethod(O);
var i, length, result, step, iterator, next;
if (iteratorMethod != undefined && !isArrayIteratorMethod(iteratorMethod)) {
iterator = iteratorMethod.call(O);
next = iterator.next;
O = [];
while (!(step = next.call(iterator)).done) {
O.push(step.value);
}
}
if (mapping && argumentsLength > 2) {
mapfn = bind(mapfn, arguments[2], 2);
}
length = toLength(O.length);
result = new (aTypedArrayConstructor(this))(length);
for (i = 0; length > i; i++) {
result[i] = mapping ? mapfn(O[i], i) : O[i];
}
return result;
};
/***/ }),
/***/ "6fdf":
/***/ (function(module, exports, __webpack_require__) {
var getBuiltIn = __webpack_require__("6d7a");
module.exports = getBuiltIn('document', 'documentElement');
/***/ }),
/***/ "7063":
/***/ (function(module, exports, __webpack_require__) {
var isObject = __webpack_require__("a719");
var setPrototypeOf = __webpack_require__("50fb");
// makes subclassing work correct for wrapped built-ins
module.exports = function ($this, dummy, Wrapper) {
var NewTarget, NewTargetPrototype;
if (
// it can work only with native `setPrototypeOf`
setPrototypeOf &&
// we haven't completely correct pre-ES6 way for getting `new.target`, so use this
typeof (NewTarget = dummy.constructor) == 'function' &&
NewTarget !== Wrapper &&
isObject(NewTargetPrototype = NewTarget.prototype) &&
NewTargetPrototype !== Wrapper.prototype
) setPrototypeOf($this, NewTargetPrototype);
return $this;
};
/***/ }),
/***/ "74cb":
/***/ (function(module, exports, __webpack_require__) {
var NATIVE_SYMBOL = __webpack_require__("c54b");
module.exports = NATIVE_SYMBOL
// eslint-disable-next-line no-undef
&& !Symbol.sham
// eslint-disable-next-line no-undef
&& typeof Symbol.iterator == 'symbol';
/***/ }),
/***/ "74e7":
/***/ (function(module, exports, __webpack_require__) {
var classof = __webpack_require__("2118");
// `IsArray` abstract operation
// https://tc39.github.io/ecma262/#sec-isarray
module.exports = Array.isArray || function isArray(arg) {
return classof(arg) == 'Array';
};
/***/ }),
/***/ "77ad":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var isObject = __webpack_require__("a719");
var isArray = __webpack_require__("74e7");
var toAbsoluteIndex = __webpack_require__("e1d6");
var toLength = __webpack_require__("d88d");
var toIndexedObject = __webpack_require__("da10");
var createProperty = __webpack_require__("1bbd");
var wellKnownSymbol = __webpack_require__("90fb");
var arrayMethodHasSpeciesSupport = __webpack_require__("1ea7");
var arrayMethodUsesToLength = __webpack_require__("ff9c");
var HAS_SPECIES_SUPPORT = arrayMethodHasSpeciesSupport('slice');
var USES_TO_LENGTH = arrayMethodUsesToLength('slice', { ACCESSORS: true, 0: 0, 1: 2 });
var SPECIES = wellKnownSymbol('species');
var nativeSlice = [].slice;
var max = Math.max;
// `Array.prototype.slice` method
// https://tc39.github.io/ecma262/#sec-array.prototype.slice
// fallback for not array-like ES3 strings and DOM objects
$({ target: 'Array', proto: true, forced: !HAS_SPECIES_SUPPORT || !USES_TO_LENGTH }, {
slice: function slice(start, end) {
var O = toIndexedObject(this);
var length = toLength(O.length);
var k = toAbsoluteIndex(start, length);
var fin = toAbsoluteIndex(end === undefined ? length : end, length);
// inline `ArraySpeciesCreate` for usage native `Array#slice` where it's possible
var Constructor, result, n;
if (isArray(O)) {
Constructor = O.constructor;
// cross-realm fallback
if (typeof Constructor == 'function' && (Constructor === Array || isArray(Constructor.prototype))) {
Constructor = undefined;
} else if (isObject(Constructor)) {
Constructor = Constructor[SPECIES];
if (Constructor === null) Constructor = undefined;
}
if (Constructor === Array || Constructor === undefined) {
return nativeSlice.call(O, k, fin);
}
}
result = new (Constructor === undefined ? Array : Constructor)(max(fin - k, 0));
for (n = 0; k < fin; k++, n++) if (k in O) createProperty(result, n, O[k]);
result.length = n;
return result;
}
});
/***/ }),
/***/ "79e4":
/***/ (function(module, exports, __webpack_require__) {
var __WEBPACK_AMD_DEFINE_FACTORY__, __WEBPACK_AMD_DEFINE_ARRAY__, __WEBPACK_AMD_DEFINE_RESULT__;// addapted from the document.currentScript polyfill by Adam Miller
// MIT license
// source: https://github.com/amiller-gh/currentScript-polyfill
// added support for Firefox https://bugzilla.mozilla.org/show_bug.cgi?id=1620505
(function (root, factory) {
if (true) {
!(__WEBPACK_AMD_DEFINE_ARRAY__ = [], __WEBPACK_AMD_DEFINE_FACTORY__ = (factory),
__WEBPACK_AMD_DEFINE_RESULT__ = (typeof __WEBPACK_AMD_DEFINE_FACTORY__ === 'function' ?
(__WEBPACK_AMD_DEFINE_FACTORY__.apply(exports, __WEBPACK_AMD_DEFINE_ARRAY__)) : __WEBPACK_AMD_DEFINE_FACTORY__),
__WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
} else {}
}(typeof self !== 'undefined' ? self : this, function () {
function getCurrentScript () {
var descriptor = Object.getOwnPropertyDescriptor(document, 'currentScript')
// for chrome
if (!descriptor && 'currentScript' in document && document.currentScript) {
return document.currentScript
}
// for other browsers with native support for currentScript
if (descriptor && descriptor.get !== getCurrentScript && document.currentScript) {
return document.currentScript
}
// IE 8-10 support script readyState
// IE 11+ & Firefox support stack trace
try {
throw new Error();
}
catch (err) {
// Find the second match for the "at" string to get file src url from stack.
var ieStackRegExp = /.*at [^(]*\((.*):(.+):(.+)\)$/ig,
ffStackRegExp = /@([^@]*):(\d+):(\d+)\s*$/ig,
stackDetails = ieStackRegExp.exec(err.stack) || ffStackRegExp.exec(err.stack),
scriptLocation = (stackDetails && stackDetails[1]) || false,
line = (stackDetails && stackDetails[2]) || false,
currentLocation = document.location.href.replace(document.location.hash, ''),
pageSource,
inlineScriptSourceRegExp,
inlineScriptSource,
scripts = document.getElementsByTagName('script'); // Live NodeList collection
if (scriptLocation === currentLocation) {
pageSource = document.documentElement.outerHTML;
inlineScriptSourceRegExp = new RegExp('(?:[^\\n]+?\\n){0,' + (line - 2) + '}[^<]*<script>([\\d\\D]*?)<\\/script>[\\d\\D]*', 'i');
inlineScriptSource = pageSource.replace(inlineScriptSourceRegExp, '$1').trim();
}
for (var i = 0; i < scripts.length; i++) {
// If ready state is interactive, return the script tag
if (scripts[i].readyState === 'interactive') {
return scripts[i];
}
// If src matches, return the script tag
if (scripts[i].src === scriptLocation) {
return scripts[i];
}
// If inline source matches, return the script tag
if (
scriptLocation === currentLocation &&
scripts[i].innerHTML &&
scripts[i].innerHTML.trim() === inlineScriptSource
) {
return scripts[i];
}
}
// If no match, return null
return null;
}
};
return getCurrentScript
}));
/***/ }),
/***/ "7aeb":
/***/ (function(module, exports, __webpack_require__) {
var toPositiveInteger = __webpack_require__("6176");
module.exports = function (it, BYTES) {
var offset = toPositiveInteger(it);
if (offset % BYTES) throw RangeError('Wrong offset');
return offset;
};
/***/ }),
/***/ "7db2":
/***/ (function(module, exports, __webpack_require__) {
var shared = __webpack_require__("6d28");
var uid = __webpack_require__("7e8b");
var keys = shared('keys');
module.exports = function (key) {
return keys[key] || (keys[key] = uid(key));
};
/***/ }),
/***/ "7e8b":
/***/ (function(module, exports) {
var id = 0;
var postfix = Math.random();
module.exports = function (key) {
return 'Symbol(' + String(key === undefined ? '' : key) + ')_' + (++id + postfix).toString(36);
};
/***/ }),
/***/ "829d":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var $sort = [].sort;
// `%TypedArray%.prototype.sort` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.sort
exportTypedArrayMethod('sort', function sort(comparefn) {
return $sort.call(aTypedArray(this), comparefn);
});
/***/ }),
/***/ "83db":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $some = __webpack_require__("5dfd").some;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.some` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.some
exportTypedArrayMethod('some', function some(callbackfn /* , thisArg */) {
return $some(aTypedArray(this), callbackfn, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "857c":
/***/ (function(module, exports, __webpack_require__) {
var isObject = __webpack_require__("a719");
module.exports = function (it) {
if (!isObject(it)) {
throw TypeError(String(it) + ' is not an object');
} return it;
};
/***/ }),
/***/ "8bbf":
/***/ (function(module, exports) {
module.exports = __WEBPACK_EXTERNAL_MODULE__8bbf__;
/***/ }),
/***/ "8d44":
/***/ (function(module, exports, __webpack_require__) {
var getBuiltIn = __webpack_require__("6d7a");
var getOwnPropertyNamesModule = __webpack_require__("b338");
var getOwnPropertySymbolsModule = __webpack_require__("0a60");
var anObject = __webpack_require__("857c");
// all object keys, includes non-enumerable and symbols
module.exports = getBuiltIn('Reflect', 'ownKeys') || function ownKeys(it) {
var keys = getOwnPropertyNamesModule.f(anObject(it));
var getOwnPropertySymbols = getOwnPropertySymbolsModule.f;
return getOwnPropertySymbols ? keys.concat(getOwnPropertySymbols(it)) : keys;
};
/***/ }),
/***/ "8d7b":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var toIndexedObject = __webpack_require__("da10");
var toInteger = __webpack_require__("3da3");
var toLength = __webpack_require__("d88d");
var arrayMethodIsStrict = __webpack_require__("d7e1");
var arrayMethodUsesToLength = __webpack_require__("ff9c");
var min = Math.min;
var nativeLastIndexOf = [].lastIndexOf;
var NEGATIVE_ZERO = !!nativeLastIndexOf && 1 / [1].lastIndexOf(1, -0) < 0;
var STRICT_METHOD = arrayMethodIsStrict('lastIndexOf');
// For preventing possible almost infinite loop in non-standard implementations, test the forward version of the method
var USES_TO_LENGTH = arrayMethodUsesToLength('indexOf', { ACCESSORS: true, 1: 0 });
var FORCED = NEGATIVE_ZERO || !STRICT_METHOD || !USES_TO_LENGTH;
// `Array.prototype.lastIndexOf` method implementation
// https://tc39.github.io/ecma262/#sec-array.prototype.lastindexof
module.exports = FORCED ? function lastIndexOf(searchElement /* , fromIndex = @[*-1] */) {
// convert -0 to +0
if (NEGATIVE_ZERO) return nativeLastIndexOf.apply(this, arguments) || 0;
var O = toIndexedObject(this);
var length = toLength(O.length);
var index = length - 1;
if (arguments.length > 1) index = min(index, toInteger(arguments[1]));
if (index < 0) index = length + index;
for (;index >= 0; index--) if (index in O && O[index] === searchElement) return index || 0;
return -1;
} : nativeLastIndexOf;
/***/ }),
/***/ "908e":
/***/ (function(module, exports, __webpack_require__) {
var has = __webpack_require__("faa8");
var toObject = __webpack_require__("3553");
var sharedKey = __webpack_require__("7db2");
var CORRECT_PROTOTYPE_GETTER = __webpack_require__("eec6");
var IE_PROTO = sharedKey('IE_PROTO');
var ObjectPrototype = Object.prototype;
// `Object.getPrototypeOf` method
// https://tc39.github.io/ecma262/#sec-object.getprototypeof
module.exports = CORRECT_PROTOTYPE_GETTER ? Object.getPrototypeOf : function (O) {
O = toObject(O);
if (has(O, IE_PROTO)) return O[IE_PROTO];
if (typeof O.constructor == 'function' && O instanceof O.constructor) {
return O.constructor.prototype;
} return O instanceof Object ? ObjectPrototype : null;
};
/***/ }),
/***/ "90fb":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var shared = __webpack_require__("6d28");
var has = __webpack_require__("faa8");
var uid = __webpack_require__("7e8b");
var NATIVE_SYMBOL = __webpack_require__("c54b");
var USE_SYMBOL_AS_UID = __webpack_require__("74cb");
var WellKnownSymbolsStore = shared('wks');
var Symbol = global.Symbol;
var createWellKnownSymbol = USE_SYMBOL_AS_UID ? Symbol : Symbol && Symbol.withoutSetter || uid;
module.exports = function (name) {
if (!has(WellKnownSymbolsStore, name)) {
if (NATIVE_SYMBOL && has(Symbol, name)) WellKnownSymbolsStore[name] = Symbol[name];
else WellKnownSymbolsStore[name] = createWellKnownSymbol('Symbol.' + name);
} return WellKnownSymbolsStore[name];
};
/***/ }),
/***/ "927c":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $every = __webpack_require__("5dfd").every;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.every` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.every
exportTypedArrayMethod('every', function every(callbackfn /* , thisArg */) {
return $every(aTypedArray(this), callbackfn, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "939f":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var toLength = __webpack_require__("d88d");
var toAbsoluteIndex = __webpack_require__("e1d6");
var speciesConstructor = __webpack_require__("ef4c");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.subarray` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.subarray
exportTypedArrayMethod('subarray', function subarray(begin, end) {
var O = aTypedArray(this);
var length = O.length;
var beginIndex = toAbsoluteIndex(begin, length);
return new (speciesConstructor(O, O.constructor))(
O.buffer,
O.byteOffset + beginIndex * O.BYTES_PER_ELEMENT,
toLength((end === undefined ? length : toAbsoluteIndex(end, length)) - beginIndex)
);
});
/***/ }),
/***/ "96db":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var charAt = __webpack_require__("f62c").charAt;
var InternalStateModule = __webpack_require__("b702");
var defineIterator = __webpack_require__("99ee");
var STRING_ITERATOR = 'String Iterator';
var setInternalState = InternalStateModule.set;
var getInternalState = InternalStateModule.getterFor(STRING_ITERATOR);
// `String.prototype[@@iterator]` method
// https://tc39.github.io/ecma262/#sec-string.prototype-@@iterator
defineIterator(String, 'String', function (iterated) {
setInternalState(this, {
type: STRING_ITERATOR,
string: String(iterated),
index: 0
});
// `%StringIteratorPrototype%.next` method
// https://tc39.github.io/ecma262/#sec-%stringiteratorprototype%.next
}, function next() {
var state = getInternalState(this);
var string = state.string;
var index = state.index;
var point;
if (index >= string.length) return { value: undefined, done: true };
point = charAt(string, index);
state.index += point.length;
return { value: point, done: false };
});
/***/ }),
/***/ "9806":
/***/ (function(module, exports) {
module.exports = {};
/***/ }),
/***/ "9896":
/***/ (function(module, __webpack_exports__, __webpack_require__) {
"use strict";
// ESM COMPAT FLAG
__webpack_require__.r(__webpack_exports__);
// EXPORTS
__webpack_require__.d(__webpack_exports__, "install", function() { return /* reexport */ install; });
__webpack_require__.d(__webpack_exports__, "ModelObj", function() { return /* reexport */ model_obj; });
__webpack_require__.d(__webpack_exports__, "ModelFbx", function() { return /* reexport */ model_fbx; });
__webpack_require__.d(__webpack_exports__, "ModelThree", function() { return /* reexport */ model_three; });
__webpack_require__.d(__webpack_exports__, "ModelJson", function() { return /* reexport */ ModelJson; });
__webpack_require__.d(__webpack_exports__, "ModelStl", function() { return /* reexport */ model_stl; });
__webpack_require__.d(__webpack_exports__, "ModelPly", function() { return /* reexport */ model_ply; });
__webpack_require__.d(__webpack_exports__, "ModelCollada", function() { return /* reexport */ model_collada; });
__webpack_require__.d(__webpack_exports__, "ModelDae", function() { return /* reexport */ ModelDae; });
__webpack_require__.d(__webpack_exports__, "ModelGltf", function() { return /* reexport */ model_gltf; });
// CONCATENATED MODULE: ./node_modules/_@vue_cli-service@4.4.6@@vue/cli-service/lib/commands/build/setPublicPath.js
// This file is imported into lib/wc client bundles.
if (typeof window !== 'undefined') {
var currentScript = window.document.currentScript
if (true) {
var getCurrentScript = __webpack_require__("79e4")
currentScript = getCurrentScript()
// for backward compatibility, because previously we directly included the polyfill
if (!('currentScript' in document)) {
Object.defineProperty(document, 'currentScript', { get: getCurrentScript })
}
}
var src = currentScript && currentScript.src.match(/(.+\/)[^/]+\.js(\?.*)?$/)
if (src) {
__webpack_require__.p = src[1] // eslint-disable-line
}
}
// Indicate to webpack that this file can be concatenated
/* harmony default export */ var setPublicPath = (null);
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.array.for-each.js
var es_array_for_each = __webpack_require__("fe59");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.function.name.js
var es_function_name = __webpack_require__("053b");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/web.dom-collections.for-each.js
var web_dom_collections_for_each = __webpack_require__("08ba");
// EXTERNAL MODULE: external {"commonjs":"vue","commonjs2":"vue","root":"Vue"}
var external_commonjs_vue_commonjs2_vue_root_Vue_ = __webpack_require__("8bbf");
var external_commonjs_vue_commonjs2_vue_root_Vue_default = /*#__PURE__*/__webpack_require__.n(external_commonjs_vue_commonjs2_vue_root_Vue_);
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.regexp.exec.js
var es_regexp_exec = __webpack_require__("e35a");
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/build/three.module.js
// Polyfills
if ( Number.EPSILON === undefined ) {
Number.EPSILON = Math.pow( 2, - 52 );
}
if ( Number.isInteger === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
Number.isInteger = function ( value ) {
return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;
};
}
//
if ( Math.sign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
Math.sign = function ( x ) {
return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
};
}
if ( 'name' in Function.prototype === false ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
Object.defineProperty( Function.prototype, 'name', {
get: function () {
return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];
}
} );
}
if ( Object.assign === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
Object.assign = function ( target ) {
if ( target === undefined || target === null ) {
throw new TypeError( 'Cannot convert undefined or null to object' );
}
const output = Object( target );
for ( let index = 1; index < arguments.length; index ++ ) {
const source = arguments[ index ];
if ( source !== undefined && source !== null ) {
for ( const nextKey in source ) {
if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {
output[ nextKey ] = source[ nextKey ];
}
}
}
}
return output;
};
}
const REVISION = '118';
const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 };
const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
const CullFaceNone = 0;
const CullFaceBack = 1;
const CullFaceFront = 2;
const CullFaceFrontBack = 3;
const FrontFaceDirectionCW = 0;
const FrontFaceDirectionCCW = 1;
const BasicShadowMap = 0;
const PCFShadowMap = 1;
const PCFSoftShadowMap = 2;
const VSMShadowMap = 3;
const FrontSide = 0;
const BackSide = 1;
const DoubleSide = 2;
const FlatShading = 1;
const SmoothShading = 2;
const NoBlending = 0;
const NormalBlending = 1;
const AdditiveBlending = 2;
const SubtractiveBlending = 3;
const MultiplyBlending = 4;
const CustomBlending = 5;
const AddEquation = 100;
const SubtractEquation = 101;
const ReverseSubtractEquation = 102;
const MinEquation = 103;
const MaxEquation = 104;
const ZeroFactor = 200;
const OneFactor = 201;
const SrcColorFactor = 202;
const OneMinusSrcColorFactor = 203;
const SrcAlphaFactor = 204;
const OneMinusSrcAlphaFactor = 205;
const DstAlphaFactor = 206;
const OneMinusDstAlphaFactor = 207;
const DstColorFactor = 208;
const OneMinusDstColorFactor = 209;
const SrcAlphaSaturateFactor = 210;
const NeverDepth = 0;
const AlwaysDepth = 1;
const LessDepth = 2;
const LessEqualDepth = 3;
const EqualDepth = 4;
const GreaterEqualDepth = 5;
const GreaterDepth = 6;
const NotEqualDepth = 7;
const MultiplyOperation = 0;
const MixOperation = 1;
const AddOperation = 2;
const NoToneMapping = 0;
const LinearToneMapping = 1;
const ReinhardToneMapping = 2;
const CineonToneMapping = 3;
const ACESFilmicToneMapping = 4;
const CustomToneMapping = 5;
const UVMapping = 300;
const CubeReflectionMapping = 301;
const CubeRefractionMapping = 302;
const EquirectangularReflectionMapping = 303;
const EquirectangularRefractionMapping = 304;
const CubeUVReflectionMapping = 306;
const CubeUVRefractionMapping = 307;
const RepeatWrapping = 1000;
const ClampToEdgeWrapping = 1001;
const MirroredRepeatWrapping = 1002;
const NearestFilter = 1003;
const NearestMipmapNearestFilter = 1004;
const NearestMipMapNearestFilter = 1004;
const NearestMipmapLinearFilter = 1005;
const NearestMipMapLinearFilter = 1005;
const LinearFilter = 1006;
const LinearMipmapNearestFilter = 1007;
const LinearMipMapNearestFilter = 1007;
const LinearMipmapLinearFilter = 1008;
const LinearMipMapLinearFilter = 1008;
const UnsignedByteType = 1009;
const ByteType = 1010;
const ShortType = 1011;
const UnsignedShortType = 1012;
const IntType = 1013;
const UnsignedIntType = 1014;
const FloatType = 1015;
const HalfFloatType = 1016;
const UnsignedShort4444Type = 1017;
const UnsignedShort5551Type = 1018;
const UnsignedShort565Type = 1019;
const UnsignedInt248Type = 1020;
const AlphaFormat = 1021;
const RGBFormat = 1022;
const RGBAFormat = 1023;
const LuminanceFormat = 1024;
const LuminanceAlphaFormat = 1025;
const RGBEFormat = RGBAFormat;
const DepthFormat = 1026;
const DepthStencilFormat = 1027;
const RedFormat = 1028;
const RedIntegerFormat = 1029;
const RGFormat = 1030;
const RGIntegerFormat = 1031;
const RGBIntegerFormat = 1032;
const RGBAIntegerFormat = 1033;
const RGB_S3TC_DXT1_Format = 33776;
const RGBA_S3TC_DXT1_Format = 33777;
const RGBA_S3TC_DXT3_Format = 33778;
const RGBA_S3TC_DXT5_Format = 33779;
const RGB_PVRTC_4BPPV1_Format = 35840;
const RGB_PVRTC_2BPPV1_Format = 35841;
const RGBA_PVRTC_4BPPV1_Format = 35842;
const RGBA_PVRTC_2BPPV1_Format = 35843;
const RGB_ETC1_Format = 36196;
const RGB_ETC2_Format = 37492;
const RGBA_ETC2_EAC_Format = 37496;
const RGBA_ASTC_4x4_Format = 37808;
const RGBA_ASTC_5x4_Format = 37809;
const RGBA_ASTC_5x5_Format = 37810;
const RGBA_ASTC_6x5_Format = 37811;
const RGBA_ASTC_6x6_Format = 37812;
const RGBA_ASTC_8x5_Format = 37813;
const RGBA_ASTC_8x6_Format = 37814;
const RGBA_ASTC_8x8_Format = 37815;
const RGBA_ASTC_10x5_Format = 37816;
const RGBA_ASTC_10x6_Format = 37817;
const RGBA_ASTC_10x8_Format = 37818;
const RGBA_ASTC_10x10_Format = 37819;
const RGBA_ASTC_12x10_Format = 37820;
const RGBA_ASTC_12x12_Format = 37821;
const RGBA_BPTC_Format = 36492;
const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
const LoopOnce = 2200;
const LoopRepeat = 2201;
const LoopPingPong = 2202;
const InterpolateDiscrete = 2300;
const InterpolateLinear = 2301;
const InterpolateSmooth = 2302;
const ZeroCurvatureEnding = 2400;
const ZeroSlopeEnding = 2401;
const WrapAroundEnding = 2402;
const NormalAnimationBlendMode = 2500;
const AdditiveAnimationBlendMode = 2501;
const TrianglesDrawMode = 0;
const TriangleStripDrawMode = 1;
const TriangleFanDrawMode = 2;
const LinearEncoding = 3000;
const sRGBEncoding = 3001;
const GammaEncoding = 3007;
const RGBEEncoding = 3002;
const LogLuvEncoding = 3003;
const RGBM7Encoding = 3004;
const RGBM16Encoding = 3005;
const RGBDEncoding = 3006;
const BasicDepthPacking = 3200;
const RGBADepthPacking = 3201;
const TangentSpaceNormalMap = 0;
const ObjectSpaceNormalMap = 1;
const ZeroStencilOp = 0;
const KeepStencilOp = 7680;
const ReplaceStencilOp = 7681;
const IncrementStencilOp = 7682;
const DecrementStencilOp = 7683;
const IncrementWrapStencilOp = 34055;
const DecrementWrapStencilOp = 34056;
const InvertStencilOp = 5386;
const NeverStencilFunc = 512;
const LessStencilFunc = 513;
const EqualStencilFunc = 514;
const LessEqualStencilFunc = 515;
const GreaterStencilFunc = 516;
const NotEqualStencilFunc = 517;
const GreaterEqualStencilFunc = 518;
const AlwaysStencilFunc = 519;
const StaticDrawUsage = 35044;
const DynamicDrawUsage = 35048;
const StreamDrawUsage = 35040;
const StaticReadUsage = 35045;
const DynamicReadUsage = 35049;
const StreamReadUsage = 35041;
const StaticCopyUsage = 35046;
const DynamicCopyUsage = 35050;
const StreamCopyUsage = 35042;
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
function EventDispatcher() {}
Object.assign( EventDispatcher.prototype, {
addEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
const listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
},
hasEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return false;
const listeners = this._listeners;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
},
removeEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return;
const listeners = this._listeners;
const listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
const index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
},
dispatchEvent: function ( event ) {
if ( this._listeners === undefined ) return;
const listeners = this._listeners;
const listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
// Make a copy, in case listeners are removed while iterating.
const array = listenerArray.slice( 0 );
for ( let i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
}
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
* @author thezwap
*/
const _lut = [];
for ( let i = 0; i < 256; i ++ ) {
_lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );
}
const MathUtils = {
DEG2RAD: Math.PI / 180,
RAD2DEG: 180 / Math.PI,
generateUUID: function () {
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
const d0 = Math.random() * 0xffffffff | 0;
const d1 = Math.random() * 0xffffffff | 0;
const d2 = Math.random() * 0xffffffff | 0;
const d3 = Math.random() * 0xffffffff | 0;
const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];
// .toUpperCase() here flattens concatenated strings to save heap memory space.
return uuid.toUpperCase();
},
clamp: function ( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
},
// compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
euclideanModulo: function ( n, m ) {
return ( ( n % m ) + m ) % m;
},
// Linear mapping from range <a1, a2> to range <b1, b2>
mapLinear: function ( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
},
// https://en.wikipedia.org/wiki/Linear_interpolation
lerp: function ( x, y, t ) {
return ( 1 - t ) * x + t * y;
},
// http://en.wikipedia.org/wiki/Smoothstep
smoothstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
},
smootherstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
},
// Random integer from <low, high> interval
randInt: function ( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
},
// Random float from <low, high> interval
randFloat: function ( low, high ) {
return low + Math.random() * ( high - low );
},
// Random float from <-range/2, range/2> interval
randFloatSpread: function ( range ) {
return range * ( 0.5 - Math.random() );
},
degToRad: function ( degrees ) {
return degrees * MathUtils.DEG2RAD;
},
radToDeg: function ( radians ) {
return radians * MathUtils.RAD2DEG;
},
isPowerOfTwo: function ( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
},
ceilPowerOfTwo: function ( value ) {
return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );
},
floorPowerOfTwo: function ( value ) {
return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );
},
setQuaternionFromProperEuler: function ( q, a, b, c, order ) {
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
// rotations are applied to the axes in the order specified by 'order'
// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
// angles are in radians
const cos = Math.cos;
const sin = Math.sin;
const c2 = cos( b / 2 );
const s2 = sin( b / 2 );
const c13 = cos( ( a + c ) / 2 );
const s13 = sin( ( a + c ) / 2 );
const c1_3 = cos( ( a - c ) / 2 );
const s1_3 = sin( ( a - c ) / 2 );
const c3_1 = cos( ( c - a ) / 2 );
const s3_1 = sin( ( c - a ) / 2 );
switch ( order ) {
case 'XYX':
q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
break;
case 'YZY':
q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
break;
case 'ZXZ':
q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
break;
case 'XZX':
q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
break;
case 'YXY':
q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
break;
case 'ZYZ':
q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
break;
default:
console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order );
}
}
};
/**
* @author mrdoob / http://mrdoob.com/
* @author philogb / http://blog.thejit.org/
* @author egraether / http://egraether.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
function Vector2( x = 0, y = 0 ) {
this.x = x;
this.y = y;
}
Object.defineProperties( Vector2.prototype, {
"width": {
get: function () {
return this.x;
},
set: function ( value ) {
this.x = value;
}
},
"height": {
get: function () {
return this.y;
},
set: function ( value ) {
this.y = value;
}
}
} );
Object.assign( Vector2.prototype, {
isVector2: true,
set: function ( x, y ) {
this.x = x;
this.y = y;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
},
multiply: function ( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
applyMatrix3: function ( m ) {
const x = this.x, y = this.y;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
return this;
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
},
clampScalar: function ( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
return this;
},
clampLength: function ( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y;
},
cross: function ( v ) {
return this.x * v.y - this.y * v.x;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
manhattanLength: function () {
return Math.abs( this.x ) + Math.abs( this.y );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
angle: function () {
// computes the angle in radians with respect to the positive x-axis
const angle = Math.atan2( - this.y, - this.x ) + Math.PI;
return angle;
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
const dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
},
manhattanDistanceTo: function ( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
return this;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
},
rotateAround: function ( center, angle ) {
const c = Math.cos( angle ), s = Math.sin( angle );
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
},
random: function () {
this.x = Math.random();
this.y = Math.random();
return this;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
* @author tschw
*/
function Matrix3() {
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
}
}
Object.assign( Matrix3.prototype, {
isMatrix3: true,
set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
},
identity: function () {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
},
clone: function () {
return new this.constructor().fromArray( this.elements );
},
copy: function ( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
},
extractBasis: function ( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrix3Column( this, 0 );
yAxis.setFromMatrix3Column( this, 1 );
zAxis.setFromMatrix3Column( this, 2 );
return this;
},
setFromMatrix4: function ( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
},
multiply: function ( m ) {
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
},
multiplyScalar: function ( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
},
determinant: function () {
const te = this.elements;
const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
},
getInverse: function ( matrix, throwOnDegenerate ) {
if ( throwOnDegenerate !== undefined ) {
console.warn( "THREE.Matrix3: .getInverse() can no longer be configured to throw on degenerate." );
}
const me = matrix.elements,
te = this.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
},
transpose: function () {
let tmp;
const m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
},
getNormalMatrix: function ( matrix4 ) {
return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
},
transposeIntoArray: function ( r ) {
const m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
},
setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {
const c = Math.cos( rotation );
const s = Math.sin( rotation );
this.set(
sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
0, 0, 1
);
},
scale: function ( sx, sy ) {
const te = this.elements;
te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;
te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;
return this;
},
rotate: function ( theta ) {
const c = Math.cos( theta );
const s = Math.sin( theta );
const te = this.elements;
const a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];
const a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];
te[ 0 ] = c * a11 + s * a21;
te[ 3 ] = c * a12 + s * a22;
te[ 6 ] = c * a13 + s * a23;
te[ 1 ] = - s * a11 + c * a21;
te[ 4 ] = - s * a12 + c * a22;
te[ 7 ] = - s * a13 + c * a23;
return this;
},
translate: function ( tx, ty ) {
const te = this.elements;
te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];
te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];
return this;
},
equals: function ( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
for ( let i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
let _canvas;
const ImageUtils = {
getDataURL: function ( image ) {
if ( /^data:/i.test( image.src ) ) {
return image.src;
}
if ( typeof HTMLCanvasElement == 'undefined' ) {
return image.src;
}
let canvas;
if ( image instanceof HTMLCanvasElement ) {
canvas = image;
} else {
if ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
_canvas.width = image.width;
_canvas.height = image.height;
const context = _canvas.getContext( '2d' );
if ( image instanceof ImageData ) {
context.putImageData( image, 0, 0 );
} else {
context.drawImage( image, 0, 0, image.width, image.height );
}
canvas = _canvas;
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
let textureId = 0;
function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
Object.defineProperty( this, 'id', { value: textureId ++ } );
this.uuid = MathUtils.generateUUID();
this.name = '';
this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
this.mipmaps = [];
this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;
this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
this.minFilter = minFilter !== undefined ? minFilter : LinearMipmapLinearFilter;
this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
this.format = format !== undefined ? format : RGBAFormat;
this.internalFormat = null;
this.type = type !== undefined ? type : UnsignedByteType;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.center = new Vector2( 0, 0 );
this.rotation = 0;
this.matrixAutoUpdate = true;
this.matrix = new Matrix3();
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding !== undefined ? encoding : LinearEncoding;
this.version = 0;
this.onUpdate = null;
}
Texture.DEFAULT_IMAGE = undefined;
Texture.DEFAULT_MAPPING = UVMapping;
Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: Texture,
isTexture: true,
updateMatrix: function () {
this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.image = source.image;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.internalFormat = source.internalFormat;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.center.copy( source.center );
this.rotation = source.rotation;
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrix.copy( source.matrix );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
},
toJSON: function ( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
const output = {
metadata: {
version: 4.5,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
center: [ this.center.x, this.center.y ],
rotation: this.rotation,
wrap: [ this.wrapS, this.wrapT ],
format: this.format,
type: this.type,
encoding: this.encoding,
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY,
premultiplyAlpha: this.premultiplyAlpha,
unpackAlignment: this.unpackAlignment
};
if ( this.image !== undefined ) {
// TODO: Move to THREE.Image
const image = this.image;
if ( image.uuid === undefined ) {
image.uuid = MathUtils.generateUUID(); // UGH
}
if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {
let url;
if ( Array.isArray( image ) ) {
// process array of images e.g. CubeTexture
url = [];
for ( let i = 0, l = image.length; i < l; i ++ ) {
url.push( ImageUtils.getDataURL( image[ i ] ) );
}
} else {
// process single image
url = ImageUtils.getDataURL( image );
}
meta.images[ image.uuid ] = {
uuid: image.uuid,
url: url
};
}
output.image = image.uuid;
}
if ( ! isRootObject ) {
meta.textures[ this.uuid ] = output;
}
return output;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
},
transformUv: function ( uv ) {
if ( this.mapping !== UVMapping ) return uv;
uv.applyMatrix3( this.matrix );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
return uv;
}
} );
Object.defineProperty( Texture.prototype, "needsUpdate", {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
function Vector4( x = 0, y = 0, z = 0, w = 1 ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
Object.defineProperties( Vector4.prototype, {
"width": {
get: function () {
return this.z;
},
set: function ( value ) {
this.z = value;
}
},
"height": {
get: function () {
return this.w;
},
set: function ( value ) {
this.w = value;
}
}
} );
Object.assign( Vector4.prototype, {
isVector4: true,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setW: function ( w ) {
this.w = w;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z, this.w );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
},
applyMatrix4: function ( m ) {
const x = this.x, y = this.y, z = this.z, w = this.w;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
setAxisAngleFromQuaternion: function ( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
const s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
},
setAxisAngleFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
let angle, x, y, z; // variables for result
const epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
const xx = ( m11 + 1 ) / 2;
const yy = ( m22 + 1 ) / 2;
const zz = ( m33 + 1 ) / 2;
const xy = ( m12 + m21 ) / 4;
const xz = ( m13 + m31 ) / 4;
const yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
},
clampScalar: function ( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
this.w = Math.max( minVal, Math.min( maxVal, this.w ) );
return this;
},
clampLength: function ( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
},
manhattanLength: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
this.w = v1.w + ( v2.w - v1.w ) * alpha;
return this;
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
},
random: function () {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
this.w = Math.random();
return this;
}
} );
/**
* @author szimek / https://github.com/szimek/
* @author alteredq / http://alteredqualia.com/
* @author Marius Kintel / https://github.com/kintel
*/
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
function WebGLRenderTarget( width, height, options ) {
this.width = width;
this.height = height;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
options = options || {};
this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.texture.image = {};
this.texture.image.width = width;
this.texture.image.height = height;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
}
WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: WebGLRenderTarget,
isWebGLRenderTarget: true,
setSize: function ( width, height ) {
if ( this.width !== width || this.height !== height ) {
this.width = width;
this.height = height;
this.texture.image.width = width;
this.texture.image.height = height;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.width = source.width;
this.height = source.height;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author Mugen87 / https://github.com/Mugen87
* @author Matt DesLauriers / @mattdesl
*/
function WebGLMultisampleRenderTarget( width, height, options ) {
WebGLRenderTarget.call( this, width, height, options );
this.samples = 4;
}
WebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), {
constructor: WebGLMultisampleRenderTarget,
isWebGLMultisampleRenderTarget: true,
copy: function ( source ) {
WebGLRenderTarget.prototype.copy.call( this, source );
this.samples = source.samples;
return this;
}
} );
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
function Quaternion( x = 0, y = 0, z = 0, w = 1 ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
}
Object.assign( Quaternion, {
slerp: function ( qa, qb, qm, t ) {
return qm.copy( qa ).slerp( qb, t );
},
slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
let x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
let s = 1 - t,
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
const sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
const tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
},
multiplyQuaternionsFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {
const x0 = src0[ srcOffset0 ];
const y0 = src0[ srcOffset0 + 1 ];
const z0 = src0[ srcOffset0 + 2 ];
const w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 ];
const y1 = src1[ srcOffset1 + 1 ];
const z1 = src1[ srcOffset1 + 2 ];
const w1 = src1[ srcOffset1 + 3 ];
dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
return dst;
}
} );
Object.defineProperties( Quaternion.prototype, {
x: {
get: function () {
return this._x;
},
set: function ( value ) {
this._x = value;
this._onChangeCallback();
}
},
y: {
get: function () {
return this._y;
},
set: function ( value ) {
this._y = value;
this._onChangeCallback();
}
},
z: {
get: function () {
return this._z;
},
set: function ( value ) {
this._z = value;
this._onChangeCallback();
}
},
w: {
get: function () {
return this._w;
},
set: function ( value ) {
this._w = value;
this._onChangeCallback();
}
}
} );
Object.assign( Quaternion.prototype, {
isQuaternion: true,
set: function ( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this._onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._w );
},
copy: function ( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this._onChangeCallback();
return this;
},
setFromEuler: function ( euler, update ) {
if ( ! ( euler && euler.isEuler ) ) {
throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
const x = euler._x, y = euler._y, z = euler._z, order = euler.order;
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
const cos = Math.cos;
const sin = Math.sin;
const c1 = cos( x / 2 );
const c2 = cos( y / 2 );
const c3 = cos( z / 2 );
const s1 = sin( x / 2 );
const s2 = sin( y / 2 );
const s3 = sin( z / 2 );
switch ( order ) {
case 'XYZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'YXZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'ZXY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'ZYX':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'YZX':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'XZY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
default:
console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );
}
if ( update !== false ) this._onChangeCallback();
return this;
},
setFromAxisAngle: function ( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
const halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this._onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33;
if ( trace > 0 ) {
const s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this._onChangeCallback();
return this;
},
setFromUnitVectors: function ( vFrom, vTo ) {
// assumes direction vectors vFrom and vTo are normalized
const EPS = 0.000001;
let r = vFrom.dot( vTo ) + 1;
if ( r < EPS ) {
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
this._x = - vFrom.y;
this._y = vFrom.x;
this._z = 0;
this._w = r;
} else {
this._x = 0;
this._y = - vFrom.z;
this._z = vFrom.y;
this._w = r;
}
} else {
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
this._w = r;
}
return this.normalize();
},
angleTo: function ( q ) {
return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) );
},
rotateTowards: function ( q, step ) {
const angle = this.angleTo( q );
if ( angle === 0 ) return this;
const t = Math.min( 1, step / angle );
this.slerp( q, t );
return this;
},
inverse: function () {
// quaternion is assumed to have unit length
return this.conjugate();
},
conjugate: function () {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this._onChangeCallback();
return this;
},
dot: function ( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
},
lengthSq: function () {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
},
length: function () {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
},
normalize: function () {
let l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this._onChangeCallback();
return this;
},
multiply: function ( q, p ) {
if ( p !== undefined ) {
console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
return this.multiplyQuaternions( q, p );
}
return this.multiplyQuaternions( this, q );
},
premultiply: function ( q ) {
return this.multiplyQuaternions( q, this );
},
multiplyQuaternions: function ( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this._onChangeCallback();
return this;
},
slerp: function ( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
const x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
if ( sqrSinHalfTheta <= Number.EPSILON ) {
const s = 1 - t;
this._w = s * w + t * this._w;
this._x = s * x + t * this._x;
this._y = s * y + t * this._y;
this._z = s * z + t * this._z;
this.normalize();
this._onChangeCallback();
return this;
}
const sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this._onChangeCallback();
return this;
},
equals: function ( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this._onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
},
fromBufferAttribute: function ( attribute, index ) {
this._x = attribute.getX( index );
this._y = attribute.getY( index );
this._z = attribute.getZ( index );
this._w = attribute.getW( index );
return this;
},
_onChange: function ( callback ) {
this._onChangeCallback = callback;
return this;
},
_onChangeCallback: function () {}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
const _vector = new Vector3();
const _quaternion = new Quaternion();
function Vector3( x = 0, y = 0, z = 0 ) {
this.x = x;
this.y = y;
this.z = z;
}
Object.assign( Vector3.prototype, {
isVector3: true,
set: function ( x, y, z ) {
this.x = x;
this.y = y;
this.z = z;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
},
multiply: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
return this.multiplyVectors( v, w );
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
},
multiplyVectors: function ( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
},
applyEuler: function ( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
return this.applyQuaternion( _quaternion.setFromEuler( euler ) );
},
applyAxisAngle: function ( axis, angle ) {
return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) );
},
applyMatrix3: function ( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
},
applyNormalMatrix: function ( m ) {
return this.applyMatrix3( m ).normalize();
},
applyMatrix4: function ( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
},
applyQuaternion: function ( q ) {
const x = this.x, y = this.y, z = this.z;
const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// calculate quat * vector
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
},
project: function ( camera ) {
return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );
},
unproject: function ( camera ) {
return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );
},
transformDirection: function ( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
},
clampScalar: function ( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
return this;
},
clampLength: function ( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
},
// TODO lengthSquared?
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
},
manhattanLength: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
return this;
},
cross: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
return this.crossVectors( v, w );
}
return this.crossVectors( this, v );
},
crossVectors: function ( a, b ) {
const ax = a.x, ay = a.y, az = a.z;
const bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
projectOnVector: function ( v ) {
const denominator = v.lengthSq();
if ( denominator === 0 ) return this.set( 0, 0, 0 );
const scalar = v.dot( this ) / denominator;
return this.copy( v ).multiplyScalar( scalar );
},
projectOnPlane: function ( planeNormal ) {
_vector.copy( this ).projectOnVector( planeNormal );
return this.sub( _vector );
},
reflect: function ( normal ) {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
},
angleTo: function ( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( MathUtils.clamp( theta, - 1, 1 ) );
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
},
manhattanDistanceTo: function ( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
},
setFromSpherical: function ( s ) {
return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
},
setFromSphericalCoords: function ( radius, phi, theta ) {
const sinPhiRadius = Math.sin( phi ) * radius;
this.x = sinPhiRadius * Math.sin( theta );
this.y = Math.cos( phi ) * radius;
this.z = sinPhiRadius * Math.cos( theta );
return this;
},
setFromCylindrical: function ( c ) {
return this.setFromCylindricalCoords( c.radius, c.theta, c.y );
},
setFromCylindricalCoords: function ( radius, theta, y ) {
this.x = radius * Math.sin( theta );
this.y = y;
this.z = radius * Math.cos( theta );
return this;
},
setFromMatrixPosition: function ( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
},
setFromMatrixScale: function ( m ) {
const sx = this.setFromMatrixColumn( m, 0 ).length();
const sy = this.setFromMatrixColumn( m, 1 ).length();
const sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
},
setFromMatrixColumn: function ( m, index ) {
return this.fromArray( m.elements, index * 4 );
},
setFromMatrix3Column: function ( m, index ) {
return this.fromArray( m.elements, index * 3 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
},
random: function () {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
return this;
}
} );
const _v1 = new Vector3();
const _m1 = new Matrix4();
const _zero = new Vector3( 0, 0, 0 );
const _one = new Vector3( 1, 1, 1 );
const _x = new Vector3();
const _y = new Vector3();
const _z = new Vector3();
/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Matrix4() {
this.elements = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
}
Object.assign( Matrix4.prototype, {
isMatrix4: true,
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
},
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
clone: function () {
return new Matrix4().fromArray( this.elements );
},
copy: function ( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
return this;
},
copyPosition: function ( m ) {
const te = this.elements, me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
},
extractBasis: function ( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
},
makeBasis: function ( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
},
extractRotation: function ( m ) {
// this method does not support reflection matrices
const te = this.elements;
const me = m.elements;
const scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length();
const scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length();
const scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 3 ] = 0;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 7 ] = 0;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
te[ 11 ] = 0;
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
makeRotationFromEuler: function ( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
const te = this.elements;
const x = euler.x, y = euler.y, z = euler.z;
const a = Math.cos( x ), b = Math.sin( x );
const c = Math.cos( y ), d = Math.sin( y );
const e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// bottom row
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// last column
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
makeRotationFromQuaternion: function ( q ) {
return this.compose( _zero, q, _one );
},
lookAt: function ( eye, target, up ) {
const te = this.elements;
_z.subVectors( eye, target );
if ( _z.lengthSq() === 0 ) {
// eye and target are in the same position
_z.z = 1;
}
_z.normalize();
_x.crossVectors( up, _z );
if ( _x.lengthSq() === 0 ) {
// up and z are parallel
if ( Math.abs( up.z ) === 1 ) {
_z.x += 0.0001;
} else {
_z.z += 0.0001;
}
_z.normalize();
_x.crossVectors( up, _z );
}
_x.normalize();
_y.crossVectors( _z, _x );
te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;
return this;
},
multiply: function ( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
multiplyScalar: function ( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
},
determinant: function () {
const te = this.elements;
const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
},
transpose: function () {
const te = this.elements;
let tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
},
setPosition: function ( x, y, z ) {
const te = this.elements;
if ( x.isVector3 ) {
te[ 12 ] = x.x;
te[ 13 ] = x.y;
te[ 14 ] = x.z;
} else {
te[ 12 ] = x;
te[ 13 ] = y;
te[ 14 ] = z;
}
return this;
},
getInverse: function ( m, throwOnDegenerate ) {
if ( throwOnDegenerate !== undefined ) {
console.warn( "THREE.Matrix4: .getInverse() can no longer be configured to throw on degenerate." );
}
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
const te = this.elements,
me = m.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
te[ 4 ] = t12 * detInv;
te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
te[ 8 ] = t13 * detInv;
te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
te[ 12 ] = t14 * detInv;
te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
return this;
},
scale: function ( v ) {
const te = this.elements;
const x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
},
getMaxScaleOnAxis: function () {
const te = this.elements;
const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
},
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
makeRotationX: function ( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationY: function ( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationZ: function ( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
const c = Math.cos( angle );
const s = Math.sin( angle );
const t = 1 - c;
const x = axis.x, y = axis.y, z = axis.z;
const tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
},
makeScale: function ( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
},
makeShear: function ( x, y, z ) {
this.set(
1, y, z, 0,
x, 1, z, 0,
x, y, 1, 0,
0, 0, 0, 1
);
return this;
},
compose: function ( position, quaternion, scale ) {
const te = this.elements;
const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
const x2 = x + x, y2 = y + y, z2 = z + z;
const xx = x * x2, xy = x * y2, xz = x * z2;
const yy = y * y2, yz = y * z2, zz = z * z2;
const wx = w * x2, wy = w * y2, wz = w * z2;
const sx = scale.x, sy = scale.y, sz = scale.z;
te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
te[ 1 ] = ( xy + wz ) * sx;
te[ 2 ] = ( xz - wy ) * sx;
te[ 3 ] = 0;
te[ 4 ] = ( xy - wz ) * sy;
te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
te[ 6 ] = ( yz + wx ) * sy;
te[ 7 ] = 0;
te[ 8 ] = ( xz + wy ) * sz;
te[ 9 ] = ( yz - wx ) * sz;
te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
te[ 11 ] = 0;
te[ 12 ] = position.x;
te[ 13 ] = position.y;
te[ 14 ] = position.z;
te[ 15 ] = 1;
return this;
},
decompose: function ( position, quaternion, scale ) {
const te = this.elements;
let sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
let sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
let sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
const det = this.determinant();
if ( det < 0 ) sx = - sx;
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
_m1.copy( this );
const invSX = 1 / sx;
const invSY = 1 / sy;
const invSZ = 1 / sz;
_m1.elements[ 0 ] *= invSX;
_m1.elements[ 1 ] *= invSX;
_m1.elements[ 2 ] *= invSX;
_m1.elements[ 4 ] *= invSY;
_m1.elements[ 5 ] *= invSY;
_m1.elements[ 6 ] *= invSY;
_m1.elements[ 8 ] *= invSZ;
_m1.elements[ 9 ] *= invSZ;
_m1.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( _m1 );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
},
makePerspective: function ( left, right, top, bottom, near, far ) {
if ( far === undefined ) {
console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
}
const te = this.elements;
const x = 2 * near / ( right - left );
const y = 2 * near / ( top - bottom );
const a = ( right + left ) / ( right - left );
const b = ( top + bottom ) / ( top - bottom );
const c = - ( far + near ) / ( far - near );
const d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
},
makeOrthographic: function ( left, right, top, bottom, near, far ) {
const te = this.elements;
const w = 1.0 / ( right - left );
const h = 1.0 / ( top - bottom );
const p = 1.0 / ( far - near );
const x = ( right + left ) * w;
const y = ( top + bottom ) * h;
const z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
},
equals: function ( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
for ( let i = 0; i < 16; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
const _matrix = new Matrix4();
const _quaternion$1 = new Quaternion();
function Euler( x = 0, y = 0, z = 0, order = Euler.DefaultOrder ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order;
}
Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
Euler.DefaultOrder = 'XYZ';
Object.defineProperties( Euler.prototype, {
x: {
get: function () {
return this._x;
},
set: function ( value ) {
this._x = value;
this._onChangeCallback();
}
},
y: {
get: function () {
return this._y;
},
set: function ( value ) {
this._y = value;
this._onChangeCallback();
}
},
z: {
get: function () {
return this._z;
},
set: function ( value ) {
this._z = value;
this._onChangeCallback();
}
},
order: {
get: function () {
return this._order;
},
set: function ( value ) {
this._order = value;
this._onChangeCallback();
}
}
} );
Object.assign( Euler.prototype, {
isEuler: true,
set: function ( x, y, z, order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order || this._order;
this._onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._order );
},
copy: function ( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this._onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m, order, update ) {
const clamp = MathUtils.clamp;
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements;
const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
order = order || this._order;
switch ( order ) {
case 'XYZ':
this._y = Math.asin( clamp( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
break;
case 'YXZ':
this._x = Math.asin( - clamp( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.9999999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
break;
case 'ZXY':
this._x = Math.asin( clamp( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.9999999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
break;
case 'ZYX':
this._y = Math.asin( - clamp( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
break;
case 'YZX':
this._z = Math.asin( clamp( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
break;
case 'XZY':
this._z = Math.asin( - clamp( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
break;
default:
console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order );
}
this._order = order;
if ( update !== false ) this._onChangeCallback();
return this;
},
setFromQuaternion: function ( q, order, update ) {
_matrix.makeRotationFromQuaternion( q );
return this.setFromRotationMatrix( _matrix, order, update );
},
setFromVector3: function ( v, order ) {
return this.set( v.x, v.y, v.z, order || this._order );
},
reorder: function ( newOrder ) {
// WARNING: this discards revolution information -bhouston
_quaternion$1.setFromEuler( this );
return this.setFromQuaternion( _quaternion$1, newOrder );
},
equals: function ( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
},
fromArray: function ( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this._onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
},
toVector3: function ( optionalResult ) {
if ( optionalResult ) {
return optionalResult.set( this._x, this._y, this._z );
} else {
return new Vector3( this._x, this._y, this._z );
}
},
_onChange: function ( callback ) {
this._onChangeCallback = callback;
return this;
},
_onChangeCallback: function () {}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Layers() {
this.mask = 1 | 0;
}
Object.assign( Layers.prototype, {
set: function ( channel ) {
this.mask = 1 << channel | 0;
},
enable: function ( channel ) {
this.mask |= 1 << channel | 0;
},
enableAll: function () {
this.mask = 0xffffffff | 0;
},
toggle: function ( channel ) {
this.mask ^= 1 << channel | 0;
},
disable: function ( channel ) {
this.mask &= ~ ( 1 << channel | 0 );
},
disableAll: function () {
this.mask = 0;
},
test: function ( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
} );
let _object3DId = 0;
const _v1$1 = new Vector3();
const _q1 = new Quaternion();
const _m1$1 = new Matrix4();
const _target = new Vector3();
const _position = new Vector3();
const _scale = new Vector3();
const _quaternion$2 = new Quaternion();
const _xAxis = new Vector3( 1, 0, 0 );
const _yAxis = new Vector3( 0, 1, 0 );
const _zAxis = new Vector3( 0, 0, 1 );
const _addedEvent = { type: 'added' };
const _removedEvent = { type: 'removed' };
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author elephantatwork / www.elephantatwork.ch
*/
function Object3D() {
Object.defineProperty( this, 'id', { value: _object3DId ++ } );
this.uuid = MathUtils.generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = Object3D.DefaultUp.clone();
const position = new Vector3();
const rotation = new Euler();
const quaternion = new Quaternion();
const scale = new Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation._onChange( onRotationChange );
quaternion._onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
configurable: true,
enumerable: true,
value: position
},
rotation: {
configurable: true,
enumerable: true,
value: rotation
},
quaternion: {
configurable: true,
enumerable: true,
value: quaternion
},
scale: {
configurable: true,
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
} );
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.userData = {};
}
Object3D.DefaultUp = new Vector3( 0, 1, 0 );
Object3D.DefaultMatrixAutoUpdate = true;
Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: Object3D,
isObject3D: true,
onBeforeRender: function () {},
onAfterRender: function () {},
applyMatrix4: function ( matrix ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
this.matrix.premultiply( matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
},
applyQuaternion: function ( q ) {
this.quaternion.premultiply( q );
return this;
},
setRotationFromAxisAngle: function ( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
},
setRotationFromEuler: function ( euler ) {
this.quaternion.setFromEuler( euler, true );
},
setRotationFromMatrix: function ( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
},
setRotationFromQuaternion: function ( q ) {
// assumes q is normalized
this.quaternion.copy( q );
},
rotateOnAxis: function ( axis, angle ) {
// rotate object on axis in object space
// axis is assumed to be normalized
_q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( _q1 );
return this;
},
rotateOnWorldAxis: function ( axis, angle ) {
// rotate object on axis in world space
// axis is assumed to be normalized
// method assumes no rotated parent
_q1.setFromAxisAngle( axis, angle );
this.quaternion.premultiply( _q1 );
return this;
},
rotateX: function ( angle ) {
return this.rotateOnAxis( _xAxis, angle );
},
rotateY: function ( angle ) {
return this.rotateOnAxis( _yAxis, angle );
},
rotateZ: function ( angle ) {
return this.rotateOnAxis( _zAxis, angle );
},
translateOnAxis: function ( axis, distance ) {
// translate object by distance along axis in object space
// axis is assumed to be normalized
_v1$1.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( _v1$1.multiplyScalar( distance ) );
return this;
},
translateX: function ( distance ) {
return this.translateOnAxis( _xAxis, distance );
},
translateY: function ( distance ) {
return this.translateOnAxis( _yAxis, distance );
},
translateZ: function ( distance ) {
return this.translateOnAxis( _zAxis, distance );
},
localToWorld: function ( vector ) {
return vector.applyMatrix4( this.matrixWorld );
},
worldToLocal: function ( vector ) {
return vector.applyMatrix4( _m1$1.getInverse( this.matrixWorld ) );
},
lookAt: function ( x, y, z ) {
// This method does not support objects having non-uniformly-scaled parent(s)
if ( x.isVector3 ) {
_target.copy( x );
} else {
_target.set( x, y, z );
}
const parent = this.parent;
this.updateWorldMatrix( true, false );
_position.setFromMatrixPosition( this.matrixWorld );
if ( this.isCamera || this.isLight ) {
_m1$1.lookAt( _position, _target, this.up );
} else {
_m1$1.lookAt( _target, _position, this.up );
}
this.quaternion.setFromRotationMatrix( _m1$1 );
if ( parent ) {
_m1$1.extractRotation( parent.matrixWorld );
_q1.setFromRotationMatrix( _m1$1 );
this.quaternion.premultiply( _q1.inverse() );
}
},
add: function ( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
return this;
}
if ( ( object && object.isObject3D ) ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
this.children.push( object );
object.dispatchEvent( _addedEvent );
} else {
console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
}
return this;
},
remove: function ( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
return this;
}
const index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
this.children.splice( index, 1 );
object.dispatchEvent( _removedEvent );
}
return this;
},
attach: function ( object ) {
// adds object as a child of this, while maintaining the object's world transform
this.updateWorldMatrix( true, false );
_m1$1.getInverse( this.matrixWorld );
if ( object.parent !== null ) {
object.parent.updateWorldMatrix( true, false );
_m1$1.multiply( object.parent.matrixWorld );
}
object.applyMatrix4( _m1$1 );
object.updateWorldMatrix( false, false );
this.add( object );
return this;
},
getObjectById: function ( id ) {
return this.getObjectByProperty( 'id', id );
},
getObjectByName: function ( name ) {
return this.getObjectByProperty( 'name', name );
},
getObjectByProperty: function ( name, value ) {
if ( this[ name ] === value ) return this;
for ( let i = 0, l = this.children.length; i < l; i ++ ) {
const child = this.children[ i ];
const object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
},
getWorldPosition: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' );
target = new Vector3();
}
this.updateMatrixWorld( true );
return target.setFromMatrixPosition( this.matrixWorld );
},
getWorldQuaternion: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' );
target = new Quaternion();
}
this.updateMatrixWorld( true );
this.matrixWorld.decompose( _position, target, _scale );
return target;
},
getWorldScale: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldScale() target is now required' );
target = new Vector3();
}
this.updateMatrixWorld( true );
this.matrixWorld.decompose( _position, _quaternion$2, target );
return target;
},
getWorldDirection: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' );
target = new Vector3();
}
this.updateMatrixWorld( true );
const e = this.matrixWorld.elements;
return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();
},
raycast: function () {},
traverse: function ( callback ) {
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
},
traverseVisible: function ( callback ) {
if ( this.visible === false ) return;
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
},
traverseAncestors: function ( callback ) {
const parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
},
updateMatrix: function () {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
},
updateMatrixWorld: function ( force ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateMatrixWorld( force );
}
},
updateWorldMatrix: function ( updateParents, updateChildren ) {
const parent = this.parent;
if ( updateParents === true && parent !== null ) {
parent.updateWorldMatrix( true, false );
}
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
// update children
if ( updateChildren === true ) {
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateWorldMatrix( false, true );
}
}
},
toJSON: function ( meta ) {
// meta is a string when called from JSON.stringify
const isRootObject = ( meta === undefined || typeof meta === 'string' );
const output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {},
shapes: {}
};
output.metadata = {
version: 4.5,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
const object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
if ( this.frustumCulled === false ) object.frustumCulled = false;
if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder;
if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
object.layers = this.layers.mask;
object.matrix = this.matrix.toArray();
if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;
// object specific properties
if ( this.isInstancedMesh ) {
object.type = 'InstancedMesh';
object.count = this.count;
object.instanceMatrix = this.instanceMatrix.toJSON();
}
//
function serialize( library, element ) {
if ( library[ element.uuid ] === undefined ) {
library[ element.uuid ] = element.toJSON( meta );
}
return element.uuid;
}
if ( this.isMesh || this.isLine || this.isPoints ) {
object.geometry = serialize( meta.geometries, this.geometry );
const parameters = this.geometry.parameters;
if ( parameters !== undefined && parameters.shapes !== undefined ) {
const shapes = parameters.shapes;
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
serialize( meta.shapes, shape );
}
} else {
serialize( meta.shapes, shapes );
}
}
}
if ( this.material !== undefined ) {
if ( Array.isArray( this.material ) ) {
const uuids = [];
for ( let i = 0, l = this.material.length; i < l; i ++ ) {
uuids.push( serialize( meta.materials, this.material[ i ] ) );
}
object.material = uuids;
} else {
object.material = serialize( meta.materials, this.material );
}
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( let i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
if ( isRootObject ) {
const geometries = extractFromCache( meta.geometries );
const materials = extractFromCache( meta.materials );
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const shapes = extractFromCache( meta.shapes );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
if ( shapes.length > 0 ) output.shapes = shapes;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
},
clone: function ( recursive ) {
return new this.constructor().copy( this, recursive );
},
copy: function ( source, recursive ) {
if ( recursive === undefined ) recursive = true;
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( let i = 0; i < source.children.length; i ++ ) {
const child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Scene() {
Object3D.call( this );
this.type = 'Scene';
this.background = null;
this.environment = null;
this.fog = null;
this.overrideMaterial = null;
this.autoUpdate = true; // checked by the renderer
if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef
}
}
Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Scene,
isScene: true,
copy: function ( source, recursive ) {
Object3D.prototype.copy.call( this, source, recursive );
if ( source.background !== null ) this.background = source.background.clone();
if ( source.environment !== null ) this.environment = source.environment.clone();
if ( source.fog !== null ) this.fog = source.fog.clone();
if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
this.autoUpdate = source.autoUpdate;
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
},
toJSON: function ( meta ) {
const data = Object3D.prototype.toJSON.call( this, meta );
if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
if ( this.environment !== null ) data.object.environment = this.environment.toJSON( meta );
if ( this.fog !== null ) data.object.fog = this.fog.toJSON();
return data;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
const _points = [
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3()
];
const _vector$1 = new Vector3();
const _box = new Box3();
// triangle centered vertices
const _v0 = new Vector3();
const _v1$2 = new Vector3();
const _v2 = new Vector3();
// triangle edge vectors
const _f0 = new Vector3();
const _f1 = new Vector3();
const _f2 = new Vector3();
const _center = new Vector3();
const _extents = new Vector3();
const _triangleNormal = new Vector3();
const _testAxis = new Vector3();
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Box3( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );
}
Object.assign( Box3.prototype, {
isBox3: true,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromArray: function ( array ) {
let minX = + Infinity;
let minY = + Infinity;
let minZ = + Infinity;
let maxX = - Infinity;
let maxY = - Infinity;
let maxZ = - Infinity;
for ( let i = 0, l = array.length; i < l; i += 3 ) {
const x = array[ i ];
const y = array[ i + 1 ];
const z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromBufferAttribute: function ( attribute ) {
let minX = + Infinity;
let minY = + Infinity;
let minZ = + Infinity;
let maxX = - Infinity;
let maxY = - Infinity;
let maxZ = - Infinity;
for ( let i = 0, l = attribute.count; i < l; i ++ ) {
const x = attribute.getX( i );
const y = attribute.getY( i );
const z = attribute.getZ( i );
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( let i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function ( center, size ) {
const halfSize = _vector$1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
},
setFromObject: function ( object ) {
this.makeEmpty();
return this.expandByObject( object );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
},
getCenter: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getCenter() target is now required' );
target = new Vector3();
}
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getSize() target is now required' );
target = new Vector3();
}
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
expandByObject: function ( object ) {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
object.updateWorldMatrix( false, false );
const geometry = object.geometry;
if ( geometry !== undefined ) {
if ( geometry.boundingBox === null ) {
geometry.computeBoundingBox();
}
_box.copy( geometry.boundingBox );
_box.applyMatrix4( object.matrixWorld );
this.union( _box );
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
this.expandByObject( children[ i ] );
}
return this;
},
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
},
getParameter: function ( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getParameter() target is now required' );
target = new Vector3();
}
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
},
intersectsSphere: function ( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, _vector$1 );
// If that point is inside the sphere, the AABB and sphere intersect.
return _vector$1.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
},
intersectsPlane: function ( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
let min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= - plane.constant && max >= - plane.constant );
},
intersectsTriangle: function ( triangle ) {
if ( this.isEmpty() ) {
return false;
}
// compute box center and extents
this.getCenter( _center );
_extents.subVectors( this.max, _center );
// translate triangle to aabb origin
_v0.subVectors( triangle.a, _center );
_v1$2.subVectors( triangle.b, _center );
_v2.subVectors( triangle.c, _center );
// compute edge vectors for triangle
_f0.subVectors( _v1$2, _v0 );
_f1.subVectors( _v2, _v1$2 );
_f2.subVectors( _v0, _v2 );
// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
let axes = [
0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
_f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
- _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
];
if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {
return false;
}
// test 3 face normals from the aabb
axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {
return false;
}
// finally testing the face normal of the triangle
// use already existing triangle edge vectors here
_triangleNormal.crossVectors( _f0, _f1 );
axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];
return satForAxes( axes, _v0, _v1$2, _v2, _extents );
},
clampPoint: function ( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .clampPoint() target is now required' );
target = new Vector3();
}
return target.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function ( point ) {
const clampedPoint = _vector$1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
},
getBoundingSphere: function ( target ) {
if ( target === undefined ) {
console.error( 'THREE.Box3: .getBoundingSphere() target is now required' );
//target = new Sphere(); // removed to avoid cyclic dependency
}
this.getCenter( target.center );
target.radius = this.getSize( _vector$1 ).length() * 0.5;
return target;
},
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if ( this.isEmpty() ) this.makeEmpty();
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
applyMatrix4: function ( matrix ) {
// transform of empty box is an empty box.
if ( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
_points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
_points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
_points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
_points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
_points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
_points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
_points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
_points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( _points );
return this;
},
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
function satForAxes( axes, v0, v1, v2, extents ) {
for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) {
_testAxis.fromArray( axes, i );
// project the aabb onto the seperating axis
const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
// project all 3 vertices of the triangle onto the seperating axis
const p0 = v0.dot( _testAxis );
const p1 = v1.dot( _testAxis );
const p2 = v2.dot( _testAxis );
// actual test, basically see if either of the most extreme of the triangle points intersects r
if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is seperating and we can exit
return false;
}
}
return true;
}
const _box$1 = new Box3();
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
function Sphere( center, radius ) {
this.center = ( center !== undefined ) ? center : new Vector3();
this.radius = ( radius !== undefined ) ? radius : - 1;
}
Object.assign( Sphere.prototype, {
set: function ( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
},
setFromPoints: function ( points, optionalCenter ) {
const center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
_box$1.setFromPoints( points ).getCenter( center );
}
let maxRadiusSq = 0;
for ( let i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
},
isEmpty: function () {
return ( this.radius < 0 );
},
makeEmpty: function () {
this.center.set( 0, 0, 0 );
this.radius = - 1;
return this;
},
containsPoint: function ( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
},
distanceToPoint: function ( point ) {
return ( point.distanceTo( this.center ) - this.radius );
},
intersectsSphere: function ( sphere ) {
const radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
},
intersectsBox: function ( box ) {
return box.intersectsSphere( this );
},
intersectsPlane: function ( plane ) {
return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;
},
clampPoint: function ( point, target ) {
const deltaLengthSq = this.center.distanceToSquared( point );
if ( target === undefined ) {
console.warn( 'THREE.Sphere: .clampPoint() target is now required' );
target = new Vector3();
}
target.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
target.sub( this.center ).normalize();
target.multiplyScalar( this.radius ).add( this.center );
}
return target;
},
getBoundingBox: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );
target = new Box3();
}
if ( this.isEmpty() ) {
// Empty sphere produces empty bounding box
target.makeEmpty();
return target;
}
target.set( this.center, this.center );
target.expandByScalar( this.radius );
return target;
},
applyMatrix4: function ( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
},
translate: function ( offset ) {
this.center.add( offset );
return this;
},
equals: function ( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
} );
const _vector$2 = new Vector3();
const _segCenter = new Vector3();
const _segDir = new Vector3();
const _diff = new Vector3();
const _edge1 = new Vector3();
const _edge2 = new Vector3();
const _normal = new Vector3();
/**
* @author bhouston / http://clara.io
*/
function Ray( origin, direction ) {
this.origin = ( origin !== undefined ) ? origin : new Vector3();
this.direction = ( direction !== undefined ) ? direction : new Vector3( 0, 0, - 1 );
}
Object.assign( Ray.prototype, {
set: function ( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
},
at: function ( t, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Ray: .at() target is now required' );
target = new Vector3();
}
return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );
},
lookAt: function ( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
return this;
},
recast: function ( t ) {
this.origin.copy( this.at( t, _vector$2 ) );
return this;
},
closestPointToPoint: function ( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
target = new Vector3();
}
target.subVectors( point, this.origin );
const directionDistance = target.dot( this.direction );
if ( directionDistance < 0 ) {
return target.copy( this.origin );
}
return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
},
distanceToPoint: function ( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
},
distanceSqToPoint: function ( point ) {
const directionDistance = _vector$2.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
_vector$2.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
return _vector$2.distanceToSquared( point );
},
distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
_segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
_segDir.copy( v1 ).sub( v0 ).normalize();
_diff.copy( this.origin ).sub( _segCenter );
const segExtent = v0.distanceTo( v1 ) * 0.5;
const a01 = - this.direction.dot( _segDir );
const b0 = _diff.dot( this.direction );
const b1 = - _diff.dot( _segDir );
const c = _diff.lengthSq();
const det = Math.abs( 1 - a01 * a01 );
let s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
const invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter );
}
return sqrDist;
},
intersectSphere: function ( sphere, target ) {
_vector$2.subVectors( sphere.center, this.origin );
const tca = _vector$2.dot( this.direction );
const d2 = _vector$2.dot( _vector$2 ) - tca * tca;
const radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
const thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
const t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
const t1 = tca + thc;
// test to see if both t0 and t1 are behind the ray - if so, return null
if ( t0 < 0 && t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, target );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, target );
},
intersectsSphere: function ( sphere ) {
return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );
},
distanceToPlane: function ( plane ) {
const denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
},
intersectPlane: function ( plane, target ) {
const t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, target );
},
intersectsPlane: function ( plane ) {
// check if the ray lies on the plane first
const distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
const denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
},
intersectBox: function ( box, target ) {
let tmin, tmax, tymin, tymax, tzmin, tzmax;
const invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
const origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
// These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, target );
},
intersectsBox: function ( box ) {
return this.intersectBox( box, _vector$2 ) !== null;
},
intersectTriangle: function ( a, b, c, backfaceCulling, target ) {
// Compute the offset origin, edges, and normal.
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
_edge1.subVectors( b, a );
_edge2.subVectors( c, a );
_normal.crossVectors( _edge1, _edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
let DdN = this.direction.dot( _normal );
let sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
_diff.subVectors( this.origin, a );
const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
const QdN = - sign * _diff.dot( _normal );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, target );
},
applyMatrix4: function ( matrix4 ) {
this.origin.applyMatrix4( matrix4 );
this.direction.transformDirection( matrix4 );
return this;
},
equals: function ( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
} );
/**
* @author bhouston / http://clara.io
*/
const _vector1 = new Vector3();
const _vector2 = new Vector3();
const _normalMatrix = new Matrix3();
function Plane( normal, constant ) {
// normal is assumed to be normalized
this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
this.constant = ( constant !== undefined ) ? constant : 0;
}
Object.assign( Plane.prototype, {
isPlane: true,
set: function ( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
},
setComponents: function ( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
},
setFromNormalAndCoplanarPoint: function ( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal );
return this;
},
setFromCoplanarPoints: function ( a, b, c ) {
const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
},
normalize: function () {
// Note: will lead to a divide by zero if the plane is invalid.
const inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
},
negate: function () {
this.constant *= - 1;
this.normal.negate();
return this;
},
distanceToPoint: function ( point ) {
return this.normal.dot( point ) + this.constant;
},
distanceToSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
},
projectPoint: function ( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Plane: .projectPoint() target is now required' );
target = new Vector3();
}
return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );
},
intersectLine: function ( line, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Plane: .intersectLine() target is now required' );
target = new Vector3();
}
const direction = line.delta( _vector1 );
const denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return target.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return undefined;
}
const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return undefined;
}
return target.copy( direction ).multiplyScalar( t ).add( line.start );
},
intersectsLine: function ( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
const startSign = this.distanceToPoint( line.start );
const endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
},
intersectsBox: function ( box ) {
return box.intersectsPlane( this );
},
intersectsSphere: function ( sphere ) {
return sphere.intersectsPlane( this );
},
coplanarPoint: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Plane: .coplanarPoint() target is now required' );
target = new Vector3();
}
return target.copy( this.normal ).multiplyScalar( - this.constant );
},
applyMatrix4: function ( matrix, optionalNormalMatrix ) {
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );
const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );
const normal = this.normal.applyMatrix3( normalMatrix ).normalize();
this.constant = - referencePoint.dot( normal );
return this;
},
translate: function ( offset ) {
this.constant -= offset.dot( this.normal );
return this;
},
equals: function ( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
} );
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
const _v0$1 = new Vector3();
const _v1$3 = new Vector3();
const _v2$1 = new Vector3();
const _v3 = new Vector3();
const _vab = new Vector3();
const _vac = new Vector3();
const _vbc = new Vector3();
const _vap = new Vector3();
const _vbp = new Vector3();
const _vcp = new Vector3();
function Triangle( a, b, c ) {
this.a = ( a !== undefined ) ? a : new Vector3();
this.b = ( b !== undefined ) ? b : new Vector3();
this.c = ( c !== undefined ) ? c : new Vector3();
}
Object.assign( Triangle, {
getNormal: function ( a, b, c, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getNormal() target is now required' );
target = new Vector3();
}
target.subVectors( c, b );
_v0$1.subVectors( a, b );
target.cross( _v0$1 );
const targetLengthSq = target.lengthSq();
if ( targetLengthSq > 0 ) {
return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
}
return target.set( 0, 0, 0 );
},
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
getBarycoord: function ( point, a, b, c, target ) {
_v0$1.subVectors( c, a );
_v1$3.subVectors( b, a );
_v2$1.subVectors( point, a );
const dot00 = _v0$1.dot( _v0$1 );
const dot01 = _v0$1.dot( _v1$3 );
const dot02 = _v0$1.dot( _v2$1 );
const dot11 = _v1$3.dot( _v1$3 );
const dot12 = _v1$3.dot( _v2$1 );
const denom = ( dot00 * dot11 - dot01 * dot01 );
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getBarycoord() target is now required' );
target = new Vector3();
}
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return target.set( - 2, - 1, - 1 );
}
const invDenom = 1 / denom;
const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return target.set( 1 - u - v, v, u );
},
containsPoint: function ( point, a, b, c ) {
Triangle.getBarycoord( point, a, b, c, _v3 );
return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 );
},
getUV: function ( point, p1, p2, p3, uv1, uv2, uv3, target ) {
this.getBarycoord( point, p1, p2, p3, _v3 );
target.set( 0, 0 );
target.addScaledVector( uv1, _v3.x );
target.addScaledVector( uv2, _v3.y );
target.addScaledVector( uv3, _v3.z );
return target;
},
isFrontFacing: function ( a, b, c, direction ) {
_v0$1.subVectors( c, b );
_v1$3.subVectors( a, b );
// strictly front facing
return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;
}
} );
Object.assign( Triangle.prototype, {
set: function ( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
},
setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
},
getArea: function () {
_v0$1.subVectors( this.c, this.b );
_v1$3.subVectors( this.a, this.b );
return _v0$1.cross( _v1$3 ).length() * 0.5;
},
getMidpoint: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getMidpoint() target is now required' );
target = new Vector3();
}
return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
},
getNormal: function ( target ) {
return Triangle.getNormal( this.a, this.b, this.c, target );
},
getPlane: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getPlane() target is now required' );
target = new Plane();
}
return target.setFromCoplanarPoints( this.a, this.b, this.c );
},
getBarycoord: function ( point, target ) {
return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
},
getUV: function ( point, uv1, uv2, uv3, target ) {
return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );
},
containsPoint: function ( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
},
isFrontFacing: function ( direction ) {
return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
},
intersectsBox: function ( box ) {
return box.intersectsTriangle( this );
},
closestPointToPoint: function ( p, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' );
target = new Vector3();
}
const a = this.a, b = this.b, c = this.c;
let v, w;
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors( b, a );
_vac.subVectors( c, a );
_vap.subVectors( p, a );
const d1 = _vab.dot( _vap );
const d2 = _vac.dot( _vap );
if ( d1 <= 0 && d2 <= 0 ) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy( a );
}
_vbp.subVectors( p, b );
const d3 = _vab.dot( _vbp );
const d4 = _vac.dot( _vbp );
if ( d3 >= 0 && d4 <= d3 ) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy( b );
}
const vc = d1 * d4 - d3 * d2;
if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
v = d1 / ( d1 - d3 );
// edge region of AB; barycentric coords (1-v, v, 0)
return target.copy( a ).addScaledVector( _vab, v );
}
_vcp.subVectors( p, c );
const d5 = _vab.dot( _vcp );
const d6 = _vac.dot( _vcp );
if ( d6 >= 0 && d5 <= d6 ) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy( c );
}
const vb = d5 * d2 - d1 * d6;
if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
w = d2 / ( d2 - d6 );
// edge region of AC; barycentric coords (1-w, 0, w)
return target.copy( a ).addScaledVector( _vac, w );
}
const va = d3 * d6 - d5 * d4;
if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
_vbc.subVectors( c, b );
w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
// edge region of BC; barycentric coords (0, 1-w, w)
return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
}
// face region
const denom = 1 / ( va + vb + vc );
// u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
},
equals: function ( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
const _hslA = { h: 0, s: 0, l: 0 };
const _hslB = { h: 0, s: 0, l: 0 };
function Color( r, g, b ) {
if ( g === undefined && b === undefined ) {
// r is THREE.Color, hex or string
return this.set( r );
}
return this.setRGB( r, g, b );
}
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
function SRGBToLinear( c ) {
return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
}
function LinearToSRGB( c ) {
return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;
}
Object.assign( Color.prototype, {
isColor: true,
r: 1, g: 1, b: 1,
set: function ( value ) {
if ( value && value.isColor ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
return this;
},
setScalar: function ( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
},
setHex: function ( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
},
setRGB: function ( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
},
setHSL: function ( h, s, l ) {
// h,s,l ranges are in 0.0 - 1.0
h = MathUtils.euclideanModulo( h, 1 );
s = MathUtils.clamp( s, 0, 1 );
l = MathUtils.clamp( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
const q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
return this;
},
setStyle: function ( style ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
let m;
if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
let color;
const name = m[ 1 ];
const components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
handleAlpha( color[ 5 ] );
return this;
}
if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
handleAlpha( color[ 5 ] );
return this;
}
break;
case 'hsl':
case 'hsla':
if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
const h = parseFloat( color[ 1 ] ) / 360;
const s = parseInt( color[ 2 ], 10 ) / 100;
const l = parseInt( color[ 3 ], 10 ) / 100;
handleAlpha( color[ 5 ] );
return this.setHSL( h, s, l );
}
break;
}
} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
// hex color
const hex = m[ 1 ];
const size = hex.length;
if ( size === 3 ) {
// #ff0
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
return this;
} else if ( size === 6 ) {
// #ff0000
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
return this;
}
}
if ( style && style.length > 0 ) {
return this.setColorName( style );
}
return this;
},
setColorName: function ( style ) {
// color keywords
const hex = _colorKeywords[ style ];
if ( hex !== undefined ) {
// red
this.setHex( hex );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
return this;
},
clone: function () {
return new this.constructor( this.r, this.g, this.b );
},
copy: function ( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
},
copyGammaToLinear: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
this.r = Math.pow( color.r, gammaFactor );
this.g = Math.pow( color.g, gammaFactor );
this.b = Math.pow( color.b, gammaFactor );
return this;
},
copyLinearToGamma: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
const safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
this.r = Math.pow( color.r, safeInverse );
this.g = Math.pow( color.g, safeInverse );
this.b = Math.pow( color.b, safeInverse );
return this;
},
convertGammaToLinear: function ( gammaFactor ) {
this.copyGammaToLinear( this, gammaFactor );
return this;
},
convertLinearToGamma: function ( gammaFactor ) {
this.copyLinearToGamma( this, gammaFactor );
return this;
},
copySRGBToLinear: function ( color ) {
this.r = SRGBToLinear( color.r );
this.g = SRGBToLinear( color.g );
this.b = SRGBToLinear( color.b );
return this;
},
copyLinearToSRGB: function ( color ) {
this.r = LinearToSRGB( color.r );
this.g = LinearToSRGB( color.g );
this.b = LinearToSRGB( color.b );
return this;
},
convertSRGBToLinear: function () {
this.copySRGBToLinear( this );
return this;
},
convertLinearToSRGB: function () {
this.copyLinearToSRGB( this );
return this;
},
getHex: function () {
return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
},
getHexString: function () {
return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
},
getHSL: function ( target ) {
// h,s,l ranges are in 0.0 - 1.0
if ( target === undefined ) {
console.warn( 'THREE.Color: .getHSL() target is now required' );
target = { h: 0, s: 0, l: 0 };
}
const r = this.r, g = this.g, b = this.b;
const max = Math.max( r, g, b );
const min = Math.min( r, g, b );
let hue, saturation;
const lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
const delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
target.h = hue;
target.s = saturation;
target.l = lightness;
return target;
},
getStyle: function () {
return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
},
offsetHSL: function ( h, s, l ) {
this.getHSL( _hslA );
_hslA.h += h; _hslA.s += s; _hslA.l += l;
this.setHSL( _hslA.h, _hslA.s, _hslA.l );
return this;
},
add: function ( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
},
addColors: function ( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
},
addScalar: function ( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
},
sub: function ( color ) {
this.r = Math.max( 0, this.r - color.r );
this.g = Math.max( 0, this.g - color.g );
this.b = Math.max( 0, this.b - color.b );
return this;
},
multiply: function ( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
},
multiplyScalar: function ( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
},
lerp: function ( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
},
lerpHSL: function ( color, alpha ) {
this.getHSL( _hslA );
color.getHSL( _hslB );
const h = MathUtils.lerp( _hslA.h, _hslB.h, alpha );
const s = MathUtils.lerp( _hslA.s, _hslB.s, alpha );
const l = MathUtils.lerp( _hslA.l, _hslB.l, alpha );
this.setHSL( h, s, l );
return this;
},
equals: function ( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
},
fromBufferAttribute: function ( attribute, index ) {
this.r = attribute.getX( index );
this.g = attribute.getY( index );
this.b = attribute.getZ( index );
if ( attribute.normalized === true ) {
// assuming Uint8Array
this.r /= 255;
this.g /= 255;
this.b /= 255;
}
return this;
},
toJSON: function () {
return this.getHex();
}
} );
Color.NAMES = _colorKeywords;
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Face3( a, b, c, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
this.vertexNormals = Array.isArray( normal ) ? normal : [];
this.color = ( color && color.isColor ) ? color : new Color();
this.vertexColors = Array.isArray( color ) ? color : [];
this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
}
Object.assign( Face3.prototype, {
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.a = source.a;
this.b = source.b;
this.c = source.c;
this.normal.copy( source.normal );
this.color.copy( source.color );
this.materialIndex = source.materialIndex;
for ( let i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
}
for ( let i = 0, il = source.vertexColors.length; i < il; i ++ ) {
this.vertexColors[ i ] = source.vertexColors[ i ].clone();
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
let materialId = 0;
function Material() {
Object.defineProperty( this, 'id', { value: materialId ++ } );
this.uuid = MathUtils.generateUUID();
this.name = '';
this.type = 'Material';
this.fog = true;
this.blending = NormalBlending;
this.side = FrontSide;
this.flatShading = false;
this.vertexColors = false;
this.opacity = 1;
this.transparent = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.stencilWriteMask = 0xff;
this.stencilFunc = AlwaysStencilFunc;
this.stencilRef = 0;
this.stencilFuncMask = 0xff;
this.stencilFail = KeepStencilOp;
this.stencilZFail = KeepStencilOp;
this.stencilZPass = KeepStencilOp;
this.stencilWrite = false;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.shadowSide = null;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaTest = 0;
this.premultipliedAlpha = false;
this.visible = true;
this.toneMapped = true;
this.userData = {};
this.version = 0;
}
Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: Material,
isMaterial: true,
onBeforeCompile: function ( /* shaderobject, renderer */ ) {},
customProgramCacheKey: function () {
return this.onBeforeCompile.toString();
},
setValues: function ( values ) {
if ( values === undefined ) return;
for ( const key in values ) {
const newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
continue;
}
// for backward compatability if shading is set in the constructor
if ( key === 'shading' ) {
console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
this.flatShading = ( newValue === FlatShading ) ? true : false;
continue;
}
const currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
continue;
}
if ( currentValue && currentValue.isColor ) {
currentValue.set( newValue );
} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
currentValue.copy( newValue );
} else {
this[ key ] = newValue;
}
}
},
toJSON: function ( meta ) {
const isRoot = ( meta === undefined || typeof meta === 'string' );
if ( isRoot ) {
meta = {
textures: {},
images: {}
};
}
const data = {
metadata: {
version: 4.5,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color && this.color.isColor ) data.color = this.color.getHex();
if ( this.roughness !== undefined ) data.roughness = this.roughness;
if ( this.metalness !== undefined ) data.metalness = this.metalness;
if ( this.sheen && this.sheen.isColor ) data.sheen = this.sheen.getHex();
if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;
if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat;
if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness;
if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {
data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;
}
if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;
}
if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
}
if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid;
if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
if ( this.aoMap && this.aoMap.isTexture ) {
data.aoMap = this.aoMap.toJSON( meta ).uuid;
data.aoMapIntensity = this.aoMapIntensity;
}
if ( this.bumpMap && this.bumpMap.isTexture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap && this.normalMap.isTexture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalMapType = this.normalMapType;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap && this.displacementMap.isTexture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.envMap && this.envMap.isTexture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
data.reflectivity = this.reflectivity; // Scale behind envMap
data.refractionRatio = this.refractionRatio;
if ( this.combine !== undefined ) data.combine = this.combine;
if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity;
}
if ( this.gradientMap && this.gradientMap.isTexture ) {
data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
}
if ( this.size !== undefined ) data.size = this.size;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.blending !== NormalBlending ) data.blending = this.blending;
if ( this.flatShading === true ) data.flatShading = this.flatShading;
if ( this.side !== FrontSide ) data.side = this.side;
if ( this.vertexColors ) data.vertexColors = true;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
data.depthFunc = this.depthFunc;
data.depthTest = this.depthTest;
data.depthWrite = this.depthWrite;
data.stencilWrite = this.stencilWrite;
data.stencilWriteMask = this.stencilWriteMask;
data.stencilFunc = this.stencilFunc;
data.stencilRef = this.stencilRef;
data.stencilFuncMask = this.stencilFuncMask;
data.stencilFail = this.stencilFail;
data.stencilZFail = this.stencilZFail;
data.stencilZPass = this.stencilZPass;
// rotation (SpriteMaterial)
if ( this.rotation && this.rotation !== 0 ) data.rotation = this.rotation;
if ( this.polygonOffset === true ) data.polygonOffset = true;
if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor;
if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits;
if ( this.linewidth && this.linewidth !== 1 ) data.linewidth = this.linewidth;
if ( this.dashSize !== undefined ) data.dashSize = this.dashSize;
if ( this.gapSize !== undefined ) data.gapSize = this.gapSize;
if ( this.scale !== undefined ) data.scale = this.scale;
if ( this.dithering === true ) data.dithering = true;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;
if ( this.morphTargets === true ) data.morphTargets = true;
if ( this.morphNormals === true ) data.morphNormals = true;
if ( this.skinning === true ) data.skinning = true;
if ( this.visible === false ) data.visible = false;
if ( this.toneMapped === false ) data.toneMapped = false;
if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData;
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.fog = source.fog;
this.blending = source.blending;
this.side = source.side;
this.flatShading = source.flatShading;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.stencilWriteMask = source.stencilWriteMask;
this.stencilFunc = source.stencilFunc;
this.stencilRef = source.stencilRef;
this.stencilFuncMask = source.stencilFuncMask;
this.stencilFail = source.stencilFail;
this.stencilZFail = source.stencilZFail;
this.stencilZPass = source.stencilZPass;
this.stencilWrite = source.stencilWrite;
const srcPlanes = source.clippingPlanes;
let dstPlanes = null;
if ( srcPlanes !== null ) {
const n = srcPlanes.length;
dstPlanes = new Array( n );
for ( let i = 0; i !== n; ++ i ) {
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
}
this.clippingPlanes = dstPlanes;
this.clipIntersection = source.clipIntersection;
this.clipShadows = source.clipShadows;
this.shadowSide = source.shadowSide;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.premultipliedAlpha = source.premultipliedAlpha;
this.visible = source.visible;
this.toneMapped = source.toneMapped;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
Object.defineProperty( Material.prototype, 'needsUpdate', {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>
* }
*/
function MeshBasicMaterial( parameters ) {
Material.call( this );
this.type = 'MeshBasicMaterial';
this.color = new Color( 0xffffff ); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.setValues( parameters );
}
MeshBasicMaterial.prototype = Object.create( Material.prototype );
MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
MeshBasicMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
const _vector$3 = new Vector3();
const _vector2$1 = new Vector2();
function BufferAttribute( array, itemSize, normalized ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.name = '';
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized === true;
this.usage = StaticDrawUsage;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
}
Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
Object.assign( BufferAttribute.prototype, {
isBufferAttribute: true,
onUploadCallback: function () {},
setUsage: function ( value ) {
this.usage = value;
return this;
},
copy: function ( source ) {
this.name = source.name;
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.usage = source.usage;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( let i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
copyArray: function ( array ) {
this.array.set( array );
return this;
},
copyColorsArray: function ( colors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = colors.length; i < l; i ++ ) {
let color = colors[ i ];
if ( color === undefined ) {
console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
color = new Color();
}
array[ offset ++ ] = color.r;
array[ offset ++ ] = color.g;
array[ offset ++ ] = color.b;
}
return this;
},
copyVector2sArray: function ( vectors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = vectors.length; i < l; i ++ ) {
let vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
vector = new Vector2();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
}
return this;
},
copyVector3sArray: function ( vectors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = vectors.length; i < l; i ++ ) {
let vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
vector = new Vector3();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
}
return this;
},
copyVector4sArray: function ( vectors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = vectors.length; i < l; i ++ ) {
let vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
vector = new Vector4();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
array[ offset ++ ] = vector.w;
}
return this;
},
applyMatrix3: function ( m ) {
if ( this.itemSize === 2 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector2$1.fromBufferAttribute( this, i );
_vector2$1.applyMatrix3( m );
this.setXY( i, _vector2$1.x, _vector2$1.y, );
}
} else if ( this.itemSize === 3 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$3.fromBufferAttribute( this, i );
_vector$3.applyMatrix3( m );
this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
}
}
return this;
},
applyMatrix4: function ( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$3.x = this.getX( i );
_vector$3.y = this.getY( i );
_vector$3.z = this.getZ( i );
_vector$3.applyMatrix4( m );
this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
}
return this;
},
applyNormalMatrix: function ( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$3.x = this.getX( i );
_vector$3.y = this.getY( i );
_vector$3.z = this.getZ( i );
_vector$3.applyNormalMatrix( m );
this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
}
return this;
},
transformDirection: function ( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$3.x = this.getX( i );
_vector$3.y = this.getY( i );
_vector$3.z = this.getZ( i );
_vector$3.transformDirection( m );
this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
getX: function ( index ) {
return this.array[ index * this.itemSize ];
},
setX: function ( index, x ) {
this.array[ index * this.itemSize ] = x;
return this;
},
getY: function ( index ) {
return this.array[ index * this.itemSize + 1 ];
},
setY: function ( index, y ) {
this.array[ index * this.itemSize + 1 ] = y;
return this;
},
getZ: function ( index ) {
return this.array[ index * this.itemSize + 2 ];
},
setZ: function ( index, z ) {
this.array[ index * this.itemSize + 2 ] = z;
return this;
},
getW: function ( index ) {
return this.array[ index * this.itemSize + 3 ];
},
setW: function ( index, w ) {
this.array[ index * this.itemSize + 3 ] = w;
return this;
},
setXY: function ( index, x, y ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
},
onUpload: function ( callback ) {
this.onUploadCallback = callback;
return this;
},
clone: function () {
return new this.constructor( this.array, this.itemSize ).copy( this );
},
toJSON: function () {
return {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: Array.prototype.slice.call( this.array ),
normalized: this.normalized
};
}
} );
//
function Int8BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized );
}
Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;
function Uint8BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized );
}
Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;
function Uint8ClampedBufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized );
}
Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;
function Int16BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized );
}
Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;
function Uint16BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized );
}
Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;
function Int32BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized );
}
Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;
function Uint32BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized );
}
Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;
function Float32BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized );
}
Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;
function Float64BufferAttribute( array, itemSize, normalized ) {
BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized );
}
Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;
/**
* @author mrdoob / http://mrdoob.com/
*/
function DirectGeometry() {
this.vertices = [];
this.normals = [];
this.colors = [];
this.uvs = [];
this.uvs2 = [];
this.groups = [];
this.morphTargets = {};
this.skinWeights = [];
this.skinIndices = [];
// this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.groupsNeedUpdate = false;
}
Object.assign( DirectGeometry.prototype, {
computeGroups: function ( geometry ) {
const groups = [];
let group, i;
let materialIndex = undefined;
const faces = geometry.faces;
for ( i = 0; i < faces.length; i ++ ) {
const face = faces[ i ];
// materials
if ( face.materialIndex !== materialIndex ) {
materialIndex = face.materialIndex;
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
group = {
start: i * 3,
materialIndex: materialIndex
};
}
}
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
this.groups = groups;
},
fromGeometry: function ( geometry ) {
const faces = geometry.faces;
const vertices = geometry.vertices;
const faceVertexUvs = geometry.faceVertexUvs;
const hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
const hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
// morphs
const morphTargets = geometry.morphTargets;
const morphTargetsLength = morphTargets.length;
let morphTargetsPosition;
if ( morphTargetsLength > 0 ) {
morphTargetsPosition = [];
for ( let i = 0; i < morphTargetsLength; i ++ ) {
morphTargetsPosition[ i ] = {
name: morphTargets[ i ].name,
data: []
};
}
this.morphTargets.position = morphTargetsPosition;
}
const morphNormals = geometry.morphNormals;
const morphNormalsLength = morphNormals.length;
let morphTargetsNormal;
if ( morphNormalsLength > 0 ) {
morphTargetsNormal = [];
for ( let i = 0; i < morphNormalsLength; i ++ ) {
morphTargetsNormal[ i ] = {
name: morphNormals[ i ].name,
data: []
};
}
this.morphTargets.normal = morphTargetsNormal;
}
// skins
const skinIndices = geometry.skinIndices;
const skinWeights = geometry.skinWeights;
const hasSkinIndices = skinIndices.length === vertices.length;
const hasSkinWeights = skinWeights.length === vertices.length;
//
if ( vertices.length > 0 && faces.length === 0 ) {
console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );
}
for ( let i = 0; i < faces.length; i ++ ) {
const face = faces[ i ];
this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
const vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
} else {
const normal = face.normal;
this.normals.push( normal, normal, normal );
}
const vertexColors = face.vertexColors;
if ( vertexColors.length === 3 ) {
this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
} else {
const color = face.color;
this.colors.push( color, color, color );
}
if ( hasFaceVertexUv === true ) {
const vertexUvs = faceVertexUvs[ 0 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
this.uvs.push( new Vector2(), new Vector2(), new Vector2() );
}
}
if ( hasFaceVertexUv2 === true ) {
const vertexUvs = faceVertexUvs[ 1 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );
}
}
// morphs
for ( let j = 0; j < morphTargetsLength; j ++ ) {
const morphTarget = morphTargets[ j ].vertices;
morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
}
for ( let j = 0; j < morphNormalsLength; j ++ ) {
const morphNormal = morphNormals[ j ].vertexNormals[ i ];
morphTargetsNormal[ j ].data.push( morphNormal.a, morphNormal.b, morphNormal.c );
}
// skins
if ( hasSkinIndices ) {
this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
}
if ( hasSkinWeights ) {
this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
}
}
this.computeGroups( geometry );
this.verticesNeedUpdate = geometry.verticesNeedUpdate;
this.normalsNeedUpdate = geometry.normalsNeedUpdate;
this.colorsNeedUpdate = geometry.colorsNeedUpdate;
this.uvsNeedUpdate = geometry.uvsNeedUpdate;
this.groupsNeedUpdate = geometry.groupsNeedUpdate;
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function arrayMax( array ) {
if ( array.length === 0 ) return - Infinity;
let max = array[ 0 ];
for ( let i = 1, l = array.length; i < l; ++ i ) {
if ( array[ i ] > max ) max = array[ i ];
}
return max;
}
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
let _bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id
const _m1$2 = new Matrix4();
const _obj = new Object3D();
const _offset = new Vector3();
const _box$2 = new Box3();
const _boxMorphTargets = new Box3();
const _vector$4 = new Vector3();
function BufferGeometry() {
Object.defineProperty( this, 'id', { value: _bufferGeometryId += 2 } );
this.uuid = MathUtils.generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.morphTargetsRelative = false;
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
this.userData = {};
}
BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: BufferGeometry,
isBufferGeometry: true,
getIndex: function () {
return this.index;
},
setIndex: function ( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
},
getAttribute: function ( name ) {
return this.attributes[ name ];
},
setAttribute: function ( name, attribute ) {
this.attributes[ name ] = attribute;
return this;
},
deleteAttribute: function ( name ) {
delete this.attributes[ name ];
return this;
},
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex !== undefined ? materialIndex : 0
} );
},
clearGroups: function () {
this.groups = [];
},
setDrawRange: function ( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
},
applyMatrix4: function ( matrix ) {
const position = this.attributes.position;
if ( position !== undefined ) {
position.applyMatrix4( matrix );
position.needsUpdate = true;
}
const normal = this.attributes.normal;
if ( normal !== undefined ) {
const normalMatrix = new Matrix3().getNormalMatrix( matrix );
normal.applyNormalMatrix( normalMatrix );
normal.needsUpdate = true;
}
const tangent = this.attributes.tangent;
if ( tangent !== undefined ) {
tangent.transformDirection( matrix );
tangent.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
},
rotateX: function ( angle ) {
// rotate geometry around world x-axis
_m1$2.makeRotationX( angle );
this.applyMatrix4( _m1$2 );
return this;
},
rotateY: function ( angle ) {
// rotate geometry around world y-axis
_m1$2.makeRotationY( angle );
this.applyMatrix4( _m1$2 );
return this;
},
rotateZ: function ( angle ) {
// rotate geometry around world z-axis
_m1$2.makeRotationZ( angle );
this.applyMatrix4( _m1$2 );
return this;
},
translate: function ( x, y, z ) {
// translate geometry
_m1$2.makeTranslation( x, y, z );
this.applyMatrix4( _m1$2 );
return this;
},
scale: function ( x, y, z ) {
// scale geometry
_m1$2.makeScale( x, y, z );
this.applyMatrix4( _m1$2 );
return this;
},
lookAt: function ( vector ) {
_obj.lookAt( vector );
_obj.updateMatrix();
this.applyMatrix4( _obj.matrix );
return this;
},
center: function () {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset ).negate();
this.translate( _offset.x, _offset.y, _offset.z );
return this;
},
setFromObject: function ( object ) {
// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
const geometry = object.geometry;
if ( object.isPoints || object.isLine ) {
const positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
const colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );
this.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
this.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
const lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );
this.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
} else if ( object.isMesh ) {
if ( geometry && geometry.isGeometry ) {
this.fromGeometry( geometry );
}
}
return this;
},
setFromPoints: function ( points ) {
const position = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
position.push( point.x, point.y, point.z || 0 );
}
this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );
return this;
},
updateFromObject: function ( object ) {
let geometry = object.geometry;
if ( object.isMesh ) {
let direct = geometry.__directGeometry;
if ( geometry.elementsNeedUpdate === true ) {
direct = undefined;
geometry.elementsNeedUpdate = false;
}
if ( direct === undefined ) {
return this.fromGeometry( geometry );
}
direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
geometry.verticesNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.groupsNeedUpdate = false;
geometry = direct;
}
if ( geometry.verticesNeedUpdate === true ) {
const attribute = this.attributes.position;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.vertices );
attribute.needsUpdate = true;
}
geometry.verticesNeedUpdate = false;
}
if ( geometry.normalsNeedUpdate === true ) {
const attribute = this.attributes.normal;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.normals );
attribute.needsUpdate = true;
}
geometry.normalsNeedUpdate = false;
}
if ( geometry.colorsNeedUpdate === true ) {
const attribute = this.attributes.color;
if ( attribute !== undefined ) {
attribute.copyColorsArray( geometry.colors );
attribute.needsUpdate = true;
}
geometry.colorsNeedUpdate = false;
}
if ( geometry.uvsNeedUpdate ) {
const attribute = this.attributes.uv;
if ( attribute !== undefined ) {
attribute.copyVector2sArray( geometry.uvs );
attribute.needsUpdate = true;
}
geometry.uvsNeedUpdate = false;
}
if ( geometry.lineDistancesNeedUpdate ) {
const attribute = this.attributes.lineDistance;
if ( attribute !== undefined ) {
attribute.copyArray( geometry.lineDistances );
attribute.needsUpdate = true;
}
geometry.lineDistancesNeedUpdate = false;
}
if ( geometry.groupsNeedUpdate ) {
geometry.computeGroups( object.geometry );
this.groups = geometry.groups;
geometry.groupsNeedUpdate = false;
}
return this;
},
fromGeometry: function ( geometry ) {
geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );
return this.fromDirectGeometry( geometry.__directGeometry );
},
fromDirectGeometry: function ( geometry ) {
const positions = new Float32Array( geometry.vertices.length * 3 );
this.setAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
if ( geometry.normals.length > 0 ) {
const normals = new Float32Array( geometry.normals.length * 3 );
this.setAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
}
if ( geometry.colors.length > 0 ) {
const colors = new Float32Array( geometry.colors.length * 3 );
this.setAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
}
if ( geometry.uvs.length > 0 ) {
const uvs = new Float32Array( geometry.uvs.length * 2 );
this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
}
if ( geometry.uvs2.length > 0 ) {
const uvs2 = new Float32Array( geometry.uvs2.length * 2 );
this.setAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
}
// groups
this.groups = geometry.groups;
// morphs
for ( const name in geometry.morphTargets ) {
const array = [];
const morphTargets = geometry.morphTargets[ name ];
for ( let i = 0, l = morphTargets.length; i < l; i ++ ) {
const morphTarget = morphTargets[ i ];
const attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 );
attribute.name = morphTarget.name;
array.push( attribute.copyVector3sArray( morphTarget.data ) );
}
this.morphAttributes[ name ] = array;
}
// skinning
if ( geometry.skinIndices.length > 0 ) {
const skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
this.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
}
if ( geometry.skinWeights.length > 0 ) {
const skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
this.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
}
//
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_box$2.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$4.addVectors( this.boundingBox.min, _box$2.min );
this.boundingBox.expandByPoint( _vector$4 );
_vector$4.addVectors( this.boundingBox.max, _box$2.max );
this.boundingBox.expandByPoint( _vector$4 );
} else {
this.boundingBox.expandByPoint( _box$2.min );
this.boundingBox.expandByPoint( _box$2.max );
}
}
}
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
},
computeBoundingSphere: function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position ) {
// first, find the center of the bounding sphere
const center = this.boundingSphere.center;
_box$2.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_boxMorphTargets.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$4.addVectors( _box$2.min, _boxMorphTargets.min );
_box$2.expandByPoint( _vector$4 );
_vector$4.addVectors( _box$2.max, _boxMorphTargets.max );
_box$2.expandByPoint( _vector$4 );
} else {
_box$2.expandByPoint( _boxMorphTargets.min );
_box$2.expandByPoint( _boxMorphTargets.max );
}
}
}
_box$2.getCenter( center );
// second, try to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
let maxRadiusSq = 0;
for ( let i = 0, il = position.count; i < il; i ++ ) {
_vector$4.fromBufferAttribute( position, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );
}
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
const morphTargetsRelative = this.morphTargetsRelative;
for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) {
_vector$4.fromBufferAttribute( morphAttribute, j );
if ( morphTargetsRelative ) {
_offset.fromBufferAttribute( position, j );
_vector$4.add( _offset );
}
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );
}
}
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
},
computeFaceNormals: function () {
// backwards compatibility
},
computeVertexNormals: function () {
const index = this.index;
const positionAttribute = this.getAttribute( 'position' );
if ( positionAttribute !== undefined ) {
let normalAttribute = this.getAttribute( 'normal' );
if ( normalAttribute === undefined ) {
normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 );
this.setAttribute( 'normal', normalAttribute );
} else {
// reset existing normals to zero
for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) {
normalAttribute.setXYZ( i, 0, 0, 0 );
}
}
const pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
const nA = new Vector3(), nB = new Vector3(), nC = new Vector3();
const cb = new Vector3(), ab = new Vector3();
// indexed elements
if ( index ) {
for ( let i = 0, il = index.count; i < il; i += 3 ) {
const vA = index.getX( i + 0 );
const vB = index.getX( i + 1 );
const vC = index.getX( i + 2 );
pA.fromBufferAttribute( positionAttribute, vA );
pB.fromBufferAttribute( positionAttribute, vB );
pC.fromBufferAttribute( positionAttribute, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
nA.fromBufferAttribute( normalAttribute, vA );
nB.fromBufferAttribute( normalAttribute, vB );
nC.fromBufferAttribute( normalAttribute, vC );
nA.add( cb );
nB.add( cb );
nC.add( cb );
normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z );
normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z );
normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z );
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) {
pA.fromBufferAttribute( positionAttribute, i + 0 );
pB.fromBufferAttribute( positionAttribute, i + 1 );
pC.fromBufferAttribute( positionAttribute, i + 2 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z );
}
}
this.normalizeNormals();
normalAttribute.needsUpdate = true;
}
},
merge: function ( geometry, offset ) {
if ( ! ( geometry && geometry.isBufferGeometry ) ) {
console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
return;
}
if ( offset === undefined ) {
offset = 0;
console.warn(
'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. '
+ 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'
);
}
const attributes = this.attributes;
for ( const key in attributes ) {
if ( geometry.attributes[ key ] === undefined ) continue;
const attribute1 = attributes[ key ];
const attributeArray1 = attribute1.array;
const attribute2 = geometry.attributes[ key ];
const attributeArray2 = attribute2.array;
const attributeOffset = attribute2.itemSize * offset;
const length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset );
for ( let i = 0, j = attributeOffset; i < length; i ++, j ++ ) {
attributeArray1[ j ] = attributeArray2[ i ];
}
}
return this;
},
normalizeNormals: function () {
const normals = this.attributes.normal;
for ( let i = 0, il = normals.count; i < il; i ++ ) {
_vector$4.fromBufferAttribute( normals, i );
_vector$4.normalize();
normals.setXYZ( i, _vector$4.x, _vector$4.y, _vector$4.z );
}
},
toNonIndexed: function () {
function convertBufferAttribute( attribute, indices ) {
const array = attribute.array;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array2 = new array.constructor( indices.length * itemSize );
let index = 0, index2 = 0;
for ( let i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( let j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
return new BufferAttribute( array2, itemSize, normalized );
}
//
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
return this;
}
const geometry2 = new BufferGeometry();
const indices = this.index.array;
const attributes = this.attributes;
// attributes
for ( const name in attributes ) {
const attribute = attributes[ name ];
const newAttribute = convertBufferAttribute( attribute, indices );
geometry2.setAttribute( name, newAttribute );
}
// morph attributes
const morphAttributes = this.morphAttributes;
for ( const name in morphAttributes ) {
const morphArray = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {
const attribute = morphAttribute[ i ];
const newAttribute = convertBufferAttribute( attribute, indices );
morphArray.push( newAttribute );
}
geometry2.morphAttributes[ name ] = morphArray;
}
geometry2.morphTargetsRelative = this.morphTargetsRelative;
// groups
const groups = this.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
geometry2.addGroup( group.start, group.count, group.materialIndex );
}
return geometry2;
},
toJSON: function () {
const data = {
metadata: {
version: 4.5,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;
if ( this.parameters !== undefined ) {
const parameters = this.parameters;
for ( const key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
data.data = { attributes: {} };
const index = this.index;
if ( index !== null ) {
data.data.index = {
type: index.array.constructor.name,
array: Array.prototype.slice.call( index.array )
};
}
const attributes = this.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
const attributeData = attribute.toJSON( data.data );
if ( attribute.name !== '' ) attributeData.name = attribute.name;
data.data.attributes[ key ] = attributeData;
}
const morphAttributes = {};
let hasMorphAttributes = false;
for ( const key in this.morphAttributes ) {
const attributeArray = this.morphAttributes[ key ];
const array = [];
for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {
const attribute = attributeArray[ i ];
const attributeData = attribute.toJSON( data.data );
if ( attribute.name !== '' ) attributeData.name = attribute.name;
array.push( attributeData );
}
if ( array.length > 0 ) {
morphAttributes[ key ] = array;
hasMorphAttributes = true;
}
}
if ( hasMorphAttributes ) {
data.data.morphAttributes = morphAttributes;
data.data.morphTargetsRelative = this.morphTargetsRelative;
}
const groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
const boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
},
clone: function () {
/*
// Handle primitives
const parameters = this.parameters;
if ( parameters !== undefined ) {
const values = [];
for ( const key in parameters ) {
values.push( parameters[ key ] );
}
const geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new BufferGeometry().copy( this );
},
copy: function ( source ) {
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
// used for storing cloned, shared data
const data = {};
// name
this.name = source.name;
// index
const index = source.index;
if ( index !== null ) {
this.setIndex( index.clone( data ) );
}
// attributes
const attributes = source.attributes;
for ( const name in attributes ) {
const attribute = attributes[ name ];
this.setAttribute( name, attribute.clone( data ) );
}
// morph attributes
const morphAttributes = source.morphAttributes;
for ( const name in morphAttributes ) {
const array = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) {
array.push( morphAttribute[ i ].clone( data ) );
}
this.morphAttributes[ name ] = array;
}
this.morphTargetsRelative = source.morphTargetsRelative;
// groups
const groups = source.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
// bounding box
const boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
const boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count;
// user data
this.userData = source.userData;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author jonobr1 / http://jonobr1.com/
*/
const _inverseMatrix = new Matrix4();
const _ray = new Ray();
const _sphere = new Sphere();
const _vA = new Vector3();
const _vB = new Vector3();
const _vC = new Vector3();
const _tempA = new Vector3();
const _tempB = new Vector3();
const _tempC = new Vector3();
const _morphA = new Vector3();
const _morphB = new Vector3();
const _morphC = new Vector3();
const _uvA = new Vector2();
const _uvB = new Vector2();
const _uvC = new Vector2();
const _intersectionPoint = new Vector3();
const _intersectionPointWorld = new Vector3();
function Mesh( geometry, material ) {
Object3D.call( this );
this.type = 'Mesh';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new MeshBasicMaterial();
this.updateMorphTargets();
}
Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Mesh,
isMesh: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
if ( source.morphTargetInfluences !== undefined ) {
this.morphTargetInfluences = source.morphTargetInfluences.slice();
}
if ( source.morphTargetDictionary !== undefined ) {
this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );
}
this.material = source.material;
this.geometry = source.geometry;
return this;
},
updateMorphTargets: function () {
const geometry = this.geometry;
if ( geometry.isBufferGeometry ) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if ( morphTargets !== undefined && morphTargets.length > 0 ) {
console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
}
}
},
raycast: function ( raycaster, intersects ) {
const geometry = this.geometry;
const material = this.material;
const matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere.copy( geometry.boundingSphere );
_sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( _sphere ) === false ) return;
//
_inverseMatrix.getInverse( matrixWorld );
_ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( _ray.intersectsBox( geometry.boundingBox ) === false ) return;
}
let intersection;
if ( geometry.isBufferGeometry ) {
const index = geometry.index;
const position = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
const uv = geometry.attributes.uv;
const uv2 = geometry.attributes.uv2;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
if ( index !== null ) {
// indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = index.getX( j );
const b = index.getX( j + 1 );
const c = index.getX( j + 2 );
intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = index.getX( i );
const b = index.getX( i + 1 );
const c = index.getX( i + 2 );
intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
intersects.push( intersection );
}
}
}
} else if ( position !== undefined ) {
// non-indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = j;
const b = j + 1;
const c = j + 2;
intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( position.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = i;
const b = i + 1;
const c = i + 2;
intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
intersects.push( intersection );
}
}
}
}
} else if ( geometry.isGeometry ) {
const isMultiMaterial = Array.isArray( material );
const vertices = geometry.vertices;
const faces = geometry.faces;
let uvs;
const faceVertexUvs = geometry.faceVertexUvs[ 0 ];
if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;
for ( let f = 0, fl = faces.length; f < fl; f ++ ) {
const face = faces[ f ];
const faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;
if ( faceMaterial === undefined ) continue;
const fvA = vertices[ face.a ];
const fvB = vertices[ face.b ];
const fvC = vertices[ face.c ];
intersection = checkIntersection( this, faceMaterial, raycaster, _ray, fvA, fvB, fvC, _intersectionPoint );
if ( intersection ) {
if ( uvs && uvs[ f ] ) {
const uvs_f = uvs[ f ];
_uvA.copy( uvs_f[ 0 ] );
_uvB.copy( uvs_f[ 1 ] );
_uvC.copy( uvs_f[ 2 ] );
intersection.uv = Triangle.getUV( _intersectionPoint, fvA, fvB, fvC, _uvA, _uvB, _uvC, new Vector2() );
}
intersection.face = face;
intersection.faceIndex = f;
intersects.push( intersection );
}
}
}
}
} );
function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {
let intersect;
if ( material.side === BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );
}
if ( intersect === null ) return null;
_intersectionPointWorld.copy( point );
_intersectionPointWorld.applyMatrix4( object.matrixWorld );
const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: _intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) {
_vA.fromBufferAttribute( position, a );
_vB.fromBufferAttribute( position, b );
_vC.fromBufferAttribute( position, c );
const morphInfluences = object.morphTargetInfluences;
if ( material.morphTargets && morphPosition && morphInfluences ) {
_morphA.set( 0, 0, 0 );
_morphB.set( 0, 0, 0 );
_morphC.set( 0, 0, 0 );
for ( let i = 0, il = morphPosition.length; i < il; i ++ ) {
const influence = morphInfluences[ i ];
const morphAttribute = morphPosition[ i ];
if ( influence === 0 ) continue;
_tempA.fromBufferAttribute( morphAttribute, a );
_tempB.fromBufferAttribute( morphAttribute, b );
_tempC.fromBufferAttribute( morphAttribute, c );
if ( morphTargetsRelative ) {
_morphA.addScaledVector( _tempA, influence );
_morphB.addScaledVector( _tempB, influence );
_morphC.addScaledVector( _tempC, influence );
} else {
_morphA.addScaledVector( _tempA.sub( _vA ), influence );
_morphB.addScaledVector( _tempB.sub( _vB ), influence );
_morphC.addScaledVector( _tempC.sub( _vC ), influence );
}
}
_vA.add( _morphA );
_vB.add( _morphB );
_vC.add( _morphC );
}
if ( object.isSkinnedMesh ) {
object.boneTransform( a, _vA );
object.boneTransform( b, _vB );
object.boneTransform( c, _vC );
}
const intersection = checkIntersection( object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint );
if ( intersection ) {
if ( uv ) {
_uvA.fromBufferAttribute( uv, a );
_uvB.fromBufferAttribute( uv, b );
_uvC.fromBufferAttribute( uv, c );
intersection.uv = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );
}
if ( uv2 ) {
_uvA.fromBufferAttribute( uv2, a );
_uvB.fromBufferAttribute( uv2, b );
_uvC.fromBufferAttribute( uv2, c );
intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );
}
const face = new Face3( a, b, c );
Triangle.getNormal( _vA, _vB, _vC, face.normal );
intersection.face = face;
}
return intersection;
}
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author bhouston / http://clara.io
*/
let _geometryId = 0; // Geometry uses even numbers as Id
const _m1$3 = new Matrix4();
const _obj$1 = new Object3D();
const _offset$1 = new Vector3();
function Geometry() {
Object.defineProperty( this, 'id', { value: _geometryId += 2 } );
this.uuid = MathUtils.generateUUID();
this.name = '';
this.type = 'Geometry';
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.elementsNeedUpdate = false;
this.verticesNeedUpdate = false;
this.uvsNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.lineDistancesNeedUpdate = false;
this.groupsNeedUpdate = false;
}
Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: Geometry,
isGeometry: true,
applyMatrix4: function ( matrix ) {
const normalMatrix = new Matrix3().getNormalMatrix( matrix );
for ( let i = 0, il = this.vertices.length; i < il; i ++ ) {
const vertex = this.vertices[ i ];
vertex.applyMatrix4( matrix );
}
for ( let i = 0, il = this.faces.length; i < il; i ++ ) {
const face = this.faces[ i ];
face.normal.applyMatrix3( normalMatrix ).normalize();
for ( let j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
}
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
this.verticesNeedUpdate = true;
this.normalsNeedUpdate = true;
return this;
},
rotateX: function ( angle ) {
// rotate geometry around world x-axis
_m1$3.makeRotationX( angle );
this.applyMatrix4( _m1$3 );
return this;
},
rotateY: function ( angle ) {
// rotate geometry around world y-axis
_m1$3.makeRotationY( angle );
this.applyMatrix4( _m1$3 );
return this;
},
rotateZ: function ( angle ) {
// rotate geometry around world z-axis
_m1$3.makeRotationZ( angle );
this.applyMatrix4( _m1$3 );
return this;
},
translate: function ( x, y, z ) {
// translate geometry
_m1$3.makeTranslation( x, y, z );
this.applyMatrix4( _m1$3 );
return this;
},
scale: function ( x, y, z ) {
// scale geometry
_m1$3.makeScale( x, y, z );
this.applyMatrix4( _m1$3 );
return this;
},
lookAt: function ( vector ) {
_obj$1.lookAt( vector );
_obj$1.updateMatrix();
this.applyMatrix4( _obj$1.matrix );
return this;
},
fromBufferGeometry: function ( geometry ) {
const scope = this;
const index = geometry.index !== null ? geometry.index : undefined;
const attributes = geometry.attributes;
if ( attributes.position === undefined ) {
console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' );
return this;
}
const position = attributes.position;
const normal = attributes.normal;
const color = attributes.color;
const uv = attributes.uv;
const uv2 = attributes.uv2;
if ( uv2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
for ( let i = 0; i < position.count; i ++ ) {
scope.vertices.push( new Vector3().fromBufferAttribute( position, i ) );
if ( color !== undefined ) {
scope.colors.push( new Color().fromBufferAttribute( color, i ) );
}
}
function addFace( a, b, c, materialIndex ) {
const vertexColors = ( color === undefined ) ? [] : [
scope.colors[ a ].clone(),
scope.colors[ b ].clone(),
scope.colors[ c ].clone()
];
const vertexNormals = ( normal === undefined ) ? [] : [
new Vector3().fromBufferAttribute( normal, a ),
new Vector3().fromBufferAttribute( normal, b ),
new Vector3().fromBufferAttribute( normal, c )
];
const face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
scope.faces.push( face );
if ( uv !== undefined ) {
scope.faceVertexUvs[ 0 ].push( [
new Vector2().fromBufferAttribute( uv, a ),
new Vector2().fromBufferAttribute( uv, b ),
new Vector2().fromBufferAttribute( uv, c )
] );
}
if ( uv2 !== undefined ) {
scope.faceVertexUvs[ 1 ].push( [
new Vector2().fromBufferAttribute( uv2, a ),
new Vector2().fromBufferAttribute( uv2, b ),
new Vector2().fromBufferAttribute( uv2, c )
] );
}
}
const groups = geometry.groups;
if ( groups.length > 0 ) {
for ( let i = 0; i < groups.length; i ++ ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
if ( index !== undefined ) {
addFace( index.getX( j ), index.getX( j + 1 ), index.getX( j + 2 ), group.materialIndex );
} else {
addFace( j, j + 1, j + 2, group.materialIndex );
}
}
}
} else {
if ( index !== undefined ) {
for ( let i = 0; i < index.count; i += 3 ) {
addFace( index.getX( i ), index.getX( i + 1 ), index.getX( i + 2 ) );
}
} else {
for ( let i = 0; i < position.count; i += 3 ) {
addFace( i, i + 1, i + 2 );
}
}
}
this.computeFaceNormals();
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
return this;
},
center: function () {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset$1 ).negate();
this.translate( _offset$1.x, _offset$1.y, _offset$1.z );
return this;
},
normalize: function () {
this.computeBoundingSphere();
const center = this.boundingSphere.center;
const radius = this.boundingSphere.radius;
const s = radius === 0 ? 1 : 1.0 / radius;
const matrix = new Matrix4();
matrix.set(
s, 0, 0, - s * center.x,
0, s, 0, - s * center.y,
0, 0, s, - s * center.z,
0, 0, 0, 1
);
this.applyMatrix4( matrix );
return this;
},
computeFaceNormals: function () {
const cb = new Vector3(), ab = new Vector3();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vA = this.vertices[ face.a ];
const vB = this.vertices[ face.b ];
const vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
face.normal.copy( cb );
}
},
computeVertexNormals: function ( areaWeighted ) {
if ( areaWeighted === undefined ) areaWeighted = true;
const vertices = new Array( this.vertices.length );
for ( let v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new Vector3();
}
if ( areaWeighted ) {
// vertex normals weighted by triangle areas
// http://www.iquilezles.org/www/articles/normals/normals.htm
const cb = new Vector3(), ab = new Vector3();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vA = this.vertices[ face.a ];
const vB = this.vertices[ face.b ];
const vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
vertices[ face.a ].add( cb );
vertices[ face.b ].add( cb );
vertices[ face.c ].add( cb );
}
} else {
this.computeFaceNormals();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
vertices[ face.a ].add( face.normal );
vertices[ face.b ].add( face.normal );
vertices[ face.c ].add( face.normal );
}
}
for ( let v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( vertices[ face.a ] );
vertexNormals[ 1 ].copy( vertices[ face.b ] );
vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else {
vertexNormals[ 0 ] = vertices[ face.a ].clone();
vertexNormals[ 1 ] = vertices[ face.b ].clone();
vertexNormals[ 2 ] = vertices[ face.c ].clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeFlatVertexNormals: function () {
this.computeFaceNormals();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( face.normal );
vertexNormals[ 1 ].copy( face.normal );
vertexNormals[ 2 ].copy( face.normal );
} else {
vertexNormals[ 0 ] = face.normal.clone();
vertexNormals[ 1 ] = face.normal.clone();
vertexNormals[ 2 ] = face.normal.clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeMorphNormals: function () {
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( let i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
}
// use temp geometry to compute face and vertex normals for each morph
const tmpGeo = new Geometry();
tmpGeo.faces = this.faces;
for ( let i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
const dstNormalsFace = this.morphNormals[ i ].faceNormals;
const dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const faceNormal = new Vector3();
const vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
const morphNormals = this.morphNormals[ i ];
// set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices;
// compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals();
// store morph normals
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const faceNormal = morphNormals.faceNormals[ f ];
const vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
}
}
// restore original normals
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
this.boundingBox.setFromPoints( this.vertices );
},
computeBoundingSphere: function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
this.boundingSphere.setFromPoints( this.vertices );
},
merge: function ( geometry, matrix, materialIndexOffset ) {
if ( ! ( geometry && geometry.isGeometry ) ) {
console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
return;
}
let normalMatrix,
vertexOffset = this.vertices.length,
vertices1 = this.vertices,
vertices2 = geometry.vertices,
faces1 = this.faces,
faces2 = geometry.faces,
colors1 = this.colors,
colors2 = geometry.colors;
if ( materialIndexOffset === undefined ) materialIndexOffset = 0;
if ( matrix !== undefined ) {
normalMatrix = new Matrix3().getNormalMatrix( matrix );
}
// vertices
for ( let i = 0, il = vertices2.length; i < il; i ++ ) {
const vertex = vertices2[ i ];
const vertexCopy = vertex.clone();
if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
vertices1.push( vertexCopy );
}
// colors
for ( let i = 0, il = colors2.length; i < il; i ++ ) {
colors1.push( colors2[ i ].clone() );
}
// faces
for ( let i = 0, il = faces2.length; i < il; i ++ ) {
let face = faces2[ i ], faceCopy, normal, color,
faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
faceCopy.normal.copy( face.normal );
if ( normalMatrix !== undefined ) {
faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
}
for ( let j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( normalMatrix !== undefined ) {
normal.applyMatrix3( normalMatrix ).normalize();
}
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( let j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
faces1.push( faceCopy );
}
// uvs
for ( let i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {
const faceVertexUvs2 = geometry.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) this.faceVertexUvs[ i ] = [];
for ( let j = 0, jl = faceVertexUvs2.length; j < jl; j ++ ) {
const uvs2 = faceVertexUvs2[ j ], uvsCopy = [];
for ( let k = 0, kl = uvs2.length; k < kl; k ++ ) {
uvsCopy.push( uvs2[ k ].clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
},
mergeMesh: function ( mesh ) {
if ( ! ( mesh && mesh.isMesh ) ) {
console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
return;
}
if ( mesh.matrixAutoUpdate ) mesh.updateMatrix();
this.merge( mesh.geometry, mesh.matrix );
},
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices: function () {
const verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
const unique = [], changes = [];
const precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
const precision = Math.pow( 10, precisionPoints );
for ( let i = 0, il = this.vertices.length; i < il; i ++ ) {
const v = this.vertices[ i ];
const key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
}
// if faces are completely degenerate after merging vertices, we
// have to remove them from the geometry.
const faceIndicesToRemove = [];
for ( let i = 0, il = this.faces.length; i < il; i ++ ) {
const face = this.faces[ i ];
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
const indices = [ face.a, face.b, face.c ];
// if any duplicate vertices are found in a Face3
// we have to remove the face as nothing can be saved
for ( let n = 0; n < 3; n ++ ) {
if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
faceIndicesToRemove.push( i );
break;
}
}
}
for ( let i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
const idx = faceIndicesToRemove[ i ];
this.faces.splice( idx, 1 );
for ( let j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
this.faceVertexUvs[ j ].splice( idx, 1 );
}
}
// Use unique set of vertices
const diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
},
setFromPoints: function ( points ) {
this.vertices = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );
}
return this;
},
sortFacesByMaterialIndex: function () {
const faces = this.faces;
const length = faces.length;
// tag faces
for ( let i = 0; i < length; i ++ ) {
faces[ i ]._id = i;
}
// sort faces
function materialIndexSort( a, b ) {
return a.materialIndex - b.materialIndex;
}
faces.sort( materialIndexSort );
// sort uvs
const uvs1 = this.faceVertexUvs[ 0 ];
const uvs2 = this.faceVertexUvs[ 1 ];
let newUvs1, newUvs2;
if ( uvs1 && uvs1.length === length ) newUvs1 = [];
if ( uvs2 && uvs2.length === length ) newUvs2 = [];
for ( let i = 0; i < length; i ++ ) {
const id = faces[ i ]._id;
if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
}
if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
},
toJSON: function () {
const data = {
metadata: {
version: 4.5,
type: 'Geometry',
generator: 'Geometry.toJSON'
}
};
// standard Geometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
const parameters = this.parameters;
for ( const key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
const vertices = [];
for ( let i = 0; i < this.vertices.length; i ++ ) {
const vertex = this.vertices[ i ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
const faces = [];
const normals = [];
const normalsHash = {};
const colors = [];
const colorsHash = {};
const uvs = [];
const uvsHash = {};
for ( let i = 0; i < this.faces.length; i ++ ) {
const face = this.faces[ i ];
const hasMaterial = true;
const hasFaceUv = false; // deprecated
const hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
const hasFaceNormal = face.normal.length() > 0;
const hasFaceVertexNormal = face.vertexNormals.length > 0;
const hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
const hasFaceVertexColor = face.vertexColors.length > 0;
let faceType = 0;
faceType = setBit( faceType, 0, 0 ); // isQuad
faceType = setBit( faceType, 1, hasMaterial );
faceType = setBit( faceType, 2, hasFaceUv );
faceType = setBit( faceType, 3, hasFaceVertexUv );
faceType = setBit( faceType, 4, hasFaceNormal );
faceType = setBit( faceType, 5, hasFaceVertexNormal );
faceType = setBit( faceType, 6, hasFaceColor );
faceType = setBit( faceType, 7, hasFaceVertexColor );
faces.push( faceType );
faces.push( face.a, face.b, face.c );
faces.push( face.materialIndex );
if ( hasFaceVertexUv ) {
const faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
faces.push(
getUvIndex( faceVertexUvs[ 0 ] ),
getUvIndex( faceVertexUvs[ 1 ] ),
getUvIndex( faceVertexUvs[ 2 ] )
);
}
if ( hasFaceNormal ) {
faces.push( getNormalIndex( face.normal ) );
}
if ( hasFaceVertexNormal ) {
const vertexNormals = face.vertexNormals;
faces.push(
getNormalIndex( vertexNormals[ 0 ] ),
getNormalIndex( vertexNormals[ 1 ] ),
getNormalIndex( vertexNormals[ 2 ] )
);
}
if ( hasFaceColor ) {
faces.push( getColorIndex( face.color ) );
}
if ( hasFaceVertexColor ) {
const vertexColors = face.vertexColors;
faces.push(
getColorIndex( vertexColors[ 0 ] ),
getColorIndex( vertexColors[ 1 ] ),
getColorIndex( vertexColors[ 2 ] )
);
}
}
function setBit( value, position, enabled ) {
return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
}
function getNormalIndex( normal ) {
const hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
if ( normalsHash[ hash ] !== undefined ) {
return normalsHash[ hash ];
}
normalsHash[ hash ] = normals.length / 3;
normals.push( normal.x, normal.y, normal.z );
return normalsHash[ hash ];
}
function getColorIndex( color ) {
const hash = color.r.toString() + color.g.toString() + color.b.toString();
if ( colorsHash[ hash ] !== undefined ) {
return colorsHash[ hash ];
}
colorsHash[ hash ] = colors.length;
colors.push( color.getHex() );
return colorsHash[ hash ];
}
function getUvIndex( uv ) {
const hash = uv.x.toString() + uv.y.toString();
if ( uvsHash[ hash ] !== undefined ) {
return uvsHash[ hash ];
}
uvsHash[ hash ] = uvs.length / 2;
uvs.push( uv.x, uv.y );
return uvsHash[ hash ];
}
data.data = {};
data.data.vertices = vertices;
data.data.normals = normals;
if ( colors.length > 0 ) data.data.colors = colors;
if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
data.data.faces = faces;
return data;
},
clone: function () {
/*
// Handle primitives
const parameters = this.parameters;
if ( parameters !== undefined ) {
const values = [];
for ( const key in parameters ) {
values.push( parameters[ key ] );
}
const geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new Geometry().copy( this );
},
copy: function ( source ) {
// reset
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// name
this.name = source.name;
// vertices
const vertices = source.vertices;
for ( let i = 0, il = vertices.length; i < il; i ++ ) {
this.vertices.push( vertices[ i ].clone() );
}
// colors
const colors = source.colors;
for ( let i = 0, il = colors.length; i < il; i ++ ) {
this.colors.push( colors[ i ].clone() );
}
// faces
const faces = source.faces;
for ( let i = 0, il = faces.length; i < il; i ++ ) {
this.faces.push( faces[ i ].clone() );
}
// face vertex uvs
for ( let i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
const faceVertexUvs = source.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) {
this.faceVertexUvs[ i ] = [];
}
for ( let j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
const uvs = faceVertexUvs[ j ], uvsCopy = [];
for ( let k = 0, kl = uvs.length; k < kl; k ++ ) {
const uv = uvs[ k ];
uvsCopy.push( uv.clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
// morph targets
const morphTargets = source.morphTargets;
for ( let i = 0, il = morphTargets.length; i < il; i ++ ) {
const morphTarget = {};
morphTarget.name = morphTargets[ i ].name;
// vertices
if ( morphTargets[ i ].vertices !== undefined ) {
morphTarget.vertices = [];
for ( let j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {
morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );
}
}
// normals
if ( morphTargets[ i ].normals !== undefined ) {
morphTarget.normals = [];
for ( let j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {
morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );
}
}
this.morphTargets.push( morphTarget );
}
// morph normals
const morphNormals = source.morphNormals;
for ( let i = 0, il = morphNormals.length; i < il; i ++ ) {
const morphNormal = {};
// vertex normals
if ( morphNormals[ i ].vertexNormals !== undefined ) {
morphNormal.vertexNormals = [];
for ( let j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {
const srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
const destVertexNormal = {};
destVertexNormal.a = srcVertexNormal.a.clone();
destVertexNormal.b = srcVertexNormal.b.clone();
destVertexNormal.c = srcVertexNormal.c.clone();
morphNormal.vertexNormals.push( destVertexNormal );
}
}
// face normals
if ( morphNormals[ i ].faceNormals !== undefined ) {
morphNormal.faceNormals = [];
for ( let j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {
morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );
}
}
this.morphNormals.push( morphNormal );
}
// skin weights
const skinWeights = source.skinWeights;
for ( let i = 0, il = skinWeights.length; i < il; i ++ ) {
this.skinWeights.push( skinWeights[ i ].clone() );
}
// skin indices
const skinIndices = source.skinIndices;
for ( let i = 0, il = skinIndices.length; i < il; i ++ ) {
this.skinIndices.push( skinIndices[ i ].clone() );
}
// line distances
const lineDistances = source.lineDistances;
for ( let i = 0, il = lineDistances.length; i < il; i ++ ) {
this.lineDistances.push( lineDistances[ i ] );
}
// bounding box
const boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
const boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// update flags
this.elementsNeedUpdate = source.elementsNeedUpdate;
this.verticesNeedUpdate = source.verticesNeedUpdate;
this.uvsNeedUpdate = source.uvsNeedUpdate;
this.normalsNeedUpdate = source.normalsNeedUpdate;
this.colorsNeedUpdate = source.colorsNeedUpdate;
this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
this.groupsNeedUpdate = source.groupsNeedUpdate;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
// BoxGeometry
class BoxGeometry extends Geometry {
constructor( width, height, depth, widthSegments, heightSegments, depthSegments ) {
super();
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
this.mergeVertices();
}
}
// BoxBufferGeometry
class BoxBufferGeometry extends BufferGeometry {
constructor( width, height, depth, widthSegments, heightSegments, depthSegments ) {
super();
this.type = 'BoxBufferGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
const scope = this;
width = width || 1;
height = height || 1;
depth = depth || 1;
// segments
widthSegments = Math.floor( widthSegments ) || 1;
heightSegments = Math.floor( heightSegments ) || 1;
depthSegments = Math.floor( depthSegments ) || 1;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let numberOfVertices = 0;
let groupStart = 0;
// build each side of the box geometry
buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
const segmentWidth = width / gridX;
const segmentHeight = height / gridY;
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
let vertexCounter = 0;
let groupCount = 0;
const vector = new Vector3();
// generate vertices, normals and uvs
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segmentHeight - heightHalf;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices.push( vector.x, vector.y, vector.z );
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals.push( vector.x, vector.y, vector.z );
// uvs
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
// counters
vertexCounter += 1;
}
}
// indices
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = numberOfVertices + ix + gridX1 * iy;
const b = numberOfVertices + ix + gridX1 * ( iy + 1 );
const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// increase counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
}
}
/**
* Uniform Utilities
*/
function cloneUniforms( src ) {
const dst = {};
for ( const u in src ) {
dst[ u ] = {};
for ( const p in src[ u ] ) {
const property = src[ u ][ p ];
if ( property && ( property.isColor ||
property.isMatrix3 || property.isMatrix4 ||
property.isVector2 || property.isVector3 || property.isVector4 ||
property.isTexture ) ) {
dst[ u ][ p ] = property.clone();
} else if ( Array.isArray( property ) ) {
dst[ u ][ p ] = property.slice();
} else {
dst[ u ][ p ] = property;
}
}
}
return dst;
}
function mergeUniforms( uniforms ) {
const merged = {};
for ( let u = 0; u < uniforms.length; u ++ ) {
const tmp = cloneUniforms( uniforms[ u ] );
for ( const p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
}
// Legacy
const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms };
var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
*
* fragmentShader: <string>,
* vertexShader: <string>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function ShaderMaterial( parameters ) {
Material.call( this );
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = default_vertex;
this.fragmentShader = default_fragment;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.skinning = false; // set to use skinning attribute streams
this.morphTargets = false; // set to use morph targets
this.morphNormals = false; // set to use morph normals
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
this.index0AttributeName = undefined;
this.uniformsNeedUpdate = false;
if ( parameters !== undefined ) {
if ( parameters.attributes !== undefined ) {
console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
}
this.setValues( parameters );
}
}
ShaderMaterial.prototype = Object.create( Material.prototype );
ShaderMaterial.prototype.constructor = ShaderMaterial;
ShaderMaterial.prototype.isShaderMaterial = true;
ShaderMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = cloneUniforms( source.uniforms );
this.defines = Object.assign( {}, source.defines );
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.lights = source.lights;
this.clipping = source.clipping;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.extensions = Object.assign( {}, source.extensions );
return this;
};
ShaderMaterial.prototype.toJSON = function ( meta ) {
const data = Material.prototype.toJSON.call( this, meta );
data.uniforms = {};
for ( const name in this.uniforms ) {
const uniform = this.uniforms[ name ];
const value = uniform.value;
if ( value && value.isTexture ) {
data.uniforms[ name ] = {
type: 't',
value: value.toJSON( meta ).uuid
};
} else if ( value && value.isColor ) {
data.uniforms[ name ] = {
type: 'c',
value: value.getHex()
};
} else if ( value && value.isVector2 ) {
data.uniforms[ name ] = {
type: 'v2',
value: value.toArray()
};
} else if ( value && value.isVector3 ) {
data.uniforms[ name ] = {
type: 'v3',
value: value.toArray()
};
} else if ( value && value.isVector4 ) {
data.uniforms[ name ] = {
type: 'v4',
value: value.toArray()
};
} else if ( value && value.isMatrix3 ) {
data.uniforms[ name ] = {
type: 'm3',
value: value.toArray()
};
} else if ( value && value.isMatrix4 ) {
data.uniforms[ name ] = {
type: 'm4',
value: value.toArray()
};
} else {
data.uniforms[ name ] = {
value: value
};
// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
}
}
if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
const extensions = {};
for ( const key in this.extensions ) {
if ( this.extensions[ key ] === true ) extensions[ key ] = true;
}
if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions;
return data;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author WestLangley / http://github.com/WestLangley
*/
function Camera() {
Object3D.call( this );
this.type = 'Camera';
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
this.projectionMatrixInverse = new Matrix4();
}
Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Camera,
isCamera: true,
copy: function ( source, recursive ) {
Object3D.prototype.copy.call( this, source, recursive );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
this.projectionMatrixInverse.copy( source.projectionMatrixInverse );
return this;
},
getWorldDirection: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Camera: .getWorldDirection() target is now required' );
target = new Vector3();
}
this.updateMatrixWorld( true );
const e = this.matrixWorld.elements;
return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();
},
updateMatrixWorld: function ( force ) {
Object3D.prototype.updateMatrixWorld.call( this, force );
this.matrixWorldInverse.getInverse( this.matrixWorld );
},
updateWorldMatrix: function ( updateParents, updateChildren ) {
Object3D.prototype.updateWorldMatrix.call( this, updateParents, updateChildren );
this.matrixWorldInverse.getInverse( this.matrixWorld );
},
clone: function () {
return new this.constructor().copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author greggman / http://games.greggman.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author tschw
*/
function PerspectiveCamera( fov, aspect, near, far ) {
Camera.call( this );
this.type = 'PerspectiveCamera';
this.fov = fov !== undefined ? fov : 50;
this.zoom = 1;
this.near = near !== undefined ? near : 0.1;
this.far = far !== undefined ? far : 2000;
this.focus = 10;
this.aspect = aspect !== undefined ? aspect : 1;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
constructor: PerspectiveCamera,
isPerspectiveCamera: true,
copy: function ( source, recursive ) {
Camera.prototype.copy.call( this, source, recursive );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
},
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength: function ( focalLength ) {
// see http://www.bobatkins.com/photography/technical/field_of_view.html
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = MathUtils.RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
},
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength: function () {
const vExtentSlope = Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
},
getEffectiveFOV: function () {
return MathUtils.RAD2DEG * 2 * Math.atan(
Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom );
},
getFilmWidth: function () {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
},
getFilmHeight: function () {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
},
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* const w = 1920;
* const h = 1080;
* const fullWidth = w * 3;
* const fullHeight = h * 2;
*
* --A--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
if ( this.view === null ) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
},
clearViewOffset: function () {
if ( this.view !== null ) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
},
updateProjectionMatrix: function () {
let near = this.near,
top = near * Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom,
height = 2 * top,
width = this.aspect * height,
left = - 0.5 * width,
view = this.view;
if ( this.view !== null && this.view.enabled ) {
const fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
const skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
this.projectionMatrixInverse.getInverse( this.projectionMatrix );
},
toJSON: function ( meta ) {
const data = Object3D.prototype.toJSON.call( this, meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
} );
/**
* Camera for rendering cube maps
* - renders scene into axis-aligned cube
*
* @author alteredq / http://alteredqualia.com/
*/
const three_module_fov = 90, three_module_aspect = 1;
function CubeCamera( near, far, renderTarget ) {
Object3D.call( this );
this.type = 'CubeCamera';
if ( renderTarget.isWebGLCubeRenderTarget !== true ) {
console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' );
return;
}
this.renderTarget = renderTarget;
const cameraPX = new PerspectiveCamera( three_module_fov, three_module_aspect, near, far );
cameraPX.layers = this.layers;
cameraPX.up.set( 0, - 1, 0 );
cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
this.add( cameraPX );
const cameraNX = new PerspectiveCamera( three_module_fov, three_module_aspect, near, far );
cameraNX.layers = this.layers;
cameraNX.up.set( 0, - 1, 0 );
cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
this.add( cameraNX );
const cameraPY = new PerspectiveCamera( three_module_fov, three_module_aspect, near, far );
cameraPY.layers = this.layers;
cameraPY.up.set( 0, 0, 1 );
cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
this.add( cameraPY );
const cameraNY = new PerspectiveCamera( three_module_fov, three_module_aspect, near, far );
cameraNY.layers = this.layers;
cameraNY.up.set( 0, 0, - 1 );
cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
this.add( cameraNY );
const cameraPZ = new PerspectiveCamera( three_module_fov, three_module_aspect, near, far );
cameraPZ.layers = this.layers;
cameraPZ.up.set( 0, - 1, 0 );
cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
this.add( cameraPZ );
const cameraNZ = new PerspectiveCamera( three_module_fov, three_module_aspect, near, far );
cameraNZ.layers = this.layers;
cameraNZ.up.set( 0, - 1, 0 );
cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
this.add( cameraNZ );
this.update = function ( renderer, scene ) {
if ( this.parent === null ) this.updateMatrixWorld();
const currentXrEnabled = renderer.xr.enabled;
const currentRenderTarget = renderer.getRenderTarget();
renderer.xr.enabled = false;
const generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderer.setRenderTarget( renderTarget, 0 );
renderer.render( scene, cameraPX );
renderer.setRenderTarget( renderTarget, 1 );
renderer.render( scene, cameraNX );
renderer.setRenderTarget( renderTarget, 2 );
renderer.render( scene, cameraPY );
renderer.setRenderTarget( renderTarget, 3 );
renderer.render( scene, cameraNY );
renderer.setRenderTarget( renderTarget, 4 );
renderer.render( scene, cameraPZ );
renderTarget.texture.generateMipmaps = generateMipmaps;
renderer.setRenderTarget( renderTarget, 5 );
renderer.render( scene, cameraNZ );
renderer.setRenderTarget( currentRenderTarget );
renderer.xr.enabled = currentXrEnabled;
};
this.clear = function ( renderer, color, depth, stencil ) {
const currentRenderTarget = renderer.getRenderTarget();
for ( let i = 0; i < 6; i ++ ) {
renderer.setRenderTarget( renderTarget, i );
renderer.clear( color, depth, stencil );
}
renderer.setRenderTarget( currentRenderTarget );
};
}
CubeCamera.prototype = Object.create( Object3D.prototype );
CubeCamera.prototype.constructor = CubeCamera;
/**
* @author alteredq / http://alteredqualia.com
* @author WestLangley / http://github.com/WestLangley
*/
function WebGLCubeRenderTarget( size, options, dummy ) {
if ( Number.isInteger( options ) ) {
console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' );
options = dummy;
}
WebGLRenderTarget.call( this, size, size, options );
}
WebGLCubeRenderTarget.prototype = Object.create( WebGLRenderTarget.prototype );
WebGLCubeRenderTarget.prototype.constructor = WebGLCubeRenderTarget;
WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
WebGLCubeRenderTarget.prototype.fromEquirectangularTexture = function ( renderer, texture ) {
this.texture.type = texture.type;
this.texture.format = texture.format;
this.texture.encoding = texture.encoding;
const scene = new Scene();
const shader = {
uniforms: {
tEquirect: { value: null },
},
vertexShader: [
"varying vec3 vWorldDirection;",
"vec3 transformDirection( in vec3 dir, in mat4 matrix ) {",
" return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );",
"}",
"void main() {",
" vWorldDirection = transformDirection( position, modelMatrix );",
" #include <begin_vertex>",
" #include <project_vertex>",
"}"
].join( '\n' ),
fragmentShader: [
"uniform sampler2D tEquirect;",
"varying vec3 vWorldDirection;",
"#include <common>",
"void main() {",
" vec3 direction = normalize( vWorldDirection );",
" vec2 sampleUV = equirectUv( direction );",
" gl_FragColor = texture2D( tEquirect, sampleUV );",
"}"
].join( '\n' ),
};
const material = new ShaderMaterial( {
name: 'CubemapFromEquirect',
uniforms: cloneUniforms( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
side: BackSide,
blending: NoBlending
} );
material.uniforms.tEquirect.value = texture;
const mesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), material );
scene.add( mesh );
const camera = new CubeCamera( 1, 10, this );
camera.update( renderer, scene );
mesh.geometry.dispose();
mesh.material.dispose();
return this;
};
/**
* @author alteredq / http://alteredqualia.com/
*/
function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.image = { data: data || null, width: width || 1, height: height || 1 };
this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
this.needsUpdate = true;
}
DataTexture.prototype = Object.create( Texture.prototype );
DataTexture.prototype.constructor = DataTexture;
DataTexture.prototype.isDataTexture = true;
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / http://clara.io
*/
const _sphere$1 = new Sphere();
const _vector$5 = new Vector3();
function Frustum( p0, p1, p2, p3, p4, p5 ) {
this.planes = [
( p0 !== undefined ) ? p0 : new Plane(),
( p1 !== undefined ) ? p1 : new Plane(),
( p2 !== undefined ) ? p2 : new Plane(),
( p3 !== undefined ) ? p3 : new Plane(),
( p4 !== undefined ) ? p4 : new Plane(),
( p5 !== undefined ) ? p5 : new Plane()
];
}
Object.assign( Frustum.prototype, {
set: function ( p0, p1, p2, p3, p4, p5 ) {
const planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( frustum ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
},
setFromProjectionMatrix: function ( m ) {
const planes = this.planes;
const me = m.elements;
const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
},
intersectsObject: function ( object ) {
const geometry = object.geometry;
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$1.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );
return this.intersectsSphere( _sphere$1 );
},
intersectsSprite: function ( sprite ) {
_sphere$1.center.set( 0, 0, 0 );
_sphere$1.radius = 0.7071067811865476;
_sphere$1.applyMatrix4( sprite.matrixWorld );
return this.intersectsSphere( _sphere$1 );
},
intersectsSphere: function ( sphere ) {
const planes = this.planes;
const center = sphere.center;
const negRadius = - sphere.radius;
for ( let i = 0; i < 6; i ++ ) {
const distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
},
intersectsBox: function ( box ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
const plane = planes[ i ];
// corner at max distance
_vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x;
_vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y;
_vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z;
if ( plane.distanceToPoint( _vector$5 ) < 0 ) {
return false;
}
}
return true;
},
containsPoint: function ( point ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
} );
/**
* Uniforms library for shared webgl shaders
*/
const UniformsLib = {
common: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
map: { value: null },
uvTransform: { value: new Matrix3() },
uv2Transform: { value: new Matrix3() },
alphaMap: { value: null },
},
specularmap: {
specularMap: { value: null },
},
envmap: {
envMap: { value: null },
flipEnvMap: { value: - 1 },
reflectivity: { value: 1.0 },
refractionRatio: { value: 0.98 },
maxMipLevel: { value: 0 }
},
aomap: {
aoMap: { value: null },
aoMapIntensity: { value: 1 }
},
lightmap: {
lightMap: { value: null },
lightMapIntensity: { value: 1 }
},
emissivemap: {
emissiveMap: { value: null }
},
bumpmap: {
bumpMap: { value: null },
bumpScale: { value: 1 }
},
normalmap: {
normalMap: { value: null },
normalScale: { value: new Vector2( 1, 1 ) }
},
displacementmap: {
displacementMap: { value: null },
displacementScale: { value: 1 },
displacementBias: { value: 0 }
},
roughnessmap: {
roughnessMap: { value: null }
},
metalnessmap: {
metalnessMap: { value: null }
},
gradientmap: {
gradientMap: { value: null }
},
fog: {
fogDensity: { value: 0.00025 },
fogNear: { value: 1 },
fogFar: { value: 2000 },
fogColor: { value: new Color( 0xffffff ) }
},
lights: {
ambientLightColor: { value: [] },
lightProbe: { value: [] },
directionalLights: { value: [], properties: {
direction: {},
color: {}
} },
directionalLightShadows: { value: [], properties: {
shadowBias: {},
shadowNormalBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
directionalShadowMap: { value: [] },
directionalShadowMatrix: { value: [] },
spotLights: { value: [], properties: {
color: {},
position: {},
direction: {},
distance: {},
coneCos: {},
penumbraCos: {},
decay: {}
} },
spotLightShadows: { value: [], properties: {
shadowBias: {},
shadowNormalBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
spotShadowMap: { value: [] },
spotShadowMatrix: { value: [] },
pointLights: { value: [], properties: {
color: {},
position: {},
decay: {},
distance: {}
} },
pointLightShadows: { value: [], properties: {
shadowBias: {},
shadowNormalBias: {},
shadowRadius: {},
shadowMapSize: {},
shadowCameraNear: {},
shadowCameraFar: {}
} },
pointShadowMap: { value: [] },
pointShadowMatrix: { value: [] },
hemisphereLights: { value: [], properties: {
direction: {},
skyColor: {},
groundColor: {}
} },
// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
rectAreaLights: { value: [], properties: {
color: {},
position: {},
width: {},
height: {}
} }
},
points: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
size: { value: 1.0 },
scale: { value: 1.0 },
map: { value: null },
alphaMap: { value: null },
uvTransform: { value: new Matrix3() }
},
sprite: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
center: { value: new Vector2( 0.5, 0.5 ) },
rotation: { value: 0.0 },
map: { value: null },
alphaMap: { value: null },
uvTransform: { value: new Matrix3() }
}
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLAnimation() {
let context = null;
let isAnimating = false;
let animationLoop = null;
let requestId = null;
function onAnimationFrame( time, frame ) {
animationLoop( time, frame );
requestId = context.requestAnimationFrame( onAnimationFrame );
}
return {
start: function () {
if ( isAnimating === true ) return;
if ( animationLoop === null ) return;
requestId = context.requestAnimationFrame( onAnimationFrame );
isAnimating = true;
},
stop: function () {
context.cancelAnimationFrame( requestId );
isAnimating = false;
},
setAnimationLoop: function ( callback ) {
animationLoop = callback;
},
setContext: function ( value ) {
context = value;
}
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLAttributes( gl, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
const buffers = new WeakMap();
function createBuffer( attribute, bufferType ) {
const array = attribute.array;
const usage = attribute.usage;
const buffer = gl.createBuffer();
gl.bindBuffer( bufferType, buffer );
gl.bufferData( bufferType, array, usage );
attribute.onUploadCallback();
let type = 5126;
if ( array instanceof Float32Array ) {
type = 5126;
} else if ( array instanceof Float64Array ) {
console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );
} else if ( array instanceof Uint16Array ) {
type = 5123;
} else if ( array instanceof Int16Array ) {
type = 5122;
} else if ( array instanceof Uint32Array ) {
type = 5125;
} else if ( array instanceof Int32Array ) {
type = 5124;
} else if ( array instanceof Int8Array ) {
type = 5120;
} else if ( array instanceof Uint8Array ) {
type = 5121;
}
return {
buffer: buffer,
type: type,
bytesPerElement: array.BYTES_PER_ELEMENT,
version: attribute.version
};
}
function updateBuffer( buffer, attribute, bufferType ) {
const array = attribute.array;
const updateRange = attribute.updateRange;
gl.bindBuffer( bufferType, buffer );
if ( updateRange.count === - 1 ) {
// Not using update ranges
gl.bufferSubData( bufferType, 0, array );
} else {
if ( isWebGL2 ) {
gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
array, updateRange.offset, updateRange.count );
} else {
gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );
}
updateRange.count = - 1; // reset range
}
}
//
function get( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
return buffers.get( attribute );
}
function remove( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
const data = buffers.get( attribute );
if ( data ) {
gl.deleteBuffer( data.buffer );
buffers.delete( attribute );
}
}
function update( attribute, bufferType ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
const data = buffers.get( attribute );
if ( data === undefined ) {
buffers.set( attribute, createBuffer( attribute, bufferType ) );
} else if ( data.version < attribute.version ) {
updateBuffer( data.buffer, attribute, bufferType );
data.version = attribute.version;
}
}
return {
get: get,
remove: remove,
update: update
};
}
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
// PlaneGeometry
function PlaneGeometry( width, height, widthSegments, heightSegments ) {
Geometry.call( this );
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
this.mergeVertices();
}
PlaneGeometry.prototype = Object.create( Geometry.prototype );
PlaneGeometry.prototype.constructor = PlaneGeometry;
// PlaneBufferGeometry
function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {
BufferGeometry.call( this );
this.type = 'PlaneBufferGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
width = width || 1;
height = height || 1;
const width_half = width / 2;
const height_half = height / 2;
const gridX = Math.floor( widthSegments ) || 1;
const gridY = Math.floor( heightSegments ) || 1;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
const segment_width = width / gridX;
const segment_height = height / gridY;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// generate vertices, normals and uvs
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segment_height - height_half;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segment_width - width_half;
vertices.push( x, - y, 0 );
normals.push( 0, 0, 1 );
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
}
}
// indices
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = ix + gridX1 * iy;
const b = ix + gridX1 * ( iy + 1 );
const c = ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = ( ix + 1 ) + gridX1 * iy;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;
var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";
var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";
var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
var begin_vertex = "vec3 transformed = vec3( position );";
var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";
var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";
var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";
var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";
var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n return m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_maxMipLevel 8.0\n#define cubeUV_minMipLevel 4.0\n#define cubeUV_maxTileSize 256.0\n#define cubeUV_minTileSize 16.0\nfloat getFace(vec3 direction) {\n vec3 absDirection = abs(direction);\n float face = -1.0;\n if (absDirection.x > absDirection.z) {\n if (absDirection.x > absDirection.y)\n face = direction.x > 0.0 ? 0.0 : 3.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n } else {\n if (absDirection.z > absDirection.y)\n face = direction.z > 0.0 ? 2.0 : 5.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n }\n return face;\n}\nvec2 getUV(vec3 direction, float face) {\n vec2 uv;\n if (face == 0.0) {\n uv = vec2(direction.z, direction.y) / abs(direction.x); } else if (face == 1.0) {\n uv = vec2(-direction.x, -direction.z) / abs(direction.y); } else if (face == 2.0) {\n uv = vec2(-direction.x, direction.y) / abs(direction.z); } else if (face == 3.0) {\n uv = vec2(-direction.z, direction.y) / abs(direction.x); } else if (face == 4.0) {\n uv = vec2(-direction.x, direction.z) / abs(direction.y); } else {\n uv = vec2(direction.x, direction.y) / abs(direction.z); }\n return 0.5 * (uv + 1.0);\n}\nvec3 bilinearCubeUV(sampler2D envMap, vec3 direction, float mipInt) {\n float face = getFace(direction);\n float filterInt = max(cubeUV_minMipLevel - mipInt, 0.0);\n mipInt = max(mipInt, cubeUV_minMipLevel);\n float faceSize = exp2(mipInt);\n float texelSize = 1.0 / (3.0 * cubeUV_maxTileSize);\n vec2 uv = getUV(direction, face) * (faceSize - 1.0);\n vec2 f = fract(uv);\n uv += 0.5 - f;\n if (face > 2.0) {\n uv.y += faceSize;\n face -= 3.0;\n }\n uv.x += face * faceSize;\n if(mipInt < cubeUV_maxMipLevel){\n uv.y += 2.0 * cubeUV_maxTileSize;\n }\n uv.y += filterInt * 2.0 * cubeUV_minTileSize;\n uv.x += 3.0 * max(0.0, cubeUV_maxTileSize - 2.0 * faceSize);\n uv *= texelSize;\n vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.x += texelSize;\n vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.y += texelSize;\n vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.x -= texelSize;\n vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n vec3 tm = mix(tl, tr, f.x);\n vec3 bm = mix(bl, br, f.x);\n return mix(tm, bm, f.y);\n}\n#define r0 1.0\n#define v0 0.339\n#define m0 -2.0\n#define r1 0.8\n#define v1 0.276\n#define m1 -1.0\n#define r4 0.4\n#define v4 0.046\n#define m4 2.0\n#define r5 0.305\n#define v5 0.016\n#define m5 3.0\n#define r6 0.21\n#define v6 0.0038\n#define m6 4.0\nfloat roughnessToMip(float roughness) {\n float mip = 0.0;\n if (roughness >= r1) {\n mip = (r0 - roughness) * (m1 - m0) / (r0 - r1) + m0;\n } else if (roughness >= r4) {\n mip = (r1 - roughness) * (m4 - m1) / (r1 - r4) + m1;\n } else if (roughness >= r5) {\n mip = (r4 - roughness) * (m5 - m4) / (r4 - r5) + m4;\n } else if (roughness >= r6) {\n mip = (r5 - roughness) * (m6 - m5) / (r5 - r6) + m5;\n } else {\n mip = -2.0 * log2(1.16 * roughness); }\n return mip;\n}\nvec4 textureCubeUV(sampler2D envMap, vec3 sampleDir, float roughness) {\n float mip = clamp(roughnessToMip(roughness), m0, cubeUV_maxMipLevel);\n float mipF = fract(mip);\n float mipInt = floor(mip);\n vec3 color0 = bilinearCubeUV(envMap, sampleDir, mipInt);\n if (mipF == 0.0) {\n return vec4(color0, 1.0);\n } else {\n vec3 color1 = bilinearCubeUV(envMap, sampleDir, mipInt + 1.0);\n return vec4(mix(color0, color1, mipF), 1.0);\n }\n}\n#endif";
var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\t\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec2 sampleUV = equirectUv( reflectVec );\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) { \n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = -mvPosition.z;\n#endif";
var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";
var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";
var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t vec3 reflectVec = reflect( -viewDir, normal );\n\t\t reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t vec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV = equirectUv( reflectVec );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";
var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3\tdiffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";
var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";
var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif";
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif";
var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif";
var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSPARENCY\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSPARENCY\n\tuniform float transparency;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSPARENCY\n\t\tdiffuseColor.a *= saturate( 1. - transparency + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
var shadow_vert = "#include <common>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
const ShaderChunk = {
alphamap_fragment: alphamap_fragment,
alphamap_pars_fragment: alphamap_pars_fragment,
alphatest_fragment: alphatest_fragment,
aomap_fragment: aomap_fragment,
aomap_pars_fragment: aomap_pars_fragment,
begin_vertex: begin_vertex,
beginnormal_vertex: beginnormal_vertex,
bsdfs: bsdfs,
bumpmap_pars_fragment: bumpmap_pars_fragment,
clipping_planes_fragment: clipping_planes_fragment,
clipping_planes_pars_fragment: clipping_planes_pars_fragment,
clipping_planes_pars_vertex: clipping_planes_pars_vertex,
clipping_planes_vertex: clipping_planes_vertex,
color_fragment: color_fragment,
color_pars_fragment: color_pars_fragment,
color_pars_vertex: color_pars_vertex,
color_vertex: color_vertex,
common: common,
cube_uv_reflection_fragment: cube_uv_reflection_fragment,
defaultnormal_vertex: defaultnormal_vertex,
displacementmap_pars_vertex: displacementmap_pars_vertex,
displacementmap_vertex: displacementmap_vertex,
emissivemap_fragment: emissivemap_fragment,
emissivemap_pars_fragment: emissivemap_pars_fragment,
encodings_fragment: encodings_fragment,
encodings_pars_fragment: encodings_pars_fragment,
envmap_fragment: envmap_fragment,
envmap_common_pars_fragment: envmap_common_pars_fragment,
envmap_pars_fragment: envmap_pars_fragment,
envmap_pars_vertex: envmap_pars_vertex,
envmap_physical_pars_fragment: envmap_physical_pars_fragment,
envmap_vertex: envmap_vertex,
fog_vertex: fog_vertex,
fog_pars_vertex: fog_pars_vertex,
fog_fragment: fog_fragment,
fog_pars_fragment: fog_pars_fragment,
gradientmap_pars_fragment: gradientmap_pars_fragment,
lightmap_fragment: lightmap_fragment,
lightmap_pars_fragment: lightmap_pars_fragment,
lights_lambert_vertex: lights_lambert_vertex,
lights_pars_begin: lights_pars_begin,
lights_toon_fragment: lights_toon_fragment,
lights_toon_pars_fragment: lights_toon_pars_fragment,
lights_phong_fragment: lights_phong_fragment,
lights_phong_pars_fragment: lights_phong_pars_fragment,
lights_physical_fragment: lights_physical_fragment,
lights_physical_pars_fragment: lights_physical_pars_fragment,
lights_fragment_begin: lights_fragment_begin,
lights_fragment_maps: lights_fragment_maps,
lights_fragment_end: lights_fragment_end,
logdepthbuf_fragment: logdepthbuf_fragment,
logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
logdepthbuf_vertex: logdepthbuf_vertex,
map_fragment: map_fragment,
map_pars_fragment: map_pars_fragment,
map_particle_fragment: map_particle_fragment,
map_particle_pars_fragment: map_particle_pars_fragment,
metalnessmap_fragment: metalnessmap_fragment,
metalnessmap_pars_fragment: metalnessmap_pars_fragment,
morphnormal_vertex: morphnormal_vertex,
morphtarget_pars_vertex: morphtarget_pars_vertex,
morphtarget_vertex: morphtarget_vertex,
normal_fragment_begin: normal_fragment_begin,
normal_fragment_maps: normal_fragment_maps,
normalmap_pars_fragment: normalmap_pars_fragment,
clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
clearcoat_pars_fragment: clearcoat_pars_fragment,
packing: packing,
premultiplied_alpha_fragment: premultiplied_alpha_fragment,
project_vertex: project_vertex,
dithering_fragment: dithering_fragment,
dithering_pars_fragment: dithering_pars_fragment,
roughnessmap_fragment: roughnessmap_fragment,
roughnessmap_pars_fragment: roughnessmap_pars_fragment,
shadowmap_pars_fragment: shadowmap_pars_fragment,
shadowmap_pars_vertex: shadowmap_pars_vertex,
shadowmap_vertex: shadowmap_vertex,
shadowmask_pars_fragment: shadowmask_pars_fragment,
skinbase_vertex: skinbase_vertex,
skinning_pars_vertex: skinning_pars_vertex,
skinning_vertex: skinning_vertex,
skinnormal_vertex: skinnormal_vertex,
specularmap_fragment: specularmap_fragment,
specularmap_pars_fragment: specularmap_pars_fragment,
tonemapping_fragment: tonemapping_fragment,
tonemapping_pars_fragment: tonemapping_pars_fragment,
uv_pars_fragment: uv_pars_fragment,
uv_pars_vertex: uv_pars_vertex,
uv_vertex: uv_vertex,
uv2_pars_fragment: uv2_pars_fragment,
uv2_pars_vertex: uv2_pars_vertex,
uv2_vertex: uv2_vertex,
worldpos_vertex: worldpos_vertex,
background_frag: background_frag,
background_vert: background_vert,
cube_frag: cube_frag,
cube_vert: cube_vert,
depth_frag: depth_frag,
depth_vert: depth_vert,
distanceRGBA_frag: distanceRGBA_frag,
distanceRGBA_vert: distanceRGBA_vert,
equirect_frag: equirect_frag,
equirect_vert: equirect_vert,
linedashed_frag: linedashed_frag,
linedashed_vert: linedashed_vert,
meshbasic_frag: meshbasic_frag,
meshbasic_vert: meshbasic_vert,
meshlambert_frag: meshlambert_frag,
meshlambert_vert: meshlambert_vert,
meshmatcap_frag: meshmatcap_frag,
meshmatcap_vert: meshmatcap_vert,
meshtoon_frag: meshtoon_frag,
meshtoon_vert: meshtoon_vert,
meshphong_frag: meshphong_frag,
meshphong_vert: meshphong_vert,
meshphysical_frag: meshphysical_frag,
meshphysical_vert: meshphysical_vert,
normal_frag: normal_frag,
normal_vert: normal_vert,
points_frag: points_frag,
points_vert: points_vert,
shadow_frag: shadow_frag,
shadow_vert: shadow_vert,
sprite_frag: sprite_frag,
sprite_vert: sprite_vert
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
const ShaderLib = {
basic: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.specularmap,
UniformsLib.envmap,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.meshbasic_vert,
fragmentShader: ShaderChunk.meshbasic_frag
},
lambert: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.specularmap,
UniformsLib.envmap,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) }
}
] ),
vertexShader: ShaderChunk.meshlambert_vert,
fragmentShader: ShaderChunk.meshlambert_frag
},
phong: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.specularmap,
UniformsLib.envmap,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) },
specular: { value: new Color( 0x111111 ) },
shininess: { value: 30 }
}
] ),
vertexShader: ShaderChunk.meshphong_vert,
fragmentShader: ShaderChunk.meshphong_frag
},
standard: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.envmap,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.roughnessmap,
UniformsLib.metalnessmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) },
roughness: { value: 1.0 },
metalness: { value: 0.0 },
envMapIntensity: { value: 1 } // temporary
}
] ),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
},
toon: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.gradientmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) }
}
] ),
vertexShader: ShaderChunk.meshtoon_vert,
fragmentShader: ShaderChunk.meshtoon_frag
},
matcap: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.fog,
{
matcap: { value: null }
}
] ),
vertexShader: ShaderChunk.meshmatcap_vert,
fragmentShader: ShaderChunk.meshmatcap_frag
},
points: {
uniforms: mergeUniforms( [
UniformsLib.points,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.points_vert,
fragmentShader: ShaderChunk.points_frag
},
dashed: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.fog,
{
scale: { value: 1 },
dashSize: { value: 1 },
totalSize: { value: 2 }
}
] ),
vertexShader: ShaderChunk.linedashed_vert,
fragmentShader: ShaderChunk.linedashed_frag
},
depth: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.displacementmap
] ),
vertexShader: ShaderChunk.depth_vert,
fragmentShader: ShaderChunk.depth_frag
},
normal: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
{
opacity: { value: 1.0 }
}
] ),
vertexShader: ShaderChunk.normal_vert,
fragmentShader: ShaderChunk.normal_frag
},
sprite: {
uniforms: mergeUniforms( [
UniformsLib.sprite,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.sprite_vert,
fragmentShader: ShaderChunk.sprite_frag
},
background: {
uniforms: {
uvTransform: { value: new Matrix3() },
t2D: { value: null },
},
vertexShader: ShaderChunk.background_vert,
fragmentShader: ShaderChunk.background_frag
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
cube: {
uniforms: mergeUniforms( [
UniformsLib.envmap,
{
opacity: { value: 1.0 }
}
] ),
vertexShader: ShaderChunk.cube_vert,
fragmentShader: ShaderChunk.cube_frag
},
equirect: {
uniforms: {
tEquirect: { value: null },
},
vertexShader: ShaderChunk.equirect_vert,
fragmentShader: ShaderChunk.equirect_frag
},
distanceRGBA: {
uniforms: mergeUniforms( [
UniformsLib.common,
UniformsLib.displacementmap,
{
referencePosition: { value: new Vector3() },
nearDistance: { value: 1 },
farDistance: { value: 1000 }
}
] ),
vertexShader: ShaderChunk.distanceRGBA_vert,
fragmentShader: ShaderChunk.distanceRGBA_frag
},
shadow: {
uniforms: mergeUniforms( [
UniformsLib.lights,
UniformsLib.fog,
{
color: { value: new Color( 0x00000 ) },
opacity: { value: 1.0 }
},
] ),
vertexShader: ShaderChunk.shadow_vert,
fragmentShader: ShaderChunk.shadow_frag
}
};
ShaderLib.physical = {
uniforms: mergeUniforms( [
ShaderLib.standard.uniforms,
{
clearcoat: { value: 0 },
clearcoatMap: { value: null },
clearcoatRoughness: { value: 0 },
clearcoatRoughnessMap: { value: null },
clearcoatNormalScale: { value: new Vector2( 1, 1 ) },
clearcoatNormalMap: { value: null },
sheen: { value: new Color( 0x000000 ) },
transparency: { value: 0 },
}
] ),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {
const clearColor = new Color( 0x000000 );
let clearAlpha = 0;
let planeMesh;
let boxMesh;
let currentBackground = null;
let currentBackgroundVersion = 0;
let currentTonemapping = null;
function render( renderList, scene, camera, forceClear ) {
let background = scene.isScene === true ? scene.background : null;
// Ignore background in AR
// TODO: Reconsider this.
const xr = renderer.xr;
const session = xr.getSession && xr.getSession();
if ( session && session.environmentBlendMode === 'additive' ) {
background = null;
}
if ( background === null ) {
setClear( clearColor, clearAlpha );
} else if ( background && background.isColor ) {
setClear( background, 1 );
forceClear = true;
}
if ( renderer.autoClear || forceClear ) {
renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );
}
if ( background && ( background.isCubeTexture || background.isWebGLCubeRenderTarget || background.mapping === CubeUVReflectionMapping ) ) {
if ( boxMesh === undefined ) {
boxMesh = new Mesh(
new BoxBufferGeometry( 1, 1, 1 ),
new ShaderMaterial( {
name: 'BackgroundCubeMaterial',
uniforms: cloneUniforms( ShaderLib.cube.uniforms ),
vertexShader: ShaderLib.cube.vertexShader,
fragmentShader: ShaderLib.cube.fragmentShader,
side: BackSide,
depthTest: false,
depthWrite: false,
fog: false
} )
);
boxMesh.geometry.deleteAttribute( 'normal' );
boxMesh.geometry.deleteAttribute( 'uv' );
boxMesh.onBeforeRender = function ( renderer, scene, camera ) {
this.matrixWorld.copyPosition( camera.matrixWorld );
};
// enable code injection for non-built-in material
Object.defineProperty( boxMesh.material, 'envMap', {
get: function () {
return this.uniforms.envMap.value;
}
} );
objects.update( boxMesh );
}
const texture = background.isWebGLCubeRenderTarget ? background.texture : background;
boxMesh.material.uniforms.envMap.value = texture;
boxMesh.material.uniforms.flipEnvMap.value = texture.isCubeTexture ? - 1 : 1;
if ( currentBackground !== background ||
currentBackgroundVersion !== texture.version ||
currentTonemapping !== renderer.toneMapping ) {
boxMesh.material.needsUpdate = true;
currentBackground = background;
currentBackgroundVersion = texture.version;
currentTonemapping = renderer.toneMapping;
}
// push to the pre-sorted opaque render list
renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null );
} else if ( background && background.isTexture ) {
if ( planeMesh === undefined ) {
planeMesh = new Mesh(
new PlaneBufferGeometry( 2, 2 ),
new ShaderMaterial( {
name: 'BackgroundMaterial',
uniforms: cloneUniforms( ShaderLib.background.uniforms ),
vertexShader: ShaderLib.background.vertexShader,
fragmentShader: ShaderLib.background.fragmentShader,
side: FrontSide,
depthTest: false,
depthWrite: false,
fog: false
} )
);
planeMesh.geometry.deleteAttribute( 'normal' );
// enable code injection for non-built-in material
Object.defineProperty( planeMesh.material, 'map', {
get: function () {
return this.uniforms.t2D.value;
}
} );
objects.update( planeMesh );
}
planeMesh.material.uniforms.t2D.value = background;
if ( background.matrixAutoUpdate === true ) {
background.updateMatrix();
}
planeMesh.material.uniforms.uvTransform.value.copy( background.matrix );
if ( currentBackground !== background ||
currentBackgroundVersion !== background.version ||
currentTonemapping !== renderer.toneMapping ) {
planeMesh.material.needsUpdate = true;
currentBackground = background;
currentBackgroundVersion = background.version;
currentTonemapping = renderer.toneMapping;
}
// push to the pre-sorted opaque render list
renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null );
}
}
function setClear( color, alpha ) {
state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );
}
return {
getClearColor: function () {
return clearColor;
},
setClearColor: function ( color, alpha ) {
clearColor.set( color );
clearAlpha = alpha !== undefined ? alpha : 1;
setClear( clearColor, clearAlpha );
},
getClearAlpha: function () {
return clearAlpha;
},
setClearAlpha: function ( alpha ) {
clearAlpha = alpha;
setClear( clearColor, clearAlpha );
},
render: render
};
}
/**
* @author Mugen87 / https://github.com/Mugen87
* @author Takahiro / https://github.com/takahirox
*/
function WebGLBindingStates( gl, extensions, attributes, capabilities ) {
const maxVertexAttributes = gl.getParameter( 34921 );
const extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' );
const vaoAvailable = capabilities.isWebGL2 || extension !== null;
const bindingStates = {};
const defaultState = createBindingState( null );
let currentState = defaultState;
function setup( object, material, program, geometry, index ) {
let updateBuffers = false;
if ( vaoAvailable ) {
const state = getBindingState( geometry, program, material );
if ( currentState !== state ) {
currentState = state;
bindVertexArrayObject( currentState.object );
}
updateBuffers = needsUpdate( geometry );
if ( updateBuffers ) saveCache( geometry );
} else {
const wireframe = ( material.wireframe === true );
if ( currentState.geometry !== geometry.id ||
currentState.program !== program.id ||
currentState.wireframe !== wireframe ) {
currentState.geometry = geometry.id;
currentState.program = program.id;
currentState.wireframe = wireframe;
updateBuffers = true;
}
}
if ( object.isInstancedMesh === true ) {
updateBuffers = true;
}
if ( index !== null ) {
attributes.update( index, 34963 );
}
if ( updateBuffers ) {
setupVertexAttributes( object, material, program, geometry );
if ( index !== null ) {
gl.bindBuffer( 34963, attributes.get( index ).buffer );
}
}
}
function createVertexArrayObject() {
if ( capabilities.isWebGL2 ) return gl.createVertexArray();
return extension.createVertexArrayOES();
}
function bindVertexArrayObject( vao ) {
if ( capabilities.isWebGL2 ) return gl.bindVertexArray( vao );
return extension.bindVertexArrayOES( vao );
}
function deleteVertexArrayObject( vao ) {
if ( capabilities.isWebGL2 ) return gl.deleteVertexArray( vao );
return extension.deleteVertexArrayOES( vao );
}
function getBindingState( geometry, program, material ) {
const wireframe = ( material.wireframe === true );
let programMap = bindingStates[ geometry.id ];
if ( programMap === undefined ) {
programMap = {};
bindingStates[ geometry.id ] = programMap;
}
let stateMap = programMap[ program.id ];
if ( stateMap === undefined ) {
stateMap = {};
programMap[ program.id ] = stateMap;
}
let state = stateMap[ wireframe ];
if ( state === undefined ) {
state = createBindingState( createVertexArrayObject() );
stateMap[ wireframe ] = state;
}
return state;
}
function createBindingState( vao ) {
const newAttributes = [];
const enabledAttributes = [];
const attributeDivisors = [];
for ( let i = 0; i < maxVertexAttributes; i ++ ) {
newAttributes[ i ] = 0;
enabledAttributes[ i ] = 0;
attributeDivisors[ i ] = 0;
}
return {
// for backward compatibility on non-VAO support browser
geometry: null,
program: null,
wireframe: false,
newAttributes: newAttributes,
enabledAttributes: enabledAttributes,
attributeDivisors: attributeDivisors,
object: vao,
attributes: {}
};
}
function needsUpdate( geometry ) {
const cachedAttributes = currentState.attributes;
const geometryAttributes = geometry.attributes;
if ( Object.keys( cachedAttributes ).length !== Object.keys( geometryAttributes ).length ) return true;
for ( const key in geometryAttributes ) {
const cachedAttribute = cachedAttributes[ key ];
const geometryAttribute = geometryAttributes[ key ];
if ( cachedAttribute.attribute !== geometryAttribute ) return true;
if ( cachedAttribute.data !== geometryAttribute.data ) return true;
}
return false;
}
function saveCache( geometry ) {
const cache = {};
const attributes = geometry.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
const data = {};
data.attribute = attribute;
if ( attribute.data ) {
data.data = attribute.data;
}
cache[ key ] = data;
}
currentState.attributes = cache;
}
function initAttributes() {
const newAttributes = currentState.newAttributes;
for ( let i = 0, il = newAttributes.length; i < il; i ++ ) {
newAttributes[ i ] = 0;
}
}
function enableAttribute( attribute ) {
enableAttributeAndDivisor( attribute, 0 );
}
function enableAttributeAndDivisor( attribute, meshPerAttribute ) {
const newAttributes = currentState.newAttributes;
const enabledAttributes = currentState.enabledAttributes;
const attributeDivisors = currentState.attributeDivisors;
newAttributes[ attribute ] = 1;
if ( enabledAttributes[ attribute ] === 0 ) {
gl.enableVertexAttribArray( attribute );
enabledAttributes[ attribute ] = 1;
}
if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {
const extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' );
extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute );
attributeDivisors[ attribute ] = meshPerAttribute;
}
}
function disableUnusedAttributes() {
const newAttributes = currentState.newAttributes;
const enabledAttributes = currentState.enabledAttributes;
for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) {
if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {
gl.disableVertexAttribArray( i );
enabledAttributes[ i ] = 0;
}
}
}
function vertexAttribPointer( index, size, type, normalized, stride, offset ) {
if ( capabilities.isWebGL2 === true && ( type === 5124 || type === 5125 ) ) {
gl.vertexAttribIPointer( index, size, type, normalized, stride, offset );
} else {
gl.vertexAttribPointer( index, size, type, normalized, stride, offset );
}
}
function setupVertexAttributes( object, material, program, geometry ) {
if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) {
if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) return;
}
initAttributes();
const geometryAttributes = geometry.attributes;
const programAttributes = program.getAttributes();
const materialDefaultAttributeValues = material.defaultAttributeValues;
for ( const name in programAttributes ) {
const programAttribute = programAttributes[ name ];
if ( programAttribute >= 0 ) {
const geometryAttribute = geometryAttributes[ name ];
if ( geometryAttribute !== undefined ) {
const normalized = geometryAttribute.normalized;
const size = geometryAttribute.itemSize;
const attribute = attributes.get( geometryAttribute );
// TODO Attribute may not be available on context restore
if ( attribute === undefined ) continue;
const buffer = attribute.buffer;
const type = attribute.type;
const bytesPerElement = attribute.bytesPerElement;
if ( geometryAttribute.isInterleavedBufferAttribute ) {
const data = geometryAttribute.data;
const stride = data.stride;
const offset = geometryAttribute.offset;
if ( data && data.isInstancedInterleavedBuffer ) {
enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );
if ( geometry._maxInstanceCount === undefined ) {
geometry._maxInstanceCount = data.meshPerAttribute * data.count;
}
} else {
enableAttribute( programAttribute );
}
gl.bindBuffer( 34962, buffer );
vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement );
} else {
if ( geometryAttribute.isInstancedBufferAttribute ) {
enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );
if ( geometry._maxInstanceCount === undefined ) {
geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
}
} else {
enableAttribute( programAttribute );
}
gl.bindBuffer( 34962, buffer );
vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 );
}
} else if ( name === 'instanceMatrix' ) {
const attribute = attributes.get( object.instanceMatrix );
// TODO Attribute may not be available on context restore
if ( attribute === undefined ) continue;
const buffer = attribute.buffer;
const type = attribute.type;
enableAttributeAndDivisor( programAttribute + 0, 1 );
enableAttributeAndDivisor( programAttribute + 1, 1 );
enableAttributeAndDivisor( programAttribute + 2, 1 );
enableAttributeAndDivisor( programAttribute + 3, 1 );
gl.bindBuffer( 34962, buffer );
gl.vertexAttribPointer( programAttribute + 0, 4, type, false, 64, 0 );
gl.vertexAttribPointer( programAttribute + 1, 4, type, false, 64, 16 );
gl.vertexAttribPointer( programAttribute + 2, 4, type, false, 64, 32 );
gl.vertexAttribPointer( programAttribute + 3, 4, type, false, 64, 48 );
} else if ( materialDefaultAttributeValues !== undefined ) {
const value = materialDefaultAttributeValues[ name ];
if ( value !== undefined ) {
switch ( value.length ) {
case 2:
gl.vertexAttrib2fv( programAttribute, value );
break;
case 3:
gl.vertexAttrib3fv( programAttribute, value );
break;
case 4:
gl.vertexAttrib4fv( programAttribute, value );
break;
default:
gl.vertexAttrib1fv( programAttribute, value );
}
}
}
}
}
disableUnusedAttributes();
}
function dispose() {
reset();
for ( const geometryId in bindingStates ) {
const programMap = bindingStates[ geometryId ];
for ( const programId in programMap ) {
const stateMap = programMap[ programId ];
for ( const wireframe in stateMap ) {
deleteVertexArrayObject( stateMap[ wireframe ].object );
delete stateMap[ wireframe ];
}
delete programMap[ programId ];
}
delete bindingStates[ geometryId ];
}
}
function releaseStatesOfGeometry( geometry ) {
if ( bindingStates[ geometry.id ] === undefined ) return;
const programMap = bindingStates[ geometry.id ];
for ( const programId in programMap ) {
const stateMap = programMap[ programId ];
for ( const wireframe in stateMap ) {
deleteVertexArrayObject( stateMap[ wireframe ].object );
delete stateMap[ wireframe ];
}
delete programMap[ programId ];
}
delete bindingStates[ geometry.id ];
}
function releaseStatesOfProgram( program ) {
for ( const geometryId in bindingStates ) {
const programMap = bindingStates[ geometryId ];
if ( programMap[ program.id ] === undefined ) continue;
const stateMap = programMap[ program.id ];
for ( const wireframe in stateMap ) {
deleteVertexArrayObject( stateMap[ wireframe ].object );
delete stateMap[ wireframe ];
}
delete programMap[ program.id ];
}
}
function reset() {
resetDefaultState();
if ( currentState === defaultState ) return;
currentState = defaultState;
bindVertexArrayObject( currentState.object );
}
// for backward-compatilibity
function resetDefaultState() {
defaultState.geometry = null;
defaultState.program = null;
defaultState.wireframe = false;
}
return {
setup: setup,
reset: reset,
resetDefaultState: resetDefaultState,
dispose: dispose,
releaseStatesOfGeometry: releaseStatesOfGeometry,
releaseStatesOfProgram: releaseStatesOfProgram,
initAttributes: initAttributes,
enableAttribute: enableAttribute,
disableUnusedAttributes: disableUnusedAttributes
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLBufferRenderer( gl, extensions, info, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
let mode;
function setMode( value ) {
mode = value;
}
function render( start, count ) {
gl.drawArrays( mode, start, count );
info.update( count, mode );
}
function renderInstances( geometry, start, count, primcount ) {
if ( primcount === 0 ) return;
let extension, methodName;
if ( isWebGL2 ) {
extension = gl;
methodName = 'drawArraysInstanced';
} else {
extension = extensions.get( 'ANGLE_instanced_arrays' );
methodName = 'drawArraysInstancedANGLE';
if ( extension === null ) {
console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
}
extension[ methodName ]( mode, start, count, primcount );
info.update( count, mode, primcount );
}
//
this.setMode = setMode;
this.render = render;
this.renderInstances = renderInstances;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLCapabilities( gl, extensions, parameters ) {
let maxAnisotropy;
function getMaxAnisotropy() {
if ( maxAnisotropy !== undefined ) return maxAnisotropy;
const extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension !== null ) {
maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
} else {
maxAnisotropy = 0;
}
return maxAnisotropy;
}
function getMaxPrecision( precision ) {
if ( precision === 'highp' ) {
if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 &&
gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) {
return 'highp';
}
precision = 'mediump';
}
if ( precision === 'mediump' ) {
if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 &&
gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) {
return 'mediump';
}
}
return 'lowp';
}
/* eslint-disable no-undef */
const isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) ||
( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext );
/* eslint-enable no-undef */
let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
const maxPrecision = getMaxPrecision( precision );
if ( maxPrecision !== precision ) {
console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
precision = maxPrecision;
}
const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
const maxTextures = gl.getParameter( 34930 );
const maxVertexTextures = gl.getParameter( 35660 );
const maxTextureSize = gl.getParameter( 3379 );
const maxCubemapSize = gl.getParameter( 34076 );
const maxAttributes = gl.getParameter( 34921 );
const maxVertexUniforms = gl.getParameter( 36347 );
const maxVaryings = gl.getParameter( 36348 );
const maxFragmentUniforms = gl.getParameter( 36349 );
const vertexTextures = maxVertexTextures > 0;
const floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' );
const floatVertexTextures = vertexTextures && floatFragmentTextures;
const maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0;
return {
isWebGL2: isWebGL2,
getMaxAnisotropy: getMaxAnisotropy,
getMaxPrecision: getMaxPrecision,
precision: precision,
logarithmicDepthBuffer: logarithmicDepthBuffer,
maxTextures: maxTextures,
maxVertexTextures: maxVertexTextures,
maxTextureSize: maxTextureSize,
maxCubemapSize: maxCubemapSize,
maxAttributes: maxAttributes,
maxVertexUniforms: maxVertexUniforms,
maxVaryings: maxVaryings,
maxFragmentUniforms: maxFragmentUniforms,
vertexTextures: vertexTextures,
floatFragmentTextures: floatFragmentTextures,
floatVertexTextures: floatVertexTextures,
maxSamples: maxSamples
};
}
/**
* @author tschw
*/
function WebGLClipping() {
const scope = this;
let globalState = null,
numGlobalPlanes = 0,
localClippingEnabled = false,
renderingShadows = false;
const plane = new Plane(),
viewNormalMatrix = new Matrix3(),
uniform = { value: null, needsUpdate: false };
this.uniform = uniform;
this.numPlanes = 0;
this.numIntersection = 0;
this.init = function ( planes, enableLocalClipping, camera ) {
const enabled =
planes.length !== 0 ||
enableLocalClipping ||
// enable state of previous frame - the clipping code has to
// run another frame in order to reset the state:
numGlobalPlanes !== 0 ||
localClippingEnabled;
localClippingEnabled = enableLocalClipping;
globalState = projectPlanes( planes, camera, 0 );
numGlobalPlanes = planes.length;
return enabled;
};
this.beginShadows = function () {
renderingShadows = true;
projectPlanes( null );
};
this.endShadows = function () {
renderingShadows = false;
resetGlobalState();
};
this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {
if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) {
// there's no local clipping
if ( renderingShadows ) {
// there's no global clipping
projectPlanes( null );
} else {
resetGlobalState();
}
} else {
const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
lGlobal = nGlobal * 4;
let dstArray = cache.clippingState || null;
uniform.value = dstArray; // ensure unique state
dstArray = projectPlanes( planes, camera, lGlobal, fromCache );
for ( let i = 0; i !== lGlobal; ++ i ) {
dstArray[ i ] = globalState[ i ];
}
cache.clippingState = dstArray;
this.numIntersection = clipIntersection ? this.numPlanes : 0;
this.numPlanes += nGlobal;
}
};
function resetGlobalState() {
if ( uniform.value !== globalState ) {
uniform.value = globalState;
uniform.needsUpdate = numGlobalPlanes > 0;
}
scope.numPlanes = numGlobalPlanes;
scope.numIntersection = 0;
}
function projectPlanes( planes, camera, dstOffset, skipTransform ) {
let nPlanes = planes !== null ? planes.length : 0,
dstArray = null;
if ( nPlanes !== 0 ) {
dstArray = uniform.value;
if ( skipTransform !== true || dstArray === null ) {
const flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse;
viewNormalMatrix.getNormalMatrix( viewMatrix );
if ( dstArray === null || dstArray.length < flatSize ) {
dstArray = new Float32Array( flatSize );
}
for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {
plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix );
plane.normal.toArray( dstArray, i4 );
dstArray[ i4 + 3 ] = plane.constant;
}
}
uniform.value = dstArray;
uniform.needsUpdate = true;
}
scope.numPlanes = nPlanes;
scope.numIntersection = 0;
return dstArray;
}
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLExtensions( gl ) {
const extensions = {};
return {
get: function ( name ) {
if ( extensions[ name ] !== undefined ) {
return extensions[ name ];
}
let extension;
switch ( name ) {
case 'WEBGL_depth_texture':
extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
break;
case 'EXT_texture_filter_anisotropic':
extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
break;
case 'WEBGL_compressed_texture_s3tc':
extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
break;
case 'WEBGL_compressed_texture_pvrtc':
extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
break;
default:
extension = gl.getExtension( name );
}
if ( extension === null ) {
console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
}
extensions[ name ] = extension;
return extension;
}
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLGeometries( gl, attributes, info, bindingStates ) {
const geometries = new WeakMap();
const wireframeAttributes = new WeakMap();
function onGeometryDispose( event ) {
const geometry = event.target;
const buffergeometry = geometries.get( geometry );
if ( buffergeometry.index !== null ) {
attributes.remove( buffergeometry.index );
}
for ( const name in buffergeometry.attributes ) {
attributes.remove( buffergeometry.attributes[ name ] );
}
geometry.removeEventListener( 'dispose', onGeometryDispose );
geometries.delete( geometry );
const attribute = wireframeAttributes.get( buffergeometry );
if ( attribute ) {
attributes.remove( attribute );
wireframeAttributes.delete( buffergeometry );
}
bindingStates.releaseStatesOfGeometry( geometry );
if ( geometry.isInstancedBufferGeometry === true ) {
delete geometry._maxInstanceCount;
}
//
info.memory.geometries --;
}
function get( object, geometry ) {
let buffergeometry = geometries.get( geometry );
if ( buffergeometry ) return buffergeometry;
geometry.addEventListener( 'dispose', onGeometryDispose );
if ( geometry.isBufferGeometry ) {
buffergeometry = geometry;
} else if ( geometry.isGeometry ) {
if ( geometry._bufferGeometry === undefined ) {
geometry._bufferGeometry = new BufferGeometry().setFromObject( object );
}
buffergeometry = geometry._bufferGeometry;
}
geometries.set( geometry, buffergeometry );
info.memory.geometries ++;
return buffergeometry;
}
function update( geometry ) {
const geometryAttributes = geometry.attributes;
// Updating index buffer in VAO now. See WebGLBindingStates.
for ( const name in geometryAttributes ) {
attributes.update( geometryAttributes[ name ], 34962 );
}
// morph targets
const morphAttributes = geometry.morphAttributes;
for ( const name in morphAttributes ) {
const array = morphAttributes[ name ];
for ( let i = 0, l = array.length; i < l; i ++ ) {
attributes.update( array[ i ], 34962 );
}
}
}
function updateWireframeAttribute( geometry ) {
const indices = [];
const geometryIndex = geometry.index;
const geometryPosition = geometry.attributes.position;
let version = 0;
if ( geometryIndex !== null ) {
const array = geometryIndex.array;
version = geometryIndex.version;
for ( let i = 0, l = array.length; i < l; i += 3 ) {
const a = array[ i + 0 ];
const b = array[ i + 1 ];
const c = array[ i + 2 ];
indices.push( a, b, b, c, c, a );
}
} else {
const array = geometryPosition.array;
version = geometryPosition.version;
for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {
const a = i + 0;
const b = i + 1;
const c = i + 2;
indices.push( a, b, b, c, c, a );
}
}
const attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );
attribute.version = version;
// Updating index buffer in VAO now. See WebGLBindingStates
//
const previousAttribute = wireframeAttributes.get( geometry );
if ( previousAttribute ) attributes.remove( previousAttribute );
//
wireframeAttributes.set( geometry, attribute );
}
function getWireframeAttribute( geometry ) {
const currentAttribute = wireframeAttributes.get( geometry );
if ( currentAttribute ) {
const geometryIndex = geometry.index;
if ( geometryIndex !== null ) {
// if the attribute is obsolete, create a new one
if ( currentAttribute.version < geometryIndex.version ) {
updateWireframeAttribute( geometry );
}
}
} else {
updateWireframeAttribute( geometry );
}
return wireframeAttributes.get( geometry );
}
return {
get: get,
update: update,
getWireframeAttribute: getWireframeAttribute
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
let mode;
function setMode( value ) {
mode = value;
}
let type, bytesPerElement;
function setIndex( value ) {
type = value.type;
bytesPerElement = value.bytesPerElement;
}
function render( start, count ) {
gl.drawElements( mode, count, type, start * bytesPerElement );
info.update( count, mode );
}
function renderInstances( geometry, start, count, primcount ) {
if ( primcount === 0 ) return;
let extension, methodName;
if ( isWebGL2 ) {
extension = gl;
methodName = 'drawElementsInstanced';
} else {
extension = extensions.get( 'ANGLE_instanced_arrays' );
methodName = 'drawElementsInstancedANGLE';
if ( extension === null ) {
console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
return;
}
}
extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount );
info.update( count, mode, primcount );
}
//
this.setMode = setMode;
this.setIndex = setIndex;
this.render = render;
this.renderInstances = renderInstances;
}
/**
* @author Mugen87 / https://github.com/Mugen87
*/
function WebGLInfo( gl ) {
const memory = {
geometries: 0,
textures: 0
};
const render = {
frame: 0,
calls: 0,
triangles: 0,
points: 0,
lines: 0
};
function update( count, mode, instanceCount ) {
instanceCount = instanceCount || 1;
render.calls ++;
switch ( mode ) {
case 4:
render.triangles += instanceCount * ( count / 3 );
break;
case 1:
render.lines += instanceCount * ( count / 2 );
break;
case 3:
render.lines += instanceCount * ( count - 1 );
break;
case 2:
render.lines += instanceCount * count;
break;
case 0:
render.points += instanceCount * count;
break;
default:
console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode );
break;
}
}
function reset() {
render.frame ++;
render.calls = 0;
render.triangles = 0;
render.points = 0;
render.lines = 0;
}
return {
memory: memory,
render: render,
programs: null,
autoReset: true,
reset: reset,
update: update
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function numericalSort( a, b ) {
return a[ 0 ] - b[ 0 ];
}
function absNumericalSort( a, b ) {
return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] );
}
function WebGLMorphtargets( gl ) {
const influencesList = {};
const morphInfluences = new Float32Array( 8 );
const workInfluences = [];
for ( let i = 0; i < 8; i ++ ) {
workInfluences[ i ] = [ i, 0 ];
}
function update( object, geometry, material, program ) {
const objectInfluences = object.morphTargetInfluences;
// When object doesn't have morph target influences defined, we treat it as a 0-length array
// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
const length = objectInfluences === undefined ? 0 : objectInfluences.length;
let influences = influencesList[ geometry.id ];
if ( influences === undefined ) {
// initialise list
influences = [];
for ( let i = 0; i < length; i ++ ) {
influences[ i ] = [ i, 0 ];
}
influencesList[ geometry.id ] = influences;
}
// Collect influences
for ( let i = 0; i < length; i ++ ) {
const influence = influences[ i ];
influence[ 0 ] = i;
influence[ 1 ] = objectInfluences[ i ];
}
influences.sort( absNumericalSort );
for ( let i = 0; i < 8; i ++ ) {
if ( i < length && influences[ i ][ 1 ] ) {
workInfluences[ i ][ 0 ] = influences[ i ][ 0 ];
workInfluences[ i ][ 1 ] = influences[ i ][ 1 ];
} else {
workInfluences[ i ][ 0 ] = Number.MAX_SAFE_INTEGER;
workInfluences[ i ][ 1 ] = 0;
}
}
workInfluences.sort( numericalSort );
const morphTargets = material.morphTargets && geometry.morphAttributes.position;
const morphNormals = material.morphNormals && geometry.morphAttributes.normal;
let morphInfluencesSum = 0;
for ( let i = 0; i < 8; i ++ ) {
const influence = workInfluences[ i ];
const index = influence[ 0 ];
const value = influence[ 1 ];
if ( index !== Number.MAX_SAFE_INTEGER && value ) {
if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== morphTargets[ index ] ) {
geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] );
}
if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== morphNormals[ index ] ) {
geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] );
}
morphInfluences[ i ] = value;
morphInfluencesSum += value;
} else {
if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== undefined ) {
geometry.deleteAttribute( 'morphTarget' + i );
}
if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== undefined ) {
geometry.deleteAttribute( 'morphNormal' + i );
}
morphInfluences[ i ] = 0;
}
}
// GLSL shader uses formula baseinfluence * base + sum(target * influence)
// This allows us to switch between absolute morphs and relative morphs without changing shader code
// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence );
program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences );
}
return {
update: update
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLObjects( gl, geometries, attributes, info ) {
let updateMap = new WeakMap();
function update( object ) {
const frame = info.render.frame;
const geometry = object.geometry;
const buffergeometry = geometries.get( object, geometry );
// Update once per frame
if ( updateMap.get( buffergeometry ) !== frame ) {
if ( geometry.isGeometry ) {
buffergeometry.updateFromObject( object );
}
geometries.update( buffergeometry );
updateMap.set( buffergeometry, frame );
}
if ( object.isInstancedMesh ) {
attributes.update( object.instanceMatrix, 34962 );
}
return buffergeometry;
}
function dispose() {
updateMap = new WeakMap();
}
return {
update: update,
dispose: dispose
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
format = format !== undefined ? format : RGBFormat;
Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.flipY = false;
}
CubeTexture.prototype = Object.create( Texture.prototype );
CubeTexture.prototype.constructor = CubeTexture;
CubeTexture.prototype.isCubeTexture = true;
Object.defineProperty( CubeTexture.prototype, 'images', {
get: function () {
return this.image;
},
set: function ( value ) {
this.image = value;
}
} );
/**
* @author Takahiro https://github.com/takahirox
*/
function DataTexture2DArray( data, width, height, depth ) {
Texture.call( this, null );
this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.needsUpdate = true;
}
DataTexture2DArray.prototype = Object.create( Texture.prototype );
DataTexture2DArray.prototype.constructor = DataTexture2DArray;
DataTexture2DArray.prototype.isDataTexture2DArray = true;
/**
* @author Artur Trzesiok
*/
function DataTexture3D( data, width, height, depth ) {
// We're going to add .setXXX() methods for setting properties later.
// Users can still set in DataTexture3D directly.
//
// const texture = new THREE.DataTexture3D( data, width, height, depth );
// texture.anisotropy = 16;
//
// See #14839
Texture.call( this, null );
this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.needsUpdate = true;
}
DataTexture3D.prototype = Object.create( Texture.prototype );
DataTexture3D.prototype.constructor = DataTexture3D;
DataTexture3D.prototype.isDataTexture3D = true;
/**
* @author tschw
* @author Mugen87 / https://github.com/Mugen87
* @author mrdoob / http://mrdoob.com/
*
* Uniforms of a program.
* Those form a tree structure with a special top-level container for the root,
* which you get by calling 'new WebGLUniforms( gl, program )'.
*
*
* Properties of inner nodes including the top-level container:
*
* .seq - array of nested uniforms
* .map - nested uniforms by name
*
*
* Methods of all nodes except the top-level container:
*
* .setValue( gl, value, [textures] )
*
* uploads a uniform value(s)
* the 'textures' parameter is needed for sampler uniforms
*
*
* Static methods of the top-level container (textures factorizations):
*
* .upload( gl, seq, values, textures )
*
* sets uniforms in 'seq' to 'values[id].value'
*
* .seqWithValue( seq, values ) : filteredSeq
*
* filters 'seq' entries with corresponding entry in values
*
*
* Methods of the top-level container (textures factorizations):
*
* .setValue( gl, name, value, textures )
*
* sets uniform with name 'name' to 'value'
*
* .setOptional( gl, obj, prop )
*
* like .set for an optional property of the object
*
*/
const emptyTexture = new Texture();
const emptyTexture2dArray = new DataTexture2DArray();
const emptyTexture3d = new DataTexture3D();
const emptyCubeTexture = new CubeTexture();
// --- Utilities ---
// Array Caches (provide typed arrays for temporary by size)
const arrayCacheF32 = [];
const arrayCacheI32 = [];
// Float32Array caches used for uploading Matrix uniforms
const mat4array = new Float32Array( 16 );
const mat3array = new Float32Array( 9 );
const mat2array = new Float32Array( 4 );
// Flattening for arrays of vectors and matrices
function flatten( array, nBlocks, blockSize ) {
const firstElem = array[ 0 ];
if ( firstElem <= 0 || firstElem > 0 ) return array;
// unoptimized: ! isNaN( firstElem )
// see http://jacksondunstan.com/articles/983
let n = nBlocks * blockSize,
r = arrayCacheF32[ n ];
if ( r === undefined ) {
r = new Float32Array( n );
arrayCacheF32[ n ] = r;
}
if ( nBlocks !== 0 ) {
firstElem.toArray( r, 0 );
for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) {
offset += blockSize;
array[ i ].toArray( r, offset );
}
}
return r;
}
function arraysEqual( a, b ) {
if ( a.length !== b.length ) return false;
for ( let i = 0, l = a.length; i < l; i ++ ) {
if ( a[ i ] !== b[ i ] ) return false;
}
return true;
}
function copyArray( a, b ) {
for ( let i = 0, l = b.length; i < l; i ++ ) {
a[ i ] = b[ i ];
}
}
// Texture unit allocation
function allocTexUnits( textures, n ) {
let r = arrayCacheI32[ n ];
if ( r === undefined ) {
r = new Int32Array( n );
arrayCacheI32[ n ] = r;
}
for ( let i = 0; i !== n; ++ i ) {
r[ i ] = textures.allocateTextureUnit();
}
return r;
}
// --- Setters ---
// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.
// Single scalar
function setValueV1f( gl, v ) {
const cache = this.cache;
if ( cache[ 0 ] === v ) return;
gl.uniform1f( this.addr, v );
cache[ 0 ] = v;
}
// Single float vector (from flat array or THREE.VectorN)
function setValueV2f( gl, v ) {
const cache = this.cache;
if ( v.x !== undefined ) {
if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) {
gl.uniform2f( this.addr, v.x, v.y );
cache[ 0 ] = v.x;
cache[ 1 ] = v.y;
}
} else {
if ( arraysEqual( cache, v ) ) return;
gl.uniform2fv( this.addr, v );
copyArray( cache, v );
}
}
function setValueV3f( gl, v ) {
const cache = this.cache;
if ( v.x !== undefined ) {
if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) {
gl.uniform3f( this.addr, v.x, v.y, v.z );
cache[ 0 ] = v.x;
cache[ 1 ] = v.y;
cache[ 2 ] = v.z;
}
} else if ( v.r !== undefined ) {
if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) {
gl.uniform3f( this.addr, v.r, v.g, v.b );
cache[ 0 ] = v.r;
cache[ 1 ] = v.g;
cache[ 2 ] = v.b;
}
} else {
if ( arraysEqual( cache, v ) ) return;
gl.uniform3fv( this.addr, v );
copyArray( cache, v );
}
}
function setValueV4f( gl, v ) {
const cache = this.cache;
if ( v.x !== undefined ) {
if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) {
gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
cache[ 0 ] = v.x;
cache[ 1 ] = v.y;
cache[ 2 ] = v.z;
cache[ 3 ] = v.w;
}
} else {
if ( arraysEqual( cache, v ) ) return;
gl.uniform4fv( this.addr, v );
copyArray( cache, v );
}
}
// Single matrix (from flat array or MatrixN)
function setValueM2( gl, v ) {
const cache = this.cache;
const elements = v.elements;
if ( elements === undefined ) {
if ( arraysEqual( cache, v ) ) return;
gl.uniformMatrix2fv( this.addr, false, v );
copyArray( cache, v );
} else {
if ( arraysEqual( cache, elements ) ) return;
mat2array.set( elements );
gl.uniformMatrix2fv( this.addr, false, mat2array );
copyArray( cache, elements );
}
}
function setValueM3( gl, v ) {
const cache = this.cache;
const elements = v.elements;
if ( elements === undefined ) {
if ( arraysEqual( cache, v ) ) return;
gl.uniformMatrix3fv( this.addr, false, v );
copyArray( cache, v );
} else {
if ( arraysEqual( cache, elements ) ) return;
mat3array.set( elements );
gl.uniformMatrix3fv( this.addr, false, mat3array );
copyArray( cache, elements );
}
}
function setValueM4( gl, v ) {
const cache = this.cache;
const elements = v.elements;
if ( elements === undefined ) {
if ( arraysEqual( cache, v ) ) return;
gl.uniformMatrix4fv( this.addr, false, v );
copyArray( cache, v );
} else {
if ( arraysEqual( cache, elements ) ) return;
mat4array.set( elements );
gl.uniformMatrix4fv( this.addr, false, mat4array );
copyArray( cache, elements );
}
}
// Single texture (2D / Cube)
function setValueT1( gl, v, textures ) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if ( cache[ 0 ] !== unit ) {
gl.uniform1i( this.addr, unit );
cache[ 0 ] = unit;
}
textures.safeSetTexture2D( v || emptyTexture, unit );
}
function setValueT2DArray1( gl, v, textures ) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if ( cache[ 0 ] !== unit ) {
gl.uniform1i( this.addr, unit );
cache[ 0 ] = unit;
}
textures.setTexture2DArray( v || emptyTexture2dArray, unit );
}
function setValueT3D1( gl, v, textures ) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if ( cache[ 0 ] !== unit ) {
gl.uniform1i( this.addr, unit );
cache[ 0 ] = unit;
}
textures.setTexture3D( v || emptyTexture3d, unit );
}
function setValueT6( gl, v, textures ) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if ( cache[ 0 ] !== unit ) {
gl.uniform1i( this.addr, unit );
cache[ 0 ] = unit;
}
textures.safeSetTextureCube( v || emptyCubeTexture, unit );
}
// Integer / Boolean vectors or arrays thereof (always flat arrays)
function setValueV1i( gl, v ) {
const cache = this.cache;
if ( cache[ 0 ] === v ) return;
gl.uniform1i( this.addr, v );
cache[ 0 ] = v;
}
function setValueV2i( gl, v ) {
const cache = this.cache;
if ( arraysEqual( cache, v ) ) return;
gl.uniform2iv( this.addr, v );
copyArray( cache, v );
}
function setValueV3i( gl, v ) {
const cache = this.cache;
if ( arraysEqual( cache, v ) ) return;
gl.uniform3iv( this.addr, v );
copyArray( cache, v );
}
function setValueV4i( gl, v ) {
const cache = this.cache;
if ( arraysEqual( cache, v ) ) return;
gl.uniform4iv( this.addr, v );
copyArray( cache, v );
}
// uint
function setValueV1ui( gl, v ) {
const cache = this.cache;
if ( cache[ 0 ] === v ) return;
gl.uniform1ui( this.addr, v );
cache[ 0 ] = v;
}
// Helper to pick the right setter for the singular case
function getSingularSetter( type ) {
switch ( type ) {
case 0x1406: return setValueV1f; // FLOAT
case 0x8b50: return setValueV2f; // _VEC2
case 0x8b51: return setValueV3f; // _VEC3
case 0x8b52: return setValueV4f; // _VEC4
case 0x8b5a: return setValueM2; // _MAT2
case 0x8b5b: return setValueM3; // _MAT3
case 0x8b5c: return setValueM4; // _MAT4
case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL
case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2
case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3
case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4
case 0x1405: return setValueV1ui; // UINT
case 0x8b5e: // SAMPLER_2D
case 0x8d66: // SAMPLER_EXTERNAL_OES
case 0x8dca: // INT_SAMPLER_2D
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
case 0x8b62: // SAMPLER_2D_SHADOW
return setValueT1;
case 0x8b5f: // SAMPLER_3D
case 0x8dcb: // INT_SAMPLER_3D
case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D
return setValueT3D1;
case 0x8b60: // SAMPLER_CUBE
case 0x8dcc: // INT_SAMPLER_CUBE
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
case 0x8dc5: // SAMPLER_CUBE_SHADOW
return setValueT6;
case 0x8dc1: // SAMPLER_2D_ARRAY
case 0x8dcf: // INT_SAMPLER_2D_ARRAY
case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW
return setValueT2DArray1;
}
}
// Array of scalars
function setValueV1fArray( gl, v ) {
gl.uniform1fv( this.addr, v );
}
// Integer / Boolean vectors or arrays thereof (always flat arrays)
function setValueV1iArray( gl, v ) {
gl.uniform1iv( this.addr, v );
}
function setValueV2iArray( gl, v ) {
gl.uniform2iv( this.addr, v );
}
function setValueV3iArray( gl, v ) {
gl.uniform3iv( this.addr, v );
}
function setValueV4iArray( gl, v ) {
gl.uniform4iv( this.addr, v );
}
// Array of vectors (flat or from THREE classes)
function setValueV2fArray( gl, v ) {
const data = flatten( v, this.size, 2 );
gl.uniform2fv( this.addr, data );
}
function setValueV3fArray( gl, v ) {
const data = flatten( v, this.size, 3 );
gl.uniform3fv( this.addr, data );
}
function setValueV4fArray( gl, v ) {
const data = flatten( v, this.size, 4 );
gl.uniform4fv( this.addr, data );
}
// Array of matrices (flat or from THREE clases)
function setValueM2Array( gl, v ) {
const data = flatten( v, this.size, 4 );
gl.uniformMatrix2fv( this.addr, false, data );
}
function setValueM3Array( gl, v ) {
const data = flatten( v, this.size, 9 );
gl.uniformMatrix3fv( this.addr, false, data );
}
function setValueM4Array( gl, v ) {
const data = flatten( v, this.size, 16 );
gl.uniformMatrix4fv( this.addr, false, data );
}
// Array of textures (2D / Cube)
function setValueT1Array( gl, v, textures ) {
const n = v.length;
const units = allocTexUnits( textures, n );
gl.uniform1iv( this.addr, units );
for ( let i = 0; i !== n; ++ i ) {
textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] );
}
}
function setValueT6Array( gl, v, textures ) {
const n = v.length;
const units = allocTexUnits( textures, n );
gl.uniform1iv( this.addr, units );
for ( let i = 0; i !== n; ++ i ) {
textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );
}
}
// Helper to pick the right setter for a pure (bottom-level) array
function getPureArraySetter( type ) {
switch ( type ) {
case 0x1406: return setValueV1fArray; // FLOAT
case 0x8b50: return setValueV2fArray; // _VEC2
case 0x8b51: return setValueV3fArray; // _VEC3
case 0x8b52: return setValueV4fArray; // _VEC4
case 0x8b5a: return setValueM2Array; // _MAT2
case 0x8b5b: return setValueM3Array; // _MAT3
case 0x8b5c: return setValueM4Array; // _MAT4
case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL
case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2
case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3
case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4
case 0x8b5e: // SAMPLER_2D
case 0x8d66: // SAMPLER_EXTERNAL_OES
case 0x8dca: // INT_SAMPLER_2D
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
case 0x8b62: // SAMPLER_2D_SHADOW
return setValueT1Array;
case 0x8b60: // SAMPLER_CUBE
case 0x8dcc: // INT_SAMPLER_CUBE
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
case 0x8dc5: // SAMPLER_CUBE_SHADOW
return setValueT6Array;
}
}
// --- Uniform Classes ---
function SingleUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.cache = [];
this.setValue = getSingularSetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
}
function PureArrayUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.cache = [];
this.size = activeInfo.size;
this.setValue = getPureArraySetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
}
PureArrayUniform.prototype.updateCache = function ( data ) {
let cache = this.cache;
if ( data instanceof Float32Array && cache.length !== data.length ) {
this.cache = new Float32Array( data.length );
}
copyArray( cache, data );
};
function StructuredUniform( id ) {
this.id = id;
this.seq = [];
this.map = {};
}
StructuredUniform.prototype.setValue = function ( gl, value, textures ) {
const seq = this.seq;
for ( let i = 0, n = seq.length; i !== n; ++ i ) {
const u = seq[ i ];
u.setValue( gl, value[ u.id ], textures );
}
};
// --- Top-level ---
// Parser - builds up the property tree from the path strings
const RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;
// extracts
// - the identifier (member name or array index)
// - followed by an optional right bracket (found when array index)
// - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.
function addUniform( container, uniformObject ) {
container.seq.push( uniformObject );
container.map[ uniformObject.id ] = uniformObject;
}
function parseUniform( activeInfo, addr, container ) {
const path = activeInfo.name,
pathLength = path.length;
// reset RegExp object, because of the early exit of a previous run
RePathPart.lastIndex = 0;
while ( true ) {
const match = RePathPart.exec( path ),
matchEnd = RePathPart.lastIndex;
let id = match[ 1 ],
idIsIndex = match[ 2 ] === ']',
subscript = match[ 3 ];
if ( idIsIndex ) id = id | 0; // convert to integer
if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {
// bare name or "pure" bottom-level array "[0]" suffix
addUniform( container, subscript === undefined ?
new SingleUniform( id, activeInfo, addr ) :
new PureArrayUniform( id, activeInfo, addr ) );
break;
} else {
// step into inner node / create it in case it doesn't exist
const map = container.map;
let next = map[ id ];
if ( next === undefined ) {
next = new StructuredUniform( id );
addUniform( container, next );
}
container = next;
}
}
}
// Root Container
function WebGLUniforms( gl, program ) {
this.seq = [];
this.map = {};
const n = gl.getProgramParameter( program, 35718 );
for ( let i = 0; i < n; ++ i ) {
const info = gl.getActiveUniform( program, i ),
addr = gl.getUniformLocation( program, info.name );
parseUniform( info, addr, this );
}
}
WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) {
const u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, value, textures );
};
WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {
const v = object[ name ];
if ( v !== undefined ) this.setValue( gl, name, v );
};
// Static interface
WebGLUniforms.upload = function ( gl, seq, values, textures ) {
for ( let i = 0, n = seq.length; i !== n; ++ i ) {
const u = seq[ i ],
v = values[ u.id ];
if ( v.needsUpdate !== false ) {
// note: always updating when .needsUpdate is undefined
u.setValue( gl, v.value, textures );
}
}
};
WebGLUniforms.seqWithValue = function ( seq, values ) {
const r = [];
for ( let i = 0, n = seq.length; i !== n; ++ i ) {
const u = seq[ i ];
if ( u.id in values ) r.push( u );
}
return r;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLShader( gl, type, string ) {
const shader = gl.createShader( type );
gl.shaderSource( shader, string );
gl.compileShader( shader );
return shader;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
let programIdCount = 0;
function addLineNumbers( string ) {
const lines = string.split( '\n' );
for ( let i = 0; i < lines.length; i ++ ) {
lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
}
return lines.join( '\n' );
}
function getEncodingComponents( encoding ) {
switch ( encoding ) {
case LinearEncoding:
return [ 'Linear', '( value )' ];
case sRGBEncoding:
return [ 'sRGB', '( value )' ];
case RGBEEncoding:
return [ 'RGBE', '( value )' ];
case RGBM7Encoding:
return [ 'RGBM', '( value, 7.0 )' ];
case RGBM16Encoding:
return [ 'RGBM', '( value, 16.0 )' ];
case RGBDEncoding:
return [ 'RGBD', '( value, 256.0 )' ];
case GammaEncoding:
return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ];
case LogLuvEncoding:
return [ 'LogLuv', '( value )' ];
default:
console.warn( 'THREE.WebGLProgram: Unsupported encoding:', encoding );
return [ 'Linear', '( value )' ];
}
}
function getShaderErrors( gl, shader, type ) {
const status = gl.getShaderParameter( shader, 35713 );
const log = gl.getShaderInfoLog( shader ).trim();
if ( status && log === '' ) return '';
// --enable-privileged-webgl-extension
// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
const source = gl.getShaderSource( shader );
return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers( source );
}
function getTexelDecodingFunction( functionName, encoding ) {
const components = getEncodingComponents( encoding );
return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }';
}
function getTexelEncodingFunction( functionName, encoding ) {
const components = getEncodingComponents( encoding );
return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }';
}
function getToneMappingFunction( functionName, toneMapping ) {
let toneMappingName;
switch ( toneMapping ) {
case LinearToneMapping:
toneMappingName = 'Linear';
break;
case ReinhardToneMapping:
toneMappingName = 'Reinhard';
break;
case CineonToneMapping:
toneMappingName = 'OptimizedCineon';
break;
case ACESFilmicToneMapping:
toneMappingName = 'ACESFilmic';
break;
case CustomToneMapping:
toneMappingName = 'Custom';
break;
default:
console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping );
toneMappingName = 'Linear';
}
return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
}
function generateExtensions( parameters ) {
const chunks = [
( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '',
( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '',
( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '',
( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''
];
return chunks.filter( filterEmptyLine ).join( '\n' );
}
function generateDefines( defines ) {
const chunks = [];
for ( const name in defines ) {
const value = defines[ name ];
if ( value === false ) continue;
chunks.push( '#define ' + name + ' ' + value );
}
return chunks.join( '\n' );
}
function fetchAttributeLocations( gl, program ) {
const attributes = {};
const n = gl.getProgramParameter( program, 35721 );
for ( let i = 0; i < n; i ++ ) {
const info = gl.getActiveAttrib( program, i );
const name = info.name;
// console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
attributes[ name ] = gl.getAttribLocation( program, name );
}
return attributes;
}
function filterEmptyLine( string ) {
return string !== '';
}
function replaceLightNums( string, parameters ) {
return string
.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights )
.replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows )
.replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows )
.replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows );
}
function replaceClippingPlaneNums( string, parameters ) {
return string
.replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes )
.replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) );
}
// Resolve Includes
const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
function resolveIncludes( string ) {
return string.replace( includePattern, includeReplacer );
}
function includeReplacer( match, include ) {
const string = ShaderChunk[ include ];
if ( string === undefined ) {
throw new Error( 'Can not resolve #include <' + include + '>' );
}
return resolveIncludes( string );
}
// Unroll Loops
const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
const unrollLoopPattern = /#pragma unroll_loop_start[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}[\s]+?#pragma unroll_loop_end/g;
function unrollLoops( string ) {
return string
.replace( unrollLoopPattern, loopReplacer )
.replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer );
}
function deprecatedLoopReplacer( match, start, end, snippet ) {
console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' );
return loopReplacer( match, start, end, snippet );
}
function loopReplacer( match, start, end, snippet ) {
let string = '';
for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) {
string += snippet
.replace( /\[ i \]/g, '[ ' + i + ' ]' )
.replace( /UNROLLED_LOOP_INDEX/g, i );
}
return string;
}
//
function generatePrecision( parameters ) {
let precisionstring = "precision " + parameters.precision + " float;\nprecision " + parameters.precision + " int;";
if ( parameters.precision === "highp" ) {
precisionstring += "\n#define HIGH_PRECISION";
} else if ( parameters.precision === "mediump" ) {
precisionstring += "\n#define MEDIUM_PRECISION";
} else if ( parameters.precision === "lowp" ) {
precisionstring += "\n#define LOW_PRECISION";
}
return precisionstring;
}
function generateShadowMapTypeDefine( parameters ) {
let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
if ( parameters.shadowMapType === PCFShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
} else if ( parameters.shadowMapType === VSMShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
}
return shadowMapTypeDefine;
}
function generateEnvMapTypeDefine( parameters ) {
let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
if ( parameters.envMap ) {
switch ( parameters.envMapMode ) {
case CubeReflectionMapping:
case CubeRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
break;
case CubeUVReflectionMapping:
case CubeUVRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
break;
case EquirectangularReflectionMapping:
case EquirectangularRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
break;
}
}
return envMapTypeDefine;
}
function generateEnvMapModeDefine( parameters ) {
let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
if ( parameters.envMap ) {
switch ( parameters.envMapMode ) {
case CubeRefractionMapping:
case EquirectangularRefractionMapping:
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
break;
}
}
return envMapModeDefine;
}
function generateEnvMapBlendingDefine( parameters ) {
let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
if ( parameters.envMap ) {
switch ( parameters.combine ) {
case MultiplyOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
break;
case MixOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
break;
case AddOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
break;
}
}
return envMapBlendingDefine;
}
function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) {
const gl = renderer.getContext();
const defines = parameters.defines;
let vertexShader = parameters.vertexShader;
let fragmentShader = parameters.fragmentShader;
const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters );
const envMapTypeDefine = generateEnvMapTypeDefine( parameters );
const envMapModeDefine = generateEnvMapModeDefine( parameters );
const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters );
const gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
const customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters );
const customDefines = generateDefines( defines );
const program = gl.createProgram();
let prefixVertex, prefixFragment;
if ( parameters.isRawShaderMaterial ) {
prefixVertex = [
customDefines
].filter( filterEmptyLine ).join( '\n' );
if ( prefixVertex.length > 0 ) {
prefixVertex += '\n';
}
prefixFragment = [
customExtensions,
customDefines
].filter( filterEmptyLine ).join( '\n' );
if ( prefixFragment.length > 0 ) {
prefixFragment += '\n';
}
} else {
prefixVertex = [
generatePrecision( parameters ),
'#define SHADER_NAME ' + parameters.shaderName,
customDefines,
parameters.instancing ? '#define USE_INSTANCING' : '',
parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
'#define MAX_BONES ' + parameters.maxBones,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',
parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexTangents ? '#define USE_TANGENT' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.vertexUvs ? '#define USE_UV' : '',
parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.skinning ? '#define USE_SKINNING' : '',
parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
'uniform mat4 modelMatrix;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform mat4 viewMatrix;',
'uniform mat3 normalMatrix;',
'uniform vec3 cameraPosition;',
'uniform bool isOrthographic;',
'#ifdef USE_INSTANCING',
' attribute mat4 instanceMatrix;',
'#endif',
'attribute vec3 position;',
'attribute vec3 normal;',
'attribute vec2 uv;',
'#ifdef USE_TANGENT',
' attribute vec4 tangent;',
'#endif',
'#ifdef USE_COLOR',
' attribute vec3 color;',
'#endif',
'#ifdef USE_MORPHTARGETS',
' attribute vec3 morphTarget0;',
' attribute vec3 morphTarget1;',
' attribute vec3 morphTarget2;',
' attribute vec3 morphTarget3;',
' #ifdef USE_MORPHNORMALS',
' attribute vec3 morphNormal0;',
' attribute vec3 morphNormal1;',
' attribute vec3 morphNormal2;',
' attribute vec3 morphNormal3;',
' #else',
' attribute vec3 morphTarget4;',
' attribute vec3 morphTarget5;',
' attribute vec3 morphTarget6;',
' attribute vec3 morphTarget7;',
' #endif',
'#endif',
'#ifdef USE_SKINNING',
' attribute vec4 skinIndex;',
' attribute vec4 skinWeight;',
'#endif',
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
generatePrecision( parameters ),
'#define SHADER_NAME ' + parameters.shaderName,
customDefines,
parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer
'#define GAMMA_FACTOR ' + gammaFactorDefine,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.matcap ? '#define USE_MATCAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapTypeDefine : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.envMap ? '#define ' + envMapBlendingDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',
parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.sheen ? '#define USE_SHEEN' : '',
parameters.vertexTangents ? '#define USE_TANGENT' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.vertexUvs ? '#define USE_UV' : '',
parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',
parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '',
parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '',
'uniform mat4 viewMatrix;',
'uniform vec3 cameraPosition;',
'uniform bool isOrthographic;',
( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '',
( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '',
parameters.dithering ? '#define DITHERING' : '',
ShaderChunk[ 'encodings_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below
parameters.map ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
parameters.matcap ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '',
parameters.envMap ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
parameters.emissiveMap ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
parameters.lightMap ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '',
getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ),
parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '',
'\n'
].filter( filterEmptyLine ).join( '\n' );
}
vertexShader = resolveIncludes( vertexShader );
vertexShader = replaceLightNums( vertexShader, parameters );
vertexShader = replaceClippingPlaneNums( vertexShader, parameters );
fragmentShader = resolveIncludes( fragmentShader );
fragmentShader = replaceLightNums( fragmentShader, parameters );
fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters );
vertexShader = unrollLoops( vertexShader );
fragmentShader = unrollLoops( fragmentShader );
if ( parameters.isWebGL2 && ! parameters.isRawShaderMaterial ) {
let isGLSL3ShaderMaterial = false;
const versionRegex = /^\s*#version\s+300\s+es\s*\n/;
if ( parameters.isShaderMaterial &&
vertexShader.match( versionRegex ) !== null &&
fragmentShader.match( versionRegex ) !== null ) {
isGLSL3ShaderMaterial = true;
vertexShader = vertexShader.replace( versionRegex, '' );
fragmentShader = fragmentShader.replace( versionRegex, '' );
}
// GLSL 3.0 conversion
prefixVertex = [
'#version 300 es\n',
'#define attribute in',
'#define varying out',
'#define texture2D texture'
].join( '\n' ) + '\n' + prefixVertex;
prefixFragment = [
'#version 300 es\n',
'#define varying in',
isGLSL3ShaderMaterial ? '' : 'out highp vec4 pc_fragColor;',
isGLSL3ShaderMaterial ? '' : '#define gl_FragColor pc_fragColor',
'#define gl_FragDepthEXT gl_FragDepth',
'#define texture2D texture',
'#define textureCube texture',
'#define texture2DProj textureProj',
'#define texture2DLodEXT textureLod',
'#define texture2DProjLodEXT textureProjLod',
'#define textureCubeLodEXT textureLod',
'#define texture2DGradEXT textureGrad',
'#define texture2DProjGradEXT textureProjGrad',
'#define textureCubeGradEXT textureGrad'
].join( '\n' ) + '\n' + prefixFragment;
}
const vertexGlsl = prefixVertex + vertexShader;
const fragmentGlsl = prefixFragment + fragmentShader;
// console.log( '*VERTEX*', vertexGlsl );
// console.log( '*FRAGMENT*', fragmentGlsl );
const glVertexShader = WebGLShader( gl, 35633, vertexGlsl );
const glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl );
gl.attachShader( program, glVertexShader );
gl.attachShader( program, glFragmentShader );
// Force a particular attribute to index 0.
if ( parameters.index0AttributeName !== undefined ) {
gl.bindAttribLocation( program, 0, parameters.index0AttributeName );
} else if ( parameters.morphTargets === true ) {
// programs with morphTargets displace position out of attribute 0
gl.bindAttribLocation( program, 0, 'position' );
}
gl.linkProgram( program );
// check for link errors
if ( renderer.debug.checkShaderErrors ) {
const programLog = gl.getProgramInfoLog( program ).trim();
const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim();
const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim();
let runnable = true;
let haveDiagnostics = true;
if ( gl.getProgramParameter( program, 35714 ) === false ) {
runnable = false;
const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' );
const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' );
console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter( program, 35715 ), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors );
} else if ( programLog !== '' ) {
console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
} else if ( vertexLog === '' || fragmentLog === '' ) {
haveDiagnostics = false;
}
if ( haveDiagnostics ) {
this.diagnostics = {
runnable: runnable,
programLog: programLog,
vertexShader: {
log: vertexLog,
prefix: prefixVertex
},
fragmentShader: {
log: fragmentLog,
prefix: prefixFragment
}
};
}
}
// Clean up
// Crashes in iOS9 and iOS10. #18402
// gl.detachShader( program, glVertexShader );
// gl.detachShader( program, glFragmentShader );
gl.deleteShader( glVertexShader );
gl.deleteShader( glFragmentShader );
// set up caching for uniform locations
let cachedUniforms;
this.getUniforms = function () {
if ( cachedUniforms === undefined ) {
cachedUniforms = new WebGLUniforms( gl, program );
}
return cachedUniforms;
};
// set up caching for attribute locations
let cachedAttributes;
this.getAttributes = function () {
if ( cachedAttributes === undefined ) {
cachedAttributes = fetchAttributeLocations( gl, program );
}
return cachedAttributes;
};
// free resource
this.destroy = function () {
bindingStates.releaseStatesOfProgram( this );
gl.deleteProgram( program );
this.program = undefined;
};
//
this.name = parameters.shaderName;
this.id = programIdCount ++;
this.cacheKey = cacheKey;
this.usedTimes = 1;
this.program = program;
this.vertexShader = glVertexShader;
this.fragmentShader = glFragmentShader;
return this;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLPrograms( renderer, extensions, capabilities, bindingStates ) {
const programs = [];
const isWebGL2 = capabilities.isWebGL2;
const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
const floatVertexTextures = capabilities.floatVertexTextures;
const maxVertexUniforms = capabilities.maxVertexUniforms;
const vertexTextures = capabilities.vertexTextures;
let precision = capabilities.precision;
const shaderIDs = {
MeshDepthMaterial: 'depth',
MeshDistanceMaterial: 'distanceRGBA',
MeshNormalMaterial: 'normal',
MeshBasicMaterial: 'basic',
MeshLambertMaterial: 'lambert',
MeshPhongMaterial: 'phong',
MeshToonMaterial: 'toon',
MeshStandardMaterial: 'physical',
MeshPhysicalMaterial: 'physical',
MeshMatcapMaterial: 'matcap',
LineBasicMaterial: 'basic',
LineDashedMaterial: 'dashed',
PointsMaterial: 'points',
ShadowMaterial: 'shadow',
SpriteMaterial: 'sprite'
};
const parameterNames = [
"precision", "isWebGL2", "supportsVertexTextures", "outputEncoding", "instancing",
"map", "mapEncoding", "matcap", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "envMapCubeUV",
"lightMap", "lightMapEncoding", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "tangentSpaceNormalMap", "clearcoatMap", "clearcoatRoughnessMap", "clearcoatNormalMap", "displacementMap", "specularMap",
"roughnessMap", "metalnessMap", "gradientMap",
"alphaMap", "combine", "vertexColors", "vertexTangents", "vertexUvs", "uvsVertexOnly", "fog", "useFog", "fogExp2",
"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
"numDirLightShadows", "numPointLightShadows", "numSpotLightShadows",
"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering",
"sheen"
];
function getShaderObject( material, shaderID ) {
let shaderobject;
if ( shaderID ) {
const shader = ShaderLib[ shaderID ];
shaderobject = {
name: material.name || material.type,
uniforms: UniformsUtils.clone( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
};
} else {
shaderobject = {
name: material.name || material.type,
uniforms: material.uniforms,
vertexShader: material.vertexShader,
fragmentShader: material.fragmentShader
};
}
return shaderobject;
}
function allocateBones( object ) {
const skeleton = object.skeleton;
const bones = skeleton.bones;
if ( floatVertexTextures ) {
return 1024;
} else {
// default for when object is not specified
// ( for example when prebuilding shader to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
const nVertexUniforms = maxVertexUniforms;
const nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
const maxBones = Math.min( nVertexMatrices, bones.length );
if ( maxBones < bones.length ) {
console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
return 0;
}
return maxBones;
}
}
function getTextureEncodingFromMap( map ) {
let encoding;
if ( ! map ) {
encoding = LinearEncoding;
} else if ( map.isTexture ) {
encoding = map.encoding;
} else if ( map.isWebGLRenderTarget ) {
console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
encoding = map.texture.encoding;
}
return encoding;
}
function getParameters( material, lights, shadows, scene, nClipPlanes, nClipIntersection, object ) {
const fog = scene.fog;
const environment = material.isMeshStandardMaterial ? scene.environment : null;
const envMap = material.envMap || environment;
const shaderID = shaderIDs[ material.type ];
// heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
const maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
if ( material.precision !== null ) {
precision = capabilities.getMaxPrecision( material.precision );
if ( precision !== material.precision ) {
console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
}
}
const shaderobject = getShaderObject( material, shaderID );
material.onBeforeCompile( shaderobject, renderer );
const currentRenderTarget = renderer.getRenderTarget();
const parameters = {
isWebGL2: isWebGL2,
shaderID: shaderID,
shaderName: shaderobject.name,
uniforms: shaderobject.uniforms,
vertexShader: shaderobject.vertexShader,
fragmentShader: shaderobject.fragmentShader,
defines: material.defines,
isRawShaderMaterial: material.isRawShaderMaterial,
isShaderMaterial: material.isShaderMaterial,
precision: precision,
instancing: object.isInstancedMesh === true,
supportsVertexTextures: vertexTextures,
outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding,
map: !! material.map,
mapEncoding: getTextureEncodingFromMap( material.map ),
matcap: !! material.matcap,
matcapEncoding: getTextureEncodingFromMap( material.matcap ),
envMap: !! envMap,
envMapMode: envMap && envMap.mapping,
envMapEncoding: getTextureEncodingFromMap( envMap ),
envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ),
lightMap: !! material.lightMap,
lightMapEncoding: getTextureEncodingFromMap( material.lightMap ),
aoMap: !! material.aoMap,
emissiveMap: !! material.emissiveMap,
emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ),
bumpMap: !! material.bumpMap,
normalMap: !! material.normalMap,
objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
clearcoatMap: !! material.clearcoatMap,
clearcoatRoughnessMap: !! material.clearcoatRoughnessMap,
clearcoatNormalMap: !! material.clearcoatNormalMap,
displacementMap: !! material.displacementMap,
roughnessMap: !! material.roughnessMap,
metalnessMap: !! material.metalnessMap,
specularMap: !! material.specularMap,
alphaMap: !! material.alphaMap,
gradientMap: !! material.gradientMap,
sheen: !! material.sheen,
combine: material.combine,
vertexTangents: ( material.normalMap && material.vertexTangents ),
vertexColors: material.vertexColors,
vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap,
uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap ) && !! material.displacementMap,
fog: !! fog,
useFog: material.fog,
fogExp2: ( fog && fog.isFogExp2 ),
flatShading: material.flatShading,
sizeAttenuation: material.sizeAttenuation,
logarithmicDepthBuffer: logarithmicDepthBuffer,
skinning: material.skinning && maxBones > 0,
maxBones: maxBones,
useVertexTexture: floatVertexTextures,
morphTargets: material.morphTargets,
morphNormals: material.morphNormals,
maxMorphTargets: renderer.maxMorphTargets,
maxMorphNormals: renderer.maxMorphNormals,
numDirLights: lights.directional.length,
numPointLights: lights.point.length,
numSpotLights: lights.spot.length,
numRectAreaLights: lights.rectArea.length,
numHemiLights: lights.hemi.length,
numDirLightShadows: lights.directionalShadowMap.length,
numPointLightShadows: lights.pointShadowMap.length,
numSpotLightShadows: lights.spotShadowMap.length,
numClippingPlanes: nClipPlanes,
numClipIntersection: nClipIntersection,
dithering: material.dithering,
shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
shadowMapType: renderer.shadowMap.type,
toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
physicallyCorrectLights: renderer.physicallyCorrectLights,
premultipliedAlpha: material.premultipliedAlpha,
alphaTest: material.alphaTest,
doubleSided: material.side === DoubleSide,
flipSided: material.side === BackSide,
depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false,
index0AttributeName: material.index0AttributeName,
extensionDerivatives: material.extensions && material.extensions.derivatives,
extensionFragDepth: material.extensions && material.extensions.fragDepth,
extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
rendererExtensionFragDepth: isWebGL2 || extensions.get( 'EXT_frag_depth' ) !== null,
rendererExtensionDrawBuffers: isWebGL2 || extensions.get( 'WEBGL_draw_buffers' ) !== null,
rendererExtensionShaderTextureLod: isWebGL2 || extensions.get( 'EXT_shader_texture_lod' ) !== null,
customProgramCacheKey: material.customProgramCacheKey()
};
return parameters;
}
function getProgramCacheKey( parameters ) {
const array = [];
if ( parameters.shaderID ) {
array.push( parameters.shaderID );
} else {
array.push( parameters.fragmentShader );
array.push( parameters.vertexShader );
}
if ( parameters.defines !== undefined ) {
for ( const name in parameters.defines ) {
array.push( name );
array.push( parameters.defines[ name ] );
}
}
if ( parameters.isRawShaderMaterial === undefined ) {
for ( let i = 0; i < parameterNames.length; i ++ ) {
array.push( parameters[ parameterNames[ i ] ] );
}
array.push( renderer.outputEncoding );
array.push( renderer.gammaFactor );
}
array.push( parameters.customProgramCacheKey );
return array.join();
}
function acquireProgram( parameters, cacheKey ) {
let program;
// Check if code has been already compiled
for ( let p = 0, pl = programs.length; p < pl; p ++ ) {
const preexistingProgram = programs[ p ];
if ( preexistingProgram.cacheKey === cacheKey ) {
program = preexistingProgram;
++ program.usedTimes;
break;
}
}
if ( program === undefined ) {
program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates );
programs.push( program );
}
return program;
}
function releaseProgram( program ) {
if ( -- program.usedTimes === 0 ) {
// Remove from unordered set
const i = programs.indexOf( program );
programs[ i ] = programs[ programs.length - 1 ];
programs.pop();
// Free WebGL resources
program.destroy();
}
}
return {
getParameters: getParameters,
getProgramCacheKey: getProgramCacheKey,
acquireProgram: acquireProgram,
releaseProgram: releaseProgram,
// Exposed for resource monitoring & error feedback via renderer.info:
programs: programs
};
}
/**
* @author fordacious / fordacious.github.io
*/
function WebGLProperties() {
let properties = new WeakMap();
function get( object ) {
let map = properties.get( object );
if ( map === undefined ) {
map = {};
properties.set( object, map );
}
return map;
}
function remove( object ) {
properties.delete( object );
}
function update( object, key, value ) {
properties.get( object )[ key ] = value;
}
function dispose() {
properties = new WeakMap();
}
return {
get: get,
remove: remove,
update: update,
dispose: dispose
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function painterSortStable( a, b ) {
if ( a.groupOrder !== b.groupOrder ) {
return a.groupOrder - b.groupOrder;
} else if ( a.renderOrder !== b.renderOrder ) {
return a.renderOrder - b.renderOrder;
} else if ( a.program !== b.program ) {
return a.program.id - b.program.id;
} else if ( a.material.id !== b.material.id ) {
return a.material.id - b.material.id;
} else if ( a.z !== b.z ) {
return a.z - b.z;
} else {
return a.id - b.id;
}
}
function reversePainterSortStable( a, b ) {
if ( a.groupOrder !== b.groupOrder ) {
return a.groupOrder - b.groupOrder;
} else if ( a.renderOrder !== b.renderOrder ) {
return a.renderOrder - b.renderOrder;
} else if ( a.z !== b.z ) {
return b.z - a.z;
} else {
return a.id - b.id;
}
}
function WebGLRenderList() {
const renderItems = [];
let renderItemsIndex = 0;
const opaque = [];
const transparent = [];
const defaultProgram = { id: - 1 };
function init() {
renderItemsIndex = 0;
opaque.length = 0;
transparent.length = 0;
}
function getNextRenderItem( object, geometry, material, groupOrder, z, group ) {
let renderItem = renderItems[ renderItemsIndex ];
if ( renderItem === undefined ) {
renderItem = {
id: object.id,
object: object,
geometry: geometry,
material: material,
program: material.program || defaultProgram,
groupOrder: groupOrder,
renderOrder: object.renderOrder,
z: z,
group: group
};
renderItems[ renderItemsIndex ] = renderItem;
} else {
renderItem.id = object.id;
renderItem.object = object;
renderItem.geometry = geometry;
renderItem.material = material;
renderItem.program = material.program || defaultProgram;
renderItem.groupOrder = groupOrder;
renderItem.renderOrder = object.renderOrder;
renderItem.z = z;
renderItem.group = group;
}
renderItemsIndex ++;
return renderItem;
}
function push( object, geometry, material, groupOrder, z, group ) {
const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );
( material.transparent === true ? transparent : opaque ).push( renderItem );
}
function unshift( object, geometry, material, groupOrder, z, group ) {
const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );
( material.transparent === true ? transparent : opaque ).unshift( renderItem );
}
function sort( customOpaqueSort, customTransparentSort ) {
if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable );
if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable );
}
function finish() {
// Clear references from inactive renderItems in the list
for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) {
const renderItem = renderItems[ i ];
if ( renderItem.id === null ) break;
renderItem.id = null;
renderItem.object = null;
renderItem.geometry = null;
renderItem.material = null;
renderItem.program = null;
renderItem.group = null;
}
}
return {
opaque: opaque,
transparent: transparent,
init: init,
push: push,
unshift: unshift,
finish: finish,
sort: sort
};
}
function WebGLRenderLists() {
let lists = new WeakMap();
function onSceneDispose( event ) {
const scene = event.target;
scene.removeEventListener( 'dispose', onSceneDispose );
lists.delete( scene );
}
function get( scene, camera ) {
const cameras = lists.get( scene );
let list;
if ( cameras === undefined ) {
list = new WebGLRenderList();
lists.set( scene, new WeakMap() );
lists.get( scene ).set( camera, list );
scene.addEventListener( 'dispose', onSceneDispose );
} else {
list = cameras.get( camera );
if ( list === undefined ) {
list = new WebGLRenderList();
cameras.set( camera, list );
}
}
return list;
}
function dispose() {
lists = new WeakMap();
}
return {
get: get,
dispose: dispose
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function UniformsCache() {
const lights = {};
return {
get: function ( light ) {
if ( lights[ light.id ] !== undefined ) {
return lights[ light.id ];
}
let uniforms;
switch ( light.type ) {
case 'DirectionalLight':
uniforms = {
direction: new Vector3(),
color: new Color()
};
break;
case 'SpotLight':
uniforms = {
position: new Vector3(),
direction: new Vector3(),
color: new Color(),
distance: 0,
coneCos: 0,
penumbraCos: 0,
decay: 0
};
break;
case 'PointLight':
uniforms = {
position: new Vector3(),
color: new Color(),
distance: 0,
decay: 0
};
break;
case 'HemisphereLight':
uniforms = {
direction: new Vector3(),
skyColor: new Color(),
groundColor: new Color()
};
break;
case 'RectAreaLight':
uniforms = {
color: new Color(),
position: new Vector3(),
halfWidth: new Vector3(),
halfHeight: new Vector3()
};
break;
}
lights[ light.id ] = uniforms;
return uniforms;
}
};
}
function ShadowUniformsCache() {
const lights = {};
return {
get: function ( light ) {
if ( lights[ light.id ] !== undefined ) {
return lights[ light.id ];
}
let uniforms;
switch ( light.type ) {
case 'DirectionalLight':
uniforms = {
shadowBias: 0,
shadowNormalBias: 0,
shadowRadius: 1,
shadowMapSize: new Vector2()
};
break;
case 'SpotLight':
uniforms = {
shadowBias: 0,
shadowNormalBias: 0,
shadowRadius: 1,
shadowMapSize: new Vector2()
};
break;
case 'PointLight':
uniforms = {
shadowBias: 0,
shadowNormalBias: 0,
shadowRadius: 1,
shadowMapSize: new Vector2(),
shadowCameraNear: 1,
shadowCameraFar: 1000
};
break;
// TODO (abelnation): set RectAreaLight shadow uniforms
}
lights[ light.id ] = uniforms;
return uniforms;
}
};
}
let nextVersion = 0;
function shadowCastingLightsFirst( lightA, lightB ) {
return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 );
}
function WebGLLights() {
const cache = new UniformsCache();
const shadowCache = ShadowUniformsCache();
const state = {
version: 0,
hash: {
directionalLength: - 1,
pointLength: - 1,
spotLength: - 1,
rectAreaLength: - 1,
hemiLength: - 1,
numDirectionalShadows: - 1,
numPointShadows: - 1,
numSpotShadows: - 1
},
ambient: [ 0, 0, 0 ],
probe: [],
directional: [],
directionalShadow: [],
directionalShadowMap: [],
directionalShadowMatrix: [],
spot: [],
spotShadow: [],
spotShadowMap: [],
spotShadowMatrix: [],
rectArea: [],
point: [],
pointShadow: [],
pointShadowMap: [],
pointShadowMatrix: [],
hemi: []
};
for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() );
const vector3 = new Vector3();
const matrix4 = new Matrix4();
const matrix42 = new Matrix4();
function setup( lights, shadows, camera ) {
let r = 0, g = 0, b = 0;
for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 );
let directionalLength = 0;
let pointLength = 0;
let spotLength = 0;
let rectAreaLength = 0;
let hemiLength = 0;
let numDirectionalShadows = 0;
let numPointShadows = 0;
let numSpotShadows = 0;
const viewMatrix = camera.matrixWorldInverse;
lights.sort( shadowCastingLightsFirst );
for ( let i = 0, l = lights.length; i < l; i ++ ) {
const light = lights[ i ];
const color = light.color;
const intensity = light.intensity;
const distance = light.distance;
const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;
if ( light.isAmbientLight ) {
r += color.r * intensity;
g += color.g * intensity;
b += color.b * intensity;
} else if ( light.isLightProbe ) {
for ( let j = 0; j < 9; j ++ ) {
state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity );
}
} else if ( light.isDirectionalLight ) {
const uniforms = cache.get( light );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
vector3.setFromMatrixPosition( light.target.matrixWorld );
uniforms.direction.sub( vector3 );
uniforms.direction.transformDirection( viewMatrix );
if ( light.castShadow ) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get( light );
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
state.directionalShadow[ directionalLength ] = shadowUniforms;
state.directionalShadowMap[ directionalLength ] = shadowMap;
state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
numDirectionalShadows ++;
}
state.directional[ directionalLength ] = uniforms;
directionalLength ++;
} else if ( light.isSpotLight ) {
const uniforms = cache.get( light );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
uniforms.color.copy( color ).multiplyScalar( intensity );
uniforms.distance = distance;
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
vector3.setFromMatrixPosition( light.target.matrixWorld );
uniforms.direction.sub( vector3 );
uniforms.direction.transformDirection( viewMatrix );
uniforms.coneCos = Math.cos( light.angle );
uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
uniforms.decay = light.decay;
if ( light.castShadow ) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get( light );
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
state.spotShadow[ spotLength ] = shadowUniforms;
state.spotShadowMap[ spotLength ] = shadowMap;
state.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
numSpotShadows ++;
}
state.spot[ spotLength ] = uniforms;
spotLength ++;
} else if ( light.isRectAreaLight ) {
const uniforms = cache.get( light );
// (a) intensity is the total visible light emitted
//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
// (b) intensity is the brightness of the light
uniforms.color.copy( color ).multiplyScalar( intensity );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
// extract local rotation of light to derive width/height half vectors
matrix42.identity();
matrix4.copy( light.matrixWorld );
matrix4.premultiply( viewMatrix );
matrix42.extractRotation( matrix4 );
uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 );
uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 );
uniforms.halfWidth.applyMatrix4( matrix42 );
uniforms.halfHeight.applyMatrix4( matrix42 );
// TODO (abelnation): RectAreaLight distance?
// uniforms.distance = distance;
state.rectArea[ rectAreaLength ] = uniforms;
rectAreaLength ++;
} else if ( light.isPointLight ) {
const uniforms = cache.get( light );
uniforms.position.setFromMatrixPosition( light.matrixWorld );
uniforms.position.applyMatrix4( viewMatrix );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
uniforms.distance = light.distance;
uniforms.decay = light.decay;
if ( light.castShadow ) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get( light );
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
shadowUniforms.shadowCameraNear = shadow.camera.near;
shadowUniforms.shadowCameraFar = shadow.camera.far;
state.pointShadow[ pointLength ] = shadowUniforms;
state.pointShadowMap[ pointLength ] = shadowMap;
state.pointShadowMatrix[ pointLength ] = light.shadow.matrix;
numPointShadows ++;
}
state.point[ pointLength ] = uniforms;
pointLength ++;
} else if ( light.isHemisphereLight ) {
const uniforms = cache.get( light );
uniforms.direction.setFromMatrixPosition( light.matrixWorld );
uniforms.direction.transformDirection( viewMatrix );
uniforms.direction.normalize();
uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );
state.hemi[ hemiLength ] = uniforms;
hemiLength ++;
}
}
state.ambient[ 0 ] = r;
state.ambient[ 1 ] = g;
state.ambient[ 2 ] = b;
const hash = state.hash;
if ( hash.directionalLength !== directionalLength ||
hash.pointLength !== pointLength ||
hash.spotLength !== spotLength ||
hash.rectAreaLength !== rectAreaLength ||
hash.hemiLength !== hemiLength ||
hash.numDirectionalShadows !== numDirectionalShadows ||
hash.numPointShadows !== numPointShadows ||
hash.numSpotShadows !== numSpotShadows ) {
state.directional.length = directionalLength;
state.spot.length = spotLength;
state.rectArea.length = rectAreaLength;
state.point.length = pointLength;
state.hemi.length = hemiLength;
state.directionalShadow.length = numDirectionalShadows;
state.directionalShadowMap.length = numDirectionalShadows;
state.pointShadow.length = numPointShadows;
state.pointShadowMap.length = numPointShadows;
state.spotShadow.length = numSpotShadows;
state.spotShadowMap.length = numSpotShadows;
state.directionalShadowMatrix.length = numDirectionalShadows;
state.pointShadowMatrix.length = numPointShadows;
state.spotShadowMatrix.length = numSpotShadows;
hash.directionalLength = directionalLength;
hash.pointLength = pointLength;
hash.spotLength = spotLength;
hash.rectAreaLength = rectAreaLength;
hash.hemiLength = hemiLength;
hash.numDirectionalShadows = numDirectionalShadows;
hash.numPointShadows = numPointShadows;
hash.numSpotShadows = numSpotShadows;
state.version = nextVersion ++;
}
}
return {
setup: setup,
state: state
};
}
/**
* @author Mugen87 / https://github.com/Mugen87
*/
function WebGLRenderState() {
const lights = new WebGLLights();
const lightsArray = [];
const shadowsArray = [];
function init() {
lightsArray.length = 0;
shadowsArray.length = 0;
}
function pushLight( light ) {
lightsArray.push( light );
}
function pushShadow( shadowLight ) {
shadowsArray.push( shadowLight );
}
function setupLights( camera ) {
lights.setup( lightsArray, shadowsArray, camera );
}
const state = {
lightsArray: lightsArray,
shadowsArray: shadowsArray,
lights: lights
};
return {
init: init,
state: state,
setupLights: setupLights,
pushLight: pushLight,
pushShadow: pushShadow
};
}
function WebGLRenderStates() {
let renderStates = new WeakMap();
function onSceneDispose( event ) {
const scene = event.target;
scene.removeEventListener( 'dispose', onSceneDispose );
renderStates.delete( scene );
}
function get( scene, camera ) {
let renderState;
if ( renderStates.has( scene ) === false ) {
renderState = new WebGLRenderState();
renderStates.set( scene, new WeakMap() );
renderStates.get( scene ).set( camera, renderState );
scene.addEventListener( 'dispose', onSceneDispose );
} else {
if ( renderStates.get( scene ).has( camera ) === false ) {
renderState = new WebGLRenderState();
renderStates.get( scene ).set( camera, renderState );
} else {
renderState = renderStates.get( scene ).get( camera );
}
}
return renderState;
}
function dispose() {
renderStates = new WeakMap();
}
return {
get: get,
dispose: dispose
};
}
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / https://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
*
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
function MeshDepthMaterial( parameters ) {
Material.call( this );
this.type = 'MeshDepthMaterial';
this.depthPacking = BasicDepthPacking;
this.skinning = false;
this.morphTargets = false;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false;
this.setValues( parameters );
}
MeshDepthMaterial.prototype = Object.create( Material.prototype );
MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;
MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
MeshDepthMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.depthPacking = source.depthPacking;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
};
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
*
* referencePosition: <float>,
* nearDistance: <float>,
* farDistance: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
*
* map: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>
*
* }
*/
function MeshDistanceMaterial( parameters ) {
Material.call( this );
this.type = 'MeshDistanceMaterial';
this.referencePosition = new Vector3();
this.nearDistance = 1;
this.farDistance = 1000;
this.skinning = false;
this.morphTargets = false;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.fog = false;
this.setValues( parameters );
}
MeshDistanceMaterial.prototype = Object.create( Material.prototype );
MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;
MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
MeshDistanceMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.referencePosition.copy( source.referencePosition );
this.nearDistance = source.nearDistance;
this.farDistance = source.farDistance;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
return this;
};
var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include <packing>\nvoid main() {\n float mean = 0.0;\n float squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n for ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n #ifdef HORIZONAL_PASS\n vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n mean += distribution.x;\n squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n #else\n float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n mean += depth;\n squared_mean += depth * depth;\n #endif\n }\n mean = mean * HALF_SAMPLE_RATE;\n squared_mean = squared_mean * HALF_SAMPLE_RATE;\n float std_dev = sqrt( squared_mean - mean * mean );\n gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
function WebGLShadowMap( _renderer, _objects, maxTextureSize ) {
let _frustum = new Frustum();
const _shadowMapSize = new Vector2(),
_viewportSize = new Vector2(),
_viewport = new Vector4(),
_depthMaterials = [],
_distanceMaterials = [],
_materialCache = {};
const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide };
const shadowMaterialVertical = new ShaderMaterial( {
defines: {
SAMPLE_RATE: 2.0 / 8.0,
HALF_SAMPLE_RATE: 1.0 / 8.0
},
uniforms: {
shadow_pass: { value: null },
resolution: { value: new Vector2() },
radius: { value: 4.0 }
},
vertexShader: vsm_vert,
fragmentShader: vsm_frag
} );
const shadowMaterialHorizonal = shadowMaterialVertical.clone();
shadowMaterialHorizonal.defines.HORIZONAL_PASS = 1;
const fullScreenTri = new BufferGeometry();
fullScreenTri.setAttribute(
"position",
new BufferAttribute(
new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ),
3
)
);
const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical );
const scope = this;
this.enabled = false;
this.autoUpdate = true;
this.needsUpdate = false;
this.type = PCFShadowMap;
this.render = function ( lights, scene, camera ) {
if ( scope.enabled === false ) return;
if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;
if ( lights.length === 0 ) return;
const currentRenderTarget = _renderer.getRenderTarget();
const activeCubeFace = _renderer.getActiveCubeFace();
const activeMipmapLevel = _renderer.getActiveMipmapLevel();
const _state = _renderer.state;
// Set GL state for depth map.
_state.setBlending( NoBlending );
_state.buffers.color.setClear( 1, 1, 1, 1 );
_state.buffers.depth.setTest( true );
_state.setScissorTest( false );
// render depth map
for ( let i = 0, il = lights.length; i < il; i ++ ) {
const light = lights[ i ];
const shadow = light.shadow;
if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue;
if ( shadow === undefined ) {
console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
continue;
}
_shadowMapSize.copy( shadow.mapSize );
const shadowFrameExtents = shadow.getFrameExtents();
_shadowMapSize.multiply( shadowFrameExtents );
_viewportSize.copy( shadow.mapSize );
if ( _shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize ) {
if ( _shadowMapSize.x > maxTextureSize ) {
_viewportSize.x = Math.floor( maxTextureSize / shadowFrameExtents.x );
_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
shadow.mapSize.x = _viewportSize.x;
}
if ( _shadowMapSize.y > maxTextureSize ) {
_viewportSize.y = Math.floor( maxTextureSize / shadowFrameExtents.y );
_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
shadow.mapSize.y = _viewportSize.y;
}
}
if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {
const pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat };
shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
shadow.map.texture.name = light.name + ".shadowMap";
shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
shadow.camera.updateProjectionMatrix();
}
if ( shadow.map === null ) {
const pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };
shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
shadow.map.texture.name = light.name + ".shadowMap";
shadow.camera.updateProjectionMatrix();
}
_renderer.setRenderTarget( shadow.map );
_renderer.clear();
const viewportCount = shadow.getViewportCount();
for ( let vp = 0; vp < viewportCount; vp ++ ) {
const viewport = shadow.getViewport( vp );
_viewport.set(
_viewportSize.x * viewport.x,
_viewportSize.y * viewport.y,
_viewportSize.x * viewport.z,
_viewportSize.y * viewport.w
);
_state.viewport( _viewport );
shadow.updateMatrices( light, vp );
_frustum = shadow.getFrustum();
renderObject( scene, camera, shadow.camera, light, this.type );
}
// do blur pass for VSM
if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {
VSMPass( shadow, camera );
}
shadow.needsUpdate = false;
}
scope.needsUpdate = false;
_renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel );
};
function VSMPass( shadow, camera ) {
const geometry = _objects.update( fullScreenMesh );
// vertical pass
shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
shadowMaterialVertical.uniforms.radius.value = shadow.radius;
_renderer.setRenderTarget( shadow.mapPass );
_renderer.clear();
_renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null );
// horizonal pass
shadowMaterialHorizonal.uniforms.shadow_pass.value = shadow.mapPass.texture;
shadowMaterialHorizonal.uniforms.resolution.value = shadow.mapSize;
shadowMaterialHorizonal.uniforms.radius.value = shadow.radius;
_renderer.setRenderTarget( shadow.map );
_renderer.clear();
_renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizonal, fullScreenMesh, null );
}
function getDepthMaterialVariant( useMorphing, useSkinning, useInstancing ) {
const index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;
let material = _depthMaterials[ index ];
if ( material === undefined ) {
material = new MeshDepthMaterial( {
depthPacking: RGBADepthPacking,
morphTargets: useMorphing,
skinning: useSkinning
} );
_depthMaterials[ index ] = material;
}
return material;
}
function getDistanceMaterialVariant( useMorphing, useSkinning, useInstancing ) {
const index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;
let material = _distanceMaterials[ index ];
if ( material === undefined ) {
material = new MeshDistanceMaterial( {
morphTargets: useMorphing,
skinning: useSkinning
} );
_distanceMaterials[ index ] = material;
}
return material;
}
function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) {
let result = null;
let getMaterialVariant = getDepthMaterialVariant;
let customMaterial = object.customDepthMaterial;
if ( light.isPointLight === true ) {
getMaterialVariant = getDistanceMaterialVariant;
customMaterial = object.customDistanceMaterial;
}
if ( customMaterial === undefined ) {
let useMorphing = false;
if ( material.morphTargets === true ) {
useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;
}
let useSkinning = false;
if ( object.isSkinnedMesh === true ) {
if ( material.skinning === true ) {
useSkinning = true;
} else {
console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );
}
}
const useInstancing = object.isInstancedMesh === true;
result = getMaterialVariant( useMorphing, useSkinning, useInstancing );
} else {
result = customMaterial;
}
if ( _renderer.localClippingEnabled &&
material.clipShadows === true &&
material.clippingPlanes.length !== 0 ) {
// in this case we need a unique material instance reflecting the
// appropriate state
const keyA = result.uuid, keyB = material.uuid;
let materialsForVariant = _materialCache[ keyA ];
if ( materialsForVariant === undefined ) {
materialsForVariant = {};
_materialCache[ keyA ] = materialsForVariant;
}
let cachedMaterial = materialsForVariant[ keyB ];
if ( cachedMaterial === undefined ) {
cachedMaterial = result.clone();
materialsForVariant[ keyB ] = cachedMaterial;
}
result = cachedMaterial;
}
result.visible = material.visible;
result.wireframe = material.wireframe;
if ( type === VSMShadowMap ) {
result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side;
} else {
result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ];
}
result.clipShadows = material.clipShadows;
result.clippingPlanes = material.clippingPlanes;
result.clipIntersection = material.clipIntersection;
result.wireframeLinewidth = material.wireframeLinewidth;
result.linewidth = material.linewidth;
if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) {
result.referencePosition.setFromMatrixPosition( light.matrixWorld );
result.nearDistance = shadowCameraNear;
result.farDistance = shadowCameraFar;
}
return result;
}
function renderObject( object, camera, shadowCamera, light, type ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {
if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {
object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );
const geometry = _objects.update( object );
const material = object.material;
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let k = 0, kl = groups.length; k < kl; k ++ ) {
const group = groups[ k ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
const depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type );
_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );
}
}
} else if ( material.visible ) {
const depthMaterial = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type );
_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );
}
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
renderObject( children[ i ], camera, shadowCamera, light, type );
}
}
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLState( gl, extensions, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
function ColorBuffer() {
let locked = false;
const color = new Vector4();
let currentColorMask = null;
const currentColorClear = new Vector4( 0, 0, 0, 0 );
return {
setMask: function ( colorMask ) {
if ( currentColorMask !== colorMask && ! locked ) {
gl.colorMask( colorMask, colorMask, colorMask, colorMask );
currentColorMask = colorMask;
}
},
setLocked: function ( lock ) {
locked = lock;
},
setClear: function ( r, g, b, a, premultipliedAlpha ) {
if ( premultipliedAlpha === true ) {
r *= a; g *= a; b *= a;
}
color.set( r, g, b, a );
if ( currentColorClear.equals( color ) === false ) {
gl.clearColor( r, g, b, a );
currentColorClear.copy( color );
}
},
reset: function () {
locked = false;
currentColorMask = null;
currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state
}
};
}
function DepthBuffer() {
let locked = false;
let currentDepthMask = null;
let currentDepthFunc = null;
let currentDepthClear = null;
return {
setTest: function ( depthTest ) {
if ( depthTest ) {
enable( 2929 );
} else {
disable( 2929 );
}
},
setMask: function ( depthMask ) {
if ( currentDepthMask !== depthMask && ! locked ) {
gl.depthMask( depthMask );
currentDepthMask = depthMask;
}
},
setFunc: function ( depthFunc ) {
if ( currentDepthFunc !== depthFunc ) {
if ( depthFunc ) {
switch ( depthFunc ) {
case NeverDepth:
gl.depthFunc( 512 );
break;
case AlwaysDepth:
gl.depthFunc( 519 );
break;
case LessDepth:
gl.depthFunc( 513 );
break;
case LessEqualDepth:
gl.depthFunc( 515 );
break;
case EqualDepth:
gl.depthFunc( 514 );
break;
case GreaterEqualDepth:
gl.depthFunc( 518 );
break;
case GreaterDepth:
gl.depthFunc( 516 );
break;
case NotEqualDepth:
gl.depthFunc( 517 );
break;
default:
gl.depthFunc( 515 );
}
} else {
gl.depthFunc( 515 );
}
currentDepthFunc = depthFunc;
}
},
setLocked: function ( lock ) {
locked = lock;
},
setClear: function ( depth ) {
if ( currentDepthClear !== depth ) {
gl.clearDepth( depth );
currentDepthClear = depth;
}
},
reset: function () {
locked = false;
currentDepthMask = null;
currentDepthFunc = null;
currentDepthClear = null;
}
};
}
function StencilBuffer() {
let locked = false;
let currentStencilMask = null;
let currentStencilFunc = null;
let currentStencilRef = null;
let currentStencilFuncMask = null;
let currentStencilFail = null;
let currentStencilZFail = null;
let currentStencilZPass = null;
let currentStencilClear = null;
return {
setTest: function ( stencilTest ) {
if ( ! locked ) {
if ( stencilTest ) {
enable( 2960 );
} else {
disable( 2960 );
}
}
},
setMask: function ( stencilMask ) {
if ( currentStencilMask !== stencilMask && ! locked ) {
gl.stencilMask( stencilMask );
currentStencilMask = stencilMask;
}
},
setFunc: function ( stencilFunc, stencilRef, stencilMask ) {
if ( currentStencilFunc !== stencilFunc ||
currentStencilRef !== stencilRef ||
currentStencilFuncMask !== stencilMask ) {
gl.stencilFunc( stencilFunc, stencilRef, stencilMask );
currentStencilFunc = stencilFunc;
currentStencilRef = stencilRef;
currentStencilFuncMask = stencilMask;
}
},
setOp: function ( stencilFail, stencilZFail, stencilZPass ) {
if ( currentStencilFail !== stencilFail ||
currentStencilZFail !== stencilZFail ||
currentStencilZPass !== stencilZPass ) {
gl.stencilOp( stencilFail, stencilZFail, stencilZPass );
currentStencilFail = stencilFail;
currentStencilZFail = stencilZFail;
currentStencilZPass = stencilZPass;
}
},
setLocked: function ( lock ) {
locked = lock;
},
setClear: function ( stencil ) {
if ( currentStencilClear !== stencil ) {
gl.clearStencil( stencil );
currentStencilClear = stencil;
}
},
reset: function () {
locked = false;
currentStencilMask = null;
currentStencilFunc = null;
currentStencilRef = null;
currentStencilFuncMask = null;
currentStencilFail = null;
currentStencilZFail = null;
currentStencilZPass = null;
currentStencilClear = null;
}
};
}
//
const colorBuffer = new ColorBuffer();
const depthBuffer = new DepthBuffer();
const stencilBuffer = new StencilBuffer();
let enabledCapabilities = {};
let currentProgram = null;
let currentBlendingEnabled = null;
let currentBlending = null;
let currentBlendEquation = null;
let currentBlendSrc = null;
let currentBlendDst = null;
let currentBlendEquationAlpha = null;
let currentBlendSrcAlpha = null;
let currentBlendDstAlpha = null;
let currentPremultipledAlpha = false;
let currentFlipSided = null;
let currentCullFace = null;
let currentLineWidth = null;
let currentPolygonOffsetFactor = null;
let currentPolygonOffsetUnits = null;
const maxTextures = gl.getParameter( 35661 );
let lineWidthAvailable = false;
let version = 0;
const glVersion = gl.getParameter( 7938 );
if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) {
version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] );
lineWidthAvailable = ( version >= 1.0 );
} else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) {
version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] );
lineWidthAvailable = ( version >= 2.0 );
}
let currentTextureSlot = null;
let currentBoundTextures = {};
const currentScissor = new Vector4();
const currentViewport = new Vector4();
function createTexture( type, target, count ) {
const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
const texture = gl.createTexture();
gl.bindTexture( type, texture );
gl.texParameteri( type, 10241, 9728 );
gl.texParameteri( type, 10240, 9728 );
for ( let i = 0; i < count; i ++ ) {
gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data );
}
return texture;
}
const emptyTextures = {};
emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 );
emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 );
// init
colorBuffer.setClear( 0, 0, 0, 1 );
depthBuffer.setClear( 1 );
stencilBuffer.setClear( 0 );
enable( 2929 );
depthBuffer.setFunc( LessEqualDepth );
setFlipSided( false );
setCullFace( CullFaceBack );
enable( 2884 );
setBlending( NoBlending );
//
function enable( id ) {
if ( enabledCapabilities[ id ] !== true ) {
gl.enable( id );
enabledCapabilities[ id ] = true;
}
}
function disable( id ) {
if ( enabledCapabilities[ id ] !== false ) {
gl.disable( id );
enabledCapabilities[ id ] = false;
}
}
function useProgram( program ) {
if ( currentProgram !== program ) {
gl.useProgram( program );
currentProgram = program;
return true;
}
return false;
}
const equationToGL = {
[ AddEquation ]: 32774,
[ SubtractEquation ]: 32778,
[ ReverseSubtractEquation ]: 32779
};
if ( isWebGL2 ) {
equationToGL[ MinEquation ] = 32775;
equationToGL[ MaxEquation ] = 32776;
} else {
const extension = extensions.get( 'EXT_blend_minmax' );
if ( extension !== null ) {
equationToGL[ MinEquation ] = extension.MIN_EXT;
equationToGL[ MaxEquation ] = extension.MAX_EXT;
}
}
const factorToGL = {
[ ZeroFactor ]: 0,
[ OneFactor ]: 1,
[ SrcColorFactor ]: 768,
[ SrcAlphaFactor ]: 770,
[ SrcAlphaSaturateFactor ]: 776,
[ DstColorFactor ]: 774,
[ DstAlphaFactor ]: 772,
[ OneMinusSrcColorFactor ]: 769,
[ OneMinusSrcAlphaFactor ]: 771,
[ OneMinusDstColorFactor ]: 775,
[ OneMinusDstAlphaFactor ]: 773
};
function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {
if ( blending === NoBlending ) {
if ( currentBlendingEnabled ) {
disable( 3042 );
currentBlendingEnabled = false;
}
return;
}
if ( ! currentBlendingEnabled ) {
enable( 3042 );
currentBlendingEnabled = true;
}
if ( blending !== CustomBlending ) {
if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {
if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) {
gl.blendEquation( 32774 );
currentBlendEquation = AddEquation;
currentBlendEquationAlpha = AddEquation;
}
if ( premultipliedAlpha ) {
switch ( blending ) {
case NormalBlending:
gl.blendFuncSeparate( 1, 771, 1, 771 );
break;
case AdditiveBlending:
gl.blendFunc( 1, 1 );
break;
case SubtractiveBlending:
gl.blendFuncSeparate( 0, 0, 769, 771 );
break;
case MultiplyBlending:
gl.blendFuncSeparate( 0, 768, 0, 770 );
break;
default:
console.error( 'THREE.WebGLState: Invalid blending: ', blending );
break;
}
} else {
switch ( blending ) {
case NormalBlending:
gl.blendFuncSeparate( 770, 771, 1, 771 );
break;
case AdditiveBlending:
gl.blendFunc( 770, 1 );
break;
case SubtractiveBlending:
gl.blendFunc( 0, 769 );
break;
case MultiplyBlending:
gl.blendFunc( 0, 768 );
break;
default:
console.error( 'THREE.WebGLState: Invalid blending: ', blending );
break;
}
}
currentBlendSrc = null;
currentBlendDst = null;
currentBlendSrcAlpha = null;
currentBlendDstAlpha = null;
currentBlending = blending;
currentPremultipledAlpha = premultipliedAlpha;
}
return;
}
// custom blending
blendEquationAlpha = blendEquationAlpha || blendEquation;
blendSrcAlpha = blendSrcAlpha || blendSrc;
blendDstAlpha = blendDstAlpha || blendDst;
if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {
gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] );
currentBlendEquation = blendEquation;
currentBlendEquationAlpha = blendEquationAlpha;
}
if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {
gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] );
currentBlendSrc = blendSrc;
currentBlendDst = blendDst;
currentBlendSrcAlpha = blendSrcAlpha;
currentBlendDstAlpha = blendDstAlpha;
}
currentBlending = blending;
currentPremultipledAlpha = null;
}
function setMaterial( material, frontFaceCW ) {
material.side === DoubleSide
? disable( 2884 )
: enable( 2884 );
let flipSided = ( material.side === BackSide );
if ( frontFaceCW ) flipSided = ! flipSided;
setFlipSided( flipSided );
( material.blending === NormalBlending && material.transparent === false )
? setBlending( NoBlending )
: setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
depthBuffer.setFunc( material.depthFunc );
depthBuffer.setTest( material.depthTest );
depthBuffer.setMask( material.depthWrite );
colorBuffer.setMask( material.colorWrite );
const stencilWrite = material.stencilWrite;
stencilBuffer.setTest( stencilWrite );
if ( stencilWrite ) {
stencilBuffer.setMask( material.stencilWriteMask );
stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask );
stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass );
}
setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
}
//
function setFlipSided( flipSided ) {
if ( currentFlipSided !== flipSided ) {
if ( flipSided ) {
gl.frontFace( 2304 );
} else {
gl.frontFace( 2305 );
}
currentFlipSided = flipSided;
}
}
function setCullFace( cullFace ) {
if ( cullFace !== CullFaceNone ) {
enable( 2884 );
if ( cullFace !== currentCullFace ) {
if ( cullFace === CullFaceBack ) {
gl.cullFace( 1029 );
} else if ( cullFace === CullFaceFront ) {
gl.cullFace( 1028 );
} else {
gl.cullFace( 1032 );
}
}
} else {
disable( 2884 );
}
currentCullFace = cullFace;
}
function setLineWidth( width ) {
if ( width !== currentLineWidth ) {
if ( lineWidthAvailable ) gl.lineWidth( width );
currentLineWidth = width;
}
}
function setPolygonOffset( polygonOffset, factor, units ) {
if ( polygonOffset ) {
enable( 32823 );
if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {
gl.polygonOffset( factor, units );
currentPolygonOffsetFactor = factor;
currentPolygonOffsetUnits = units;
}
} else {
disable( 32823 );
}
}
function setScissorTest( scissorTest ) {
if ( scissorTest ) {
enable( 3089 );
} else {
disable( 3089 );
}
}
// texture
function activeTexture( webglSlot ) {
if ( webglSlot === undefined ) webglSlot = 33984 + maxTextures - 1;
if ( currentTextureSlot !== webglSlot ) {
gl.activeTexture( webglSlot );
currentTextureSlot = webglSlot;
}
}
function bindTexture( webglType, webglTexture ) {
if ( currentTextureSlot === null ) {
activeTexture();
}
let boundTexture = currentBoundTextures[ currentTextureSlot ];
if ( boundTexture === undefined ) {
boundTexture = { type: undefined, texture: undefined };
currentBoundTextures[ currentTextureSlot ] = boundTexture;
}
if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {
gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );
boundTexture.type = webglType;
boundTexture.texture = webglTexture;
}
}
function unbindTexture() {
const boundTexture = currentBoundTextures[ currentTextureSlot ];
if ( boundTexture !== undefined && boundTexture.type !== undefined ) {
gl.bindTexture( boundTexture.type, null );
boundTexture.type = undefined;
boundTexture.texture = undefined;
}
}
function compressedTexImage2D() {
try {
gl.compressedTexImage2D.apply( gl, arguments );
} catch ( error ) {
console.error( 'THREE.WebGLState:', error );
}
}
function texImage2D() {
try {
gl.texImage2D.apply( gl, arguments );
} catch ( error ) {
console.error( 'THREE.WebGLState:', error );
}
}
function texImage3D() {
try {
gl.texImage3D.apply( gl, arguments );
} catch ( error ) {
console.error( 'THREE.WebGLState:', error );
}
}
//
function scissor( scissor ) {
if ( currentScissor.equals( scissor ) === false ) {
gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
currentScissor.copy( scissor );
}
}
function viewport( viewport ) {
if ( currentViewport.equals( viewport ) === false ) {
gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
currentViewport.copy( viewport );
}
}
//
function reset() {
enabledCapabilities = {};
currentTextureSlot = null;
currentBoundTextures = {};
currentProgram = null;
currentBlending = null;
currentFlipSided = null;
currentCullFace = null;
colorBuffer.reset();
depthBuffer.reset();
stencilBuffer.reset();
}
return {
buffers: {
color: colorBuffer,
depth: depthBuffer,
stencil: stencilBuffer
},
enable: enable,
disable: disable,
useProgram: useProgram,
setBlending: setBlending,
setMaterial: setMaterial,
setFlipSided: setFlipSided,
setCullFace: setCullFace,
setLineWidth: setLineWidth,
setPolygonOffset: setPolygonOffset,
setScissorTest: setScissorTest,
activeTexture: activeTexture,
bindTexture: bindTexture,
unbindTexture: unbindTexture,
compressedTexImage2D: compressedTexImage2D,
texImage2D: texImage2D,
texImage3D: texImage3D,
scissor: scissor,
viewport: viewport,
reset: reset
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) {
const isWebGL2 = capabilities.isWebGL2;
const maxTextures = capabilities.maxTextures;
const maxCubemapSize = capabilities.maxCubemapSize;
const maxTextureSize = capabilities.maxTextureSize;
const maxSamples = capabilities.maxSamples;
const _videoTextures = new WeakMap();
let _canvas;
// cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
let useOffscreenCanvas = false;
try {
useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined'
&& ( new OffscreenCanvas( 1, 1 ).getContext( "2d" ) ) !== null;
} catch ( err ) {
// Ignore any errors
}
function createCanvas( width, height ) {
// Use OffscreenCanvas when available. Specially needed in web workers
return useOffscreenCanvas ?
new OffscreenCanvas( width, height ) :
document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
}
function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) {
let scale = 1;
// handle case if texture exceeds max size
if ( image.width > maxSize || image.height > maxSize ) {
scale = maxSize / Math.max( image.width, image.height );
}
// only perform resize if necessary
if ( scale < 1 || needsPowerOfTwo === true ) {
// only perform resize for certain image types
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
const floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor;
const width = floor( scale * image.width );
const height = floor( scale * image.height );
if ( _canvas === undefined ) _canvas = createCanvas( width, height );
// cube textures can't reuse the same canvas
const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas;
canvas.width = width;
canvas.height = height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, width, height );
console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' );
return canvas;
} else {
if ( 'data' in image ) {
console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' );
}
return image;
}
}
return image;
}
function isPowerOfTwo( image ) {
return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height );
}
function textureNeedsPowerOfTwo( texture ) {
if ( isWebGL2 ) return false;
return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );
}
function textureNeedsGenerateMipmaps( texture, supportsMips ) {
return texture.generateMipmaps && supportsMips &&
texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
}
function generateMipmap( target, texture, width, height ) {
_gl.generateMipmap( target );
const textureProperties = properties.get( texture );
// Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11
textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E;
}
function getInternalFormat( internalFormatName, glFormat, glType ) {
if ( isWebGL2 === false ) return glFormat;
if ( internalFormatName !== null ) {
if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ];
console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' );
}
let internalFormat = glFormat;
if ( glFormat === 6403 ) {
if ( glType === 5126 ) internalFormat = 33326;
if ( glType === 5131 ) internalFormat = 33325;
if ( glType === 5121 ) internalFormat = 33321;
}
if ( glFormat === 6407 ) {
if ( glType === 5126 ) internalFormat = 34837;
if ( glType === 5131 ) internalFormat = 34843;
if ( glType === 5121 ) internalFormat = 32849;
}
if ( glFormat === 6408 ) {
if ( glType === 5126 ) internalFormat = 34836;
if ( glType === 5131 ) internalFormat = 34842;
if ( glType === 5121 ) internalFormat = 32856;
}
if ( internalFormat === 33325 || internalFormat === 33326 ||
internalFormat === 34842 || internalFormat === 34836 ) {
extensions.get( 'EXT_color_buffer_float' );
}
return internalFormat;
}
// Fallback filters for non-power-of-2 textures
function filterFallback( f ) {
if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) {
return 9728;
}
return 9729;
}
//
function onTextureDispose( event ) {
const texture = event.target;
texture.removeEventListener( 'dispose', onTextureDispose );
deallocateTexture( texture );
if ( texture.isVideoTexture ) {
_videoTextures.delete( texture );
}
info.memory.textures --;
}
function onRenderTargetDispose( event ) {
const renderTarget = event.target;
renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );
deallocateRenderTarget( renderTarget );
info.memory.textures --;
}
//
function deallocateTexture( texture ) {
const textureProperties = properties.get( texture );
if ( textureProperties.__webglInit === undefined ) return;
_gl.deleteTexture( textureProperties.__webglTexture );
properties.remove( texture );
}
function deallocateRenderTarget( renderTarget ) {
const renderTargetProperties = properties.get( renderTarget );
const textureProperties = properties.get( renderTarget.texture );
if ( ! renderTarget ) return;
if ( textureProperties.__webglTexture !== undefined ) {
_gl.deleteTexture( textureProperties.__webglTexture );
}
if ( renderTarget.depthTexture ) {
renderTarget.depthTexture.dispose();
}
if ( renderTarget.isWebGLCubeRenderTarget ) {
for ( let i = 0; i < 6; i ++ ) {
_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );
}
} else {
_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );
if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer );
if ( renderTargetProperties.__webglColorRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer );
if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer );
}
properties.remove( renderTarget.texture );
properties.remove( renderTarget );
}
//
let textureUnits = 0;
function resetTextureUnits() {
textureUnits = 0;
}
function allocateTextureUnit() {
const textureUnit = textureUnits;
if ( textureUnit >= maxTextures ) {
console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures );
}
textureUnits += 1;
return textureUnit;
}
//
function setTexture2D( texture, slot ) {
const textureProperties = properties.get( texture );
if ( texture.isVideoTexture ) updateVideoTexture( texture );
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
const image = texture.image;
if ( image === undefined ) {
console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' );
} else if ( image.complete === false ) {
console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' );
} else {
uploadTexture( textureProperties, texture, slot );
return;
}
}
state.activeTexture( 33984 + slot );
state.bindTexture( 3553, textureProperties.__webglTexture );
}
function setTexture2DArray( texture, slot ) {
const textureProperties = properties.get( texture );
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
uploadTexture( textureProperties, texture, slot );
return;
}
state.activeTexture( 33984 + slot );
state.bindTexture( 35866, textureProperties.__webglTexture );
}
function setTexture3D( texture, slot ) {
const textureProperties = properties.get( texture );
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
uploadTexture( textureProperties, texture, slot );
return;
}
state.activeTexture( 33984 + slot );
state.bindTexture( 32879, textureProperties.__webglTexture );
}
function setTextureCube( texture, slot ) {
if ( texture.image.length !== 6 ) return;
const textureProperties = properties.get( texture );
if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
initTexture( textureProperties, texture );
state.activeTexture( 33984 + slot );
state.bindTexture( 34067, textureProperties.__webglTexture );
_gl.pixelStorei( 37440, texture.flipY );
const isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) );
const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );
const cubeImage = [];
for ( let i = 0; i < 6; i ++ ) {
if ( ! isCompressed && ! isDataTexture ) {
cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize );
} else {
cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];
}
}
const image = cubeImage[ 0 ],
supportsMips = isPowerOfTwo( image ) || isWebGL2,
glFormat = utils.convert( texture.format ),
glType = utils.convert( texture.type ),
glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );
setTextureParameters( 34067, texture, supportsMips );
let mipmaps;
if ( isCompressed ) {
for ( let i = 0; i < 6; i ++ ) {
mipmaps = cubeImage[ i ].mipmaps;
for ( let j = 0; j < mipmaps.length; j ++ ) {
const mipmap = mipmaps[ j ];
if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {
if ( glFormat !== null ) {
state.compressedTexImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );
} else {
console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' );
}
} else {
state.texImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
}
}
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else {
mipmaps = texture.mipmaps;
for ( let i = 0; i < 6; i ++ ) {
if ( isDataTexture ) {
state.texImage2D( 34069 + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );
for ( let j = 0; j < mipmaps.length; j ++ ) {
const mipmap = mipmaps[ j ];
const mipmapImage = mipmap.image[ i ].image;
state.texImage2D( 34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data );
}
} else {
state.texImage2D( 34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] );
for ( let j = 0; j < mipmaps.length; j ++ ) {
const mipmap = mipmaps[ j ];
state.texImage2D( 34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] );
}
}
}
textureProperties.__maxMipLevel = mipmaps.length;
}
if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {
// We assume images for cube map have the same size.
generateMipmap( 34067, texture, image.width, image.height );
}
textureProperties.__version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
} else {
state.activeTexture( 33984 + slot );
state.bindTexture( 34067, textureProperties.__webglTexture );
}
}
function setTextureCubeDynamic( texture, slot ) {
state.activeTexture( 33984 + slot );
state.bindTexture( 34067, properties.get( texture ).__webglTexture );
}
const wrappingToGL = {
[ RepeatWrapping ]: 10497,
[ ClampToEdgeWrapping ]: 33071,
[ MirroredRepeatWrapping ]: 33648
};
const filterToGL = {
[ NearestFilter ]: 9728,
[ NearestMipmapNearestFilter ]: 9984,
[ NearestMipmapLinearFilter ]: 9986,
[ LinearFilter ]: 9729,
[ LinearMipmapNearestFilter ]: 9985,
[ LinearMipmapLinearFilter ]: 9987
};
function setTextureParameters( textureType, texture, supportsMips ) {
if ( supportsMips ) {
_gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] );
_gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] );
if ( textureType === 32879 || textureType === 35866 ) {
_gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] );
}
_gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] );
_gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] );
} else {
_gl.texParameteri( textureType, 10242, 33071 );
_gl.texParameteri( textureType, 10243, 33071 );
if ( textureType === 32879 || textureType === 35866 ) {
_gl.texParameteri( textureType, 32882, 33071 );
}
if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {
console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' );
}
_gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) );
_gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) );
if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {
console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' );
}
}
const extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension ) {
if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
if ( texture.type === HalfFloatType && ( isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) return;
if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {
_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
properties.get( texture ).__currentAnisotropy = texture.anisotropy;
}
}
}
function initTexture( textureProperties, texture ) {
if ( textureProperties.__webglInit === undefined ) {
textureProperties.__webglInit = true;
texture.addEventListener( 'dispose', onTextureDispose );
textureProperties.__webglTexture = _gl.createTexture();
info.memory.textures ++;
}
}
function uploadTexture( textureProperties, texture, slot ) {
let textureType = 3553;
if ( texture.isDataTexture2DArray ) textureType = 35866;
if ( texture.isDataTexture3D ) textureType = 32879;
initTexture( textureProperties, texture );
state.activeTexture( 33984 + slot );
state.bindTexture( textureType, textureProperties.__webglTexture );
_gl.pixelStorei( 37440, texture.flipY );
_gl.pixelStorei( 37441, texture.premultiplyAlpha );
_gl.pixelStorei( 3317, texture.unpackAlignment );
const needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( texture.image ) === false;
const image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize );
const supportsMips = isPowerOfTwo( image ) || isWebGL2,
glFormat = utils.convert( texture.format );
let glType = utils.convert( texture.type ),
glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );
setTextureParameters( textureType, texture, supportsMips );
let mipmap;
const mipmaps = texture.mipmaps;
if ( texture.isDepthTexture ) {
// populate depth texture with dummy data
glInternalFormat = 6402;
if ( isWebGL2 ) {
if ( texture.type === FloatType ) {
glInternalFormat = 36012;
} else if ( texture.type === UnsignedIntType ) {
glInternalFormat = 33190;
} else if ( texture.type === UnsignedInt248Type ) {
glInternalFormat = 35056;
} else {
glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D
}
} else {
if ( texture.type === FloatType ) {
console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' );
}
}
// validation checks for WebGL 1
if ( texture.format === DepthFormat && glInternalFormat === 6402 ) {
// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {
console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );
texture.type = UnsignedShortType;
glType = utils.convert( texture.type );
}
}
if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) {
// Depth stencil textures need the DEPTH_STENCIL internal format
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
glInternalFormat = 34041;
// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
if ( texture.type !== UnsignedInt248Type ) {
console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );
texture.type = UnsignedInt248Type;
glType = utils.convert( texture.type );
}
}
//
state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null );
} else if ( texture.isDataTexture ) {
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if ( mipmaps.length > 0 && supportsMips ) {
for ( let i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
texture.generateMipmaps = false;
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else {
state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data );
textureProperties.__maxMipLevel = 0;
}
} else if ( texture.isCompressedTexture ) {
for ( let i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {
if ( glFormat !== null ) {
state.compressedTexImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );
} else {
console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );
}
} else {
state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
}
}
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else if ( texture.isDataTexture2DArray ) {
state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
textureProperties.__maxMipLevel = 0;
} else if ( texture.isDataTexture3D ) {
state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
textureProperties.__maxMipLevel = 0;
} else {
// regular Texture (image, video, canvas)
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if ( mipmaps.length > 0 && supportsMips ) {
for ( let i = 0, il = mipmaps.length; i < il; i ++ ) {
mipmap = mipmaps[ i ];
state.texImage2D( 3553, i, glInternalFormat, glFormat, glType, mipmap );
}
texture.generateMipmaps = false;
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else {
state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image );
textureProperties.__maxMipLevel = 0;
}
}
if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {
generateMipmap( textureType, texture, image.width, image.height );
}
textureProperties.__version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
}
// Render targets
// Setup storage for target texture and bind it to correct framebuffer
function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {
const glFormat = utils.convert( renderTarget.texture.format );
const glType = utils.convert( renderTarget.texture.type );
const glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
_gl.bindFramebuffer( 36160, framebuffer );
_gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
_gl.bindFramebuffer( 36160, null );
}
// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) {
_gl.bindRenderbuffer( 36161, renderbuffer );
if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {
let glInternalFormat = 33189;
if ( isMultisample ) {
const depthTexture = renderTarget.depthTexture;
if ( depthTexture && depthTexture.isDepthTexture ) {
if ( depthTexture.type === FloatType ) {
glInternalFormat = 36012;
} else if ( depthTexture.type === UnsignedIntType ) {
glInternalFormat = 33190;
}
}
const samples = getRenderTargetSamples( renderTarget );
_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );
} else {
_gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );
}
_gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer );
} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
if ( isMultisample ) {
const samples = getRenderTargetSamples( renderTarget );
_gl.renderbufferStorageMultisample( 36161, samples, 35056, renderTarget.width, renderTarget.height );
} else {
_gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height );
}
_gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer );
} else {
const glFormat = utils.convert( renderTarget.texture.format );
const glType = utils.convert( renderTarget.texture.type );
const glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
if ( isMultisample ) {
const samples = getRenderTargetSamples( renderTarget );
_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );
} else {
_gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );
}
}
_gl.bindRenderbuffer( 36161, null );
}
// Setup resources for a Depth Texture for a FBO (needs an extension)
function setupDepthTexture( framebuffer, renderTarget ) {
const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget );
if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' );
_gl.bindFramebuffer( 36160, framebuffer );
if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {
throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' );
}
// upload an empty depth texture with framebuffer size
if ( ! properties.get( renderTarget.depthTexture ).__webglTexture ||
renderTarget.depthTexture.image.width !== renderTarget.width ||
renderTarget.depthTexture.image.height !== renderTarget.height ) {
renderTarget.depthTexture.image.width = renderTarget.width;
renderTarget.depthTexture.image.height = renderTarget.height;
renderTarget.depthTexture.needsUpdate = true;
}
setTexture2D( renderTarget.depthTexture, 0 );
const webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;
if ( renderTarget.depthTexture.format === DepthFormat ) {
_gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 );
} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {
_gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 );
} else {
throw new Error( 'Unknown depthTexture format' );
}
}
// Setup GL resources for a non-texture depth buffer
function setupDepthRenderbuffer( renderTarget ) {
const renderTargetProperties = properties.get( renderTarget );
const isCube = ( renderTarget.isWebGLCubeRenderTarget === true );
if ( renderTarget.depthTexture ) {
if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' );
setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );
} else {
if ( isCube ) {
renderTargetProperties.__webglDepthbuffer = [];
for ( let i = 0; i < 6; i ++ ) {
_gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] );
renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false );
}
} else {
_gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer );
renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false );
}
}
_gl.bindFramebuffer( 36160, null );
}
// Set up GL resources for the render target
function setupRenderTarget( renderTarget ) {
const renderTargetProperties = properties.get( renderTarget );
const textureProperties = properties.get( renderTarget.texture );
renderTarget.addEventListener( 'dispose', onRenderTargetDispose );
textureProperties.__webglTexture = _gl.createTexture();
info.memory.textures ++;
const isCube = ( renderTarget.isWebGLCubeRenderTarget === true );
const isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true );
const supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;
// Handles WebGL2 RGBFormat fallback - #18858
if ( isWebGL2 && renderTarget.texture.format === RGBFormat && ( renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType ) ) {
renderTarget.texture.format = RGBAFormat;
console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' );
}
// Setup framebuffer
if ( isCube ) {
renderTargetProperties.__webglFramebuffer = [];
for ( let i = 0; i < 6; i ++ ) {
renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();
}
} else {
renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
if ( isMultisample ) {
if ( isWebGL2 ) {
renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
_gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer );
const glFormat = utils.convert( renderTarget.texture.format );
const glType = utils.convert( renderTarget.texture.type );
const glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
const samples = getRenderTargetSamples( renderTarget );
_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );
_gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer );
_gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer );
_gl.bindRenderbuffer( 36161, null );
if ( renderTarget.depthBuffer ) {
renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true );
}
_gl.bindFramebuffer( 36160, null );
} else {
console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );
}
}
}
// Setup color buffer
if ( isCube ) {
state.bindTexture( 34067, textureProperties.__webglTexture );
setTextureParameters( 34067, renderTarget.texture, supportsMips );
for ( let i = 0; i < 6; i ++ ) {
setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, 36064, 34069 + i );
}
if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {
generateMipmap( 34067, renderTarget.texture, renderTarget.width, renderTarget.height );
}
state.bindTexture( 34067, null );
} else {
state.bindTexture( 3553, textureProperties.__webglTexture );
setTextureParameters( 3553, renderTarget.texture, supportsMips );
setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553 );
if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {
generateMipmap( 3553, renderTarget.texture, renderTarget.width, renderTarget.height );
}
state.bindTexture( 3553, null );
}
// Setup depth and stencil buffers
if ( renderTarget.depthBuffer ) {
setupDepthRenderbuffer( renderTarget );
}
}
function updateRenderTargetMipmap( renderTarget ) {
const texture = renderTarget.texture;
const supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;
if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {
const target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553;
const webglTexture = properties.get( texture ).__webglTexture;
state.bindTexture( target, webglTexture );
generateMipmap( target, texture, renderTarget.width, renderTarget.height );
state.bindTexture( target, null );
}
}
function updateMultisampleRenderTarget( renderTarget ) {
if ( renderTarget.isWebGLMultisampleRenderTarget ) {
if ( isWebGL2 ) {
const renderTargetProperties = properties.get( renderTarget );
_gl.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer );
_gl.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer );
const width = renderTarget.width;
const height = renderTarget.height;
let mask = 16384;
if ( renderTarget.depthBuffer ) mask |= 256;
if ( renderTarget.stencilBuffer ) mask |= 1024;
_gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 );
_gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); // see #18905
} else {
console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );
}
}
}
function getRenderTargetSamples( renderTarget ) {
return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ?
Math.min( maxSamples, renderTarget.samples ) : 0;
}
function updateVideoTexture( texture ) {
const frame = info.render.frame;
// Check the last frame we updated the VideoTexture
if ( _videoTextures.get( texture ) !== frame ) {
_videoTextures.set( texture, frame );
texture.update();
}
}
// backwards compatibility
let warnedTexture2D = false;
let warnedTextureCube = false;
function safeSetTexture2D( texture, slot ) {
if ( texture && texture.isWebGLRenderTarget ) {
if ( warnedTexture2D === false ) {
console.warn( "THREE.WebGLTextures.safeSetTexture2D: don't use render targets as textures. Use their .texture property instead." );
warnedTexture2D = true;
}
texture = texture.texture;
}
setTexture2D( texture, slot );
}
function safeSetTextureCube( texture, slot ) {
if ( texture && texture.isWebGLCubeRenderTarget ) {
if ( warnedTextureCube === false ) {
console.warn( "THREE.WebGLTextures.safeSetTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
warnedTextureCube = true;
}
texture = texture.texture;
}
// currently relying on the fact that WebGLCubeRenderTarget.texture is a Texture and NOT a CubeTexture
// TODO: unify these code paths
if ( ( texture && texture.isCubeTexture ) ||
( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {
// CompressedTexture can have Array in image :/
// this function alone should take care of cube textures
setTextureCube( texture, slot );
} else {
// assumed: texture property of THREE.WebGLCubeRenderTarget
setTextureCubeDynamic( texture, slot );
}
}
//
this.allocateTextureUnit = allocateTextureUnit;
this.resetTextureUnits = resetTextureUnits;
this.setTexture2D = setTexture2D;
this.setTexture2DArray = setTexture2DArray;
this.setTexture3D = setTexture3D;
this.setTextureCube = setTextureCube;
this.setTextureCubeDynamic = setTextureCubeDynamic;
this.setupRenderTarget = setupRenderTarget;
this.updateRenderTargetMipmap = updateRenderTargetMipmap;
this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
this.safeSetTexture2D = safeSetTexture2D;
this.safeSetTextureCube = safeSetTextureCube;
}
/**
* @author thespite / http://www.twitter.com/thespite
*/
function WebGLUtils( gl, extensions, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
function convert( p ) {
let extension;
if ( p === UnsignedByteType ) return 5121;
if ( p === UnsignedShort4444Type ) return 32819;
if ( p === UnsignedShort5551Type ) return 32820;
if ( p === UnsignedShort565Type ) return 33635;
if ( p === ByteType ) return 5120;
if ( p === ShortType ) return 5122;
if ( p === UnsignedShortType ) return 5123;
if ( p === IntType ) return 5124;
if ( p === UnsignedIntType ) return 5125;
if ( p === FloatType ) return 5126;
if ( p === HalfFloatType ) {
if ( isWebGL2 ) return 5131;
extension = extensions.get( 'OES_texture_half_float' );
if ( extension !== null ) {
return extension.HALF_FLOAT_OES;
} else {
return null;
}
}
if ( p === AlphaFormat ) return 6406;
if ( p === RGBFormat ) return 6407;
if ( p === RGBAFormat ) return 6408;
if ( p === LuminanceFormat ) return 6409;
if ( p === LuminanceAlphaFormat ) return 6410;
if ( p === DepthFormat ) return 6402;
if ( p === DepthStencilFormat ) return 34041;
if ( p === RedFormat ) return 6403;
// WebGL2 formats.
if ( p === RedIntegerFormat ) return 36244;
if ( p === RGFormat ) return 33319;
if ( p === RGIntegerFormat ) return 33320;
if ( p === RGBIntegerFormat ) return 36248;
if ( p === RGBAIntegerFormat ) return 36249;
if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );
if ( extension !== null ) {
if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
} else {
return null;
}
}
if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );
if ( extension !== null ) {
if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
} else {
return null;
}
}
if ( p === RGB_ETC1_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_etc1' );
if ( extension !== null ) {
return extension.COMPRESSED_RGB_ETC1_WEBGL;
} else {
return null;
}
}
if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_etc' );
if ( extension !== null ) {
if ( p === RGB_ETC2_Format ) return extension.COMPRESSED_RGB8_ETC2;
if ( p === RGBA_ETC2_EAC_Format ) return extension.COMPRESSED_RGBA8_ETC2_EAC;
}
}
if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format ||
p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format ||
p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format ||
p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format ||
p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ||
p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format ||
p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format ||
p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format ||
p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format ||
p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_astc' );
if ( extension !== null ) {
// TODO Complete?
return p;
} else {
return null;
}
}
if ( p === RGBA_BPTC_Format ) {
extension = extensions.get( 'EXT_texture_compression_bptc' );
if ( extension !== null ) {
// TODO Complete?
return p;
} else {
return null;
}
}
if ( p === UnsignedInt248Type ) {
if ( isWebGL2 ) return 34042;
extension = extensions.get( 'WEBGL_depth_texture' );
if ( extension !== null ) {
return extension.UNSIGNED_INT_24_8_WEBGL;
} else {
return null;
}
}
}
return { convert: convert };
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function ArrayCamera( array ) {
PerspectiveCamera.call( this );
this.cameras = array || [];
}
ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {
constructor: ArrayCamera,
isArrayCamera: true
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Group() {
Object3D.call( this );
this.type = 'Group';
}
Group.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Group,
isGroup: true
} );
/**
* @author Mugen87 / https://github.com/Mugen87
*/
function WebXRController() {
this._targetRay = null;
this._grip = null;
}
Object.assign( WebXRController.prototype, {
constructor: WebXRController,
getTargetRaySpace: function () {
if ( this._targetRay === null ) {
this._targetRay = new Group();
this._targetRay.matrixAutoUpdate = false;
this._targetRay.visible = false;
}
return this._targetRay;
},
getGripSpace: function () {
if ( this._grip === null ) {
this._grip = new Group();
this._grip.matrixAutoUpdate = false;
this._grip.visible = false;
}
return this._grip;
},
dispatchEvent: function ( event ) {
if ( this._targetRay !== null ) {
this._targetRay.dispatchEvent( event );
}
if ( this._grip !== null ) {
this._grip.dispatchEvent( event );
}
return this;
},
disconnect: function ( inputSource ) {
this.dispatchEvent( { type: 'disconnected', data: inputSource } );
if ( this._targetRay !== null ) {
this._targetRay.visible = false;
}
if ( this._grip !== null ) {
this._grip.visible = false;
}
return this;
},
update: function ( inputSource, frame, referenceSpace ) {
let inputPose = null;
let gripPose = null;
const targetRay = this._targetRay;
const grip = this._grip;
if ( inputSource ) {
if ( targetRay !== null ) {
inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace );
if ( inputPose !== null ) {
targetRay.matrix.fromArray( inputPose.transform.matrix );
targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale );
}
}
if ( grip !== null && inputSource.gripSpace ) {
gripPose = frame.getPose( inputSource.gripSpace, referenceSpace );
if ( gripPose !== null ) {
grip.matrix.fromArray( gripPose.transform.matrix );
grip.matrix.decompose( grip.position, grip.rotation, grip.scale );
}
}
}
if ( targetRay !== null ) {
targetRay.visible = ( inputPose !== null );
}
if ( grip !== null ) {
grip.visible = ( gripPose !== null );
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebXRManager( renderer, gl ) {
const scope = this;
let session = null;
let framebufferScaleFactor = 1.0;
let referenceSpace = null;
let referenceSpaceType = 'local-floor';
let pose = null;
const controllers = [];
const inputSourcesMap = new Map();
//
const cameraL = new PerspectiveCamera();
cameraL.layers.enable( 1 );
cameraL.viewport = new Vector4();
const cameraR = new PerspectiveCamera();
cameraR.layers.enable( 2 );
cameraR.viewport = new Vector4();
const cameras = [ cameraL, cameraR ];
const cameraVR = new ArrayCamera();
cameraVR.layers.enable( 1 );
cameraVR.layers.enable( 2 );
let _currentDepthNear = null;
let _currentDepthFar = null;
//
this.enabled = false;
this.isPresenting = false;
this.getController = function ( index ) {
let controller = controllers[ index ];
if ( controller === undefined ) {
controller = new WebXRController();
controllers[ index ] = controller;
}
return controller.getTargetRaySpace();
};
this.getControllerGrip = function ( index ) {
let controller = controllers[ index ];
if ( controller === undefined ) {
controller = new WebXRController();
controllers[ index ] = controller;
}
return controller.getGripSpace();
};
//
function onSessionEvent( event ) {
const controller = inputSourcesMap.get( event.inputSource );
if ( controller ) {
controller.dispatchEvent( { type: event.type } );
}
}
function onSessionEnd() {
inputSourcesMap.forEach( function ( controller, inputSource ) {
controller.disconnect( inputSource );
} );
inputSourcesMap.clear();
//
renderer.setFramebuffer( null );
renderer.setRenderTarget( renderer.getRenderTarget() ); // Hack #15830
animation.stop();
scope.isPresenting = false;
scope.dispatchEvent( { type: 'sessionend' } );
}
function onRequestReferenceSpace( value ) {
referenceSpace = value;
animation.setContext( session );
animation.start();
scope.isPresenting = true;
scope.dispatchEvent( { type: 'sessionstart' } );
}
this.setFramebufferScaleFactor = function ( value ) {
framebufferScaleFactor = value;
if ( scope.isPresenting === true ) {
console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' );
}
};
this.setReferenceSpaceType = function ( value ) {
referenceSpaceType = value;
if ( scope.isPresenting === true ) {
console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' );
}
};
this.getReferenceSpace = function () {
return referenceSpace;
};
this.getSession = function () {
return session;
};
this.setSession = function ( value ) {
session = value;
if ( session !== null ) {
session.addEventListener( 'select', onSessionEvent );
session.addEventListener( 'selectstart', onSessionEvent );
session.addEventListener( 'selectend', onSessionEvent );
session.addEventListener( 'squeeze', onSessionEvent );
session.addEventListener( 'squeezestart', onSessionEvent );
session.addEventListener( 'squeezeend', onSessionEvent );
session.addEventListener( 'end', onSessionEnd );
const attributes = gl.getContextAttributes();
if ( attributes.xrCompatible !== true ) {
gl.makeXRCompatible();
}
const layerInit = {
antialias: attributes.antialias,
alpha: attributes.alpha,
depth: attributes.depth,
stencil: attributes.stencil,
framebufferScaleFactor: framebufferScaleFactor
};
// eslint-disable-next-line no-undef
const baseLayer = new XRWebGLLayer( session, gl, layerInit );
session.updateRenderState( { baseLayer: baseLayer } );
session.requestReferenceSpace( referenceSpaceType ).then( onRequestReferenceSpace );
//
session.addEventListener( 'inputsourceschange', updateInputSources );
}
};
function updateInputSources( event ) {
const inputSources = session.inputSources;
// Assign inputSources to available controllers
for ( let i = 0; i < controllers.length; i ++ ) {
inputSourcesMap.set( inputSources[ i ], controllers[ i ] );
}
// Notify disconnected
for ( let i = 0; i < event.removed.length; i ++ ) {
const inputSource = event.removed[ i ];
const controller = inputSourcesMap.get( inputSource );
if ( controller ) {
controller.dispatchEvent( { type: 'disconnected', data: inputSource } );
inputSourcesMap.delete( inputSource );
}
}
// Notify connected
for ( let i = 0; i < event.added.length; i ++ ) {
const inputSource = event.added[ i ];
const controller = inputSourcesMap.get( inputSource );
if ( controller ) {
controller.dispatchEvent( { type: 'connected', data: inputSource } );
}
}
}
//
const cameraLPos = new Vector3();
const cameraRPos = new Vector3();
/**
* @author jsantell / https://www.jsantell.com/
*
* Assumes 2 cameras that are parallel and share an X-axis, and that
* the cameras' projection and world matrices have already been set.
* And that near and far planes are identical for both cameras.
* Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
*/
function setProjectionFromUnion( camera, cameraL, cameraR ) {
cameraLPos.setFromMatrixPosition( cameraL.matrixWorld );
cameraRPos.setFromMatrixPosition( cameraR.matrixWorld );
const ipd = cameraLPos.distanceTo( cameraRPos );
const projL = cameraL.projectionMatrix.elements;
const projR = cameraR.projectionMatrix.elements;
// VR systems will have identical far and near planes, and
// most likely identical top and bottom frustum extents.
// Use the left camera for these values.
const near = projL[ 14 ] / ( projL[ 10 ] - 1 );
const far = projL[ 14 ] / ( projL[ 10 ] + 1 );
const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ];
const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ];
const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ];
const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ];
const left = near * leftFov;
const right = near * rightFov;
// Calculate the new camera's position offset from the
// left camera. xOffset should be roughly half `ipd`.
const zOffset = ipd / ( - leftFov + rightFov );
const xOffset = zOffset * - leftFov;
// TODO: Better way to apply this offset?
cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale );
camera.translateX( xOffset );
camera.translateZ( zOffset );
camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale );
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
// Find the union of the frustum values of the cameras and scale
// the values so that the near plane's position does not change in world space,
// although must now be relative to the new union camera.
const near2 = near + zOffset;
const far2 = far + zOffset;
const left2 = left - xOffset;
const right2 = right + ( ipd - xOffset );
const top2 = topFov * far / far2 * near2;
const bottom2 = bottomFov * far / far2 * near2;
camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 );
}
function updateCamera( camera, parent ) {
if ( parent === null ) {
camera.matrixWorld.copy( camera.matrix );
} else {
camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix );
}
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
}
this.getCamera = function ( camera ) {
cameraVR.near = cameraR.near = cameraL.near = camera.near;
cameraVR.far = cameraR.far = cameraL.far = camera.far;
if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) {
// Note that the new renderState won't apply until the next frame. See #18320
session.updateRenderState( {
depthNear: cameraVR.near,
depthFar: cameraVR.far
} );
_currentDepthNear = cameraVR.near;
_currentDepthFar = cameraVR.far;
}
const parent = camera.parent;
const cameras = cameraVR.cameras;
updateCamera( cameraVR, parent );
for ( let i = 0; i < cameras.length; i ++ ) {
updateCamera( cameras[ i ], parent );
}
// update camera and its children
camera.matrixWorld.copy( cameraVR.matrixWorld );
const children = camera.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateMatrixWorld( true );
}
// update projection matrix for proper view frustum culling
if ( cameras.length === 2 ) {
setProjectionFromUnion( cameraVR, cameraL, cameraR );
} else {
// assume single camera setup (AR)
cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );
}
return cameraVR;
};
// Animation Loop
let onAnimationFrameCallback = null;
function onAnimationFrame( time, frame ) {
pose = frame.getViewerPose( referenceSpace );
if ( pose !== null ) {
const views = pose.views;
const baseLayer = session.renderState.baseLayer;
renderer.setFramebuffer( baseLayer.framebuffer );
let cameraVRNeedsUpdate = false;
// check if it's necessary to rebuild cameraVR's camera list
if ( views.length !== cameraVR.cameras.length ) {
cameraVR.cameras.length = 0;
cameraVRNeedsUpdate = true;
}
for ( let i = 0; i < views.length; i ++ ) {
const view = views[ i ];
const viewport = baseLayer.getViewport( view );
const camera = cameras[ i ];
camera.matrix.fromArray( view.transform.matrix );
camera.projectionMatrix.fromArray( view.projectionMatrix );
camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height );
if ( i === 0 ) {
cameraVR.matrix.copy( camera.matrix );
}
if ( cameraVRNeedsUpdate === true ) {
cameraVR.cameras.push( camera );
}
}
}
//
const inputSources = session.inputSources;
for ( let i = 0; i < controllers.length; i ++ ) {
const controller = controllers[ i ];
const inputSource = inputSources[ i ];
controller.update( inputSource, frame, referenceSpace );
}
if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame );
}
const animation = new WebGLAnimation();
animation.setAnimationLoop( onAnimationFrame );
this.setAnimationLoop = function ( callback ) {
onAnimationFrameCallback = callback;
};
this.dispose = function () {};
}
Object.assign( WebXRManager.prototype, EventDispatcher.prototype );
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLMaterials( properties ) {
function refreshFogUniforms( uniforms, fog ) {
uniforms.fogColor.value.copy( fog.color );
if ( fog.isFog ) {
uniforms.fogNear.value = fog.near;
uniforms.fogFar.value = fog.far;
} else if ( fog.isFogExp2 ) {
uniforms.fogDensity.value = fog.density;
}
}
function refreshMaterialUniforms( uniforms, material, environment, pixelRatio, height ) {
if ( material.isMeshBasicMaterial ) {
refreshUniformsCommon( uniforms, material );
} else if ( material.isMeshLambertMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsLambert( uniforms, material );
} else if ( material.isMeshToonMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsToon( uniforms, material );
} else if ( material.isMeshPhongMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsPhong( uniforms, material );
} else if ( material.isMeshStandardMaterial ) {
refreshUniformsCommon( uniforms, material, environment );
if ( material.isMeshPhysicalMaterial ) {
refreshUniformsPhysical( uniforms, material, environment );
} else {
refreshUniformsStandard( uniforms, material, environment );
}
} else if ( material.isMeshMatcapMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsMatcap( uniforms, material );
} else if ( material.isMeshDepthMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsDepth( uniforms, material );
} else if ( material.isMeshDistanceMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsDistance( uniforms, material );
} else if ( material.isMeshNormalMaterial ) {
refreshUniformsCommon( uniforms, material );
refreshUniformsNormal( uniforms, material );
} else if ( material.isLineBasicMaterial ) {
refreshUniformsLine( uniforms, material );
if ( material.isLineDashedMaterial ) {
refreshUniformsDash( uniforms, material );
}
} else if ( material.isPointsMaterial ) {
refreshUniformsPoints( uniforms, material, pixelRatio, height );
} else if ( material.isSpriteMaterial ) {
refreshUniformsSprites( uniforms, material );
} else if ( material.isShadowMaterial ) {
uniforms.color.value.copy( material.color );
uniforms.opacity.value = material.opacity;
} else if ( material.isShaderMaterial ) {
material.uniformsNeedUpdate = false; // #15581
}
}
function refreshUniformsCommon( uniforms, material, environment ) {
uniforms.opacity.value = material.opacity;
if ( material.color ) {
uniforms.diffuse.value.copy( material.color );
}
if ( material.emissive ) {
uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
}
if ( material.map ) {
uniforms.map.value = material.map;
}
if ( material.alphaMap ) {
uniforms.alphaMap.value = material.alphaMap;
}
if ( material.specularMap ) {
uniforms.specularMap.value = material.specularMap;
}
const envMap = material.envMap || environment;
if ( envMap ) {
uniforms.envMap.value = envMap;
uniforms.flipEnvMap.value = envMap.isCubeTexture ? - 1 : 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.maxMipLevel.value = properties.get( envMap ).__maxMipLevel;
}
if ( material.lightMap ) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if ( material.aoMap ) {
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
}
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
let uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.specularMap ) {
uvScaleMap = material.specularMap;
} else if ( material.displacementMap ) {
uvScaleMap = material.displacementMap;
} else if ( material.normalMap ) {
uvScaleMap = material.normalMap;
} else if ( material.bumpMap ) {
uvScaleMap = material.bumpMap;
} else if ( material.roughnessMap ) {
uvScaleMap = material.roughnessMap;
} else if ( material.metalnessMap ) {
uvScaleMap = material.metalnessMap;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
} else if ( material.emissiveMap ) {
uvScaleMap = material.emissiveMap;
}
if ( uvScaleMap !== undefined ) {
// backwards compatibility
if ( uvScaleMap.isWebGLRenderTarget ) {
uvScaleMap = uvScaleMap.texture;
}
if ( uvScaleMap.matrixAutoUpdate === true ) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy( uvScaleMap.matrix );
}
// uv repeat and offset setting priorities for uv2
// 1. ao map
// 2. light map
let uv2ScaleMap;
if ( material.aoMap ) {
uv2ScaleMap = material.aoMap;
} else if ( material.lightMap ) {
uv2ScaleMap = material.lightMap;
}
if ( uv2ScaleMap !== undefined ) {
// backwards compatibility
if ( uv2ScaleMap.isWebGLRenderTarget ) {
uv2ScaleMap = uv2ScaleMap.texture;
}
if ( uv2ScaleMap.matrixAutoUpdate === true ) {
uv2ScaleMap.updateMatrix();
}
uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix );
}
}
function refreshUniformsLine( uniforms, material ) {
uniforms.diffuse.value.copy( material.color );
uniforms.opacity.value = material.opacity;
}
function refreshUniformsDash( uniforms, material ) {
uniforms.dashSize.value = material.dashSize;
uniforms.totalSize.value = material.dashSize + material.gapSize;
uniforms.scale.value = material.scale;
}
function refreshUniformsPoints( uniforms, material, pixelRatio, height ) {
uniforms.diffuse.value.copy( material.color );
uniforms.opacity.value = material.opacity;
uniforms.size.value = material.size * pixelRatio;
uniforms.scale.value = height * 0.5;
if ( material.map ) {
uniforms.map.value = material.map;
}
if ( material.alphaMap ) {
uniforms.alphaMap.value = material.alphaMap;
}
// uv repeat and offset setting priorities
// 1. color map
// 2. alpha map
let uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
}
if ( uvScaleMap !== undefined ) {
if ( uvScaleMap.matrixAutoUpdate === true ) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy( uvScaleMap.matrix );
}
}
function refreshUniformsSprites( uniforms, material ) {
uniforms.diffuse.value.copy( material.color );
uniforms.opacity.value = material.opacity;
uniforms.rotation.value = material.rotation;
if ( material.map ) {
uniforms.map.value = material.map;
}
if ( material.alphaMap ) {
uniforms.alphaMap.value = material.alphaMap;
}
// uv repeat and offset setting priorities
// 1. color map
// 2. alpha map
let uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
}
if ( uvScaleMap !== undefined ) {
if ( uvScaleMap.matrixAutoUpdate === true ) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy( uvScaleMap.matrix );
}
}
function refreshUniformsLambert( uniforms, material ) {
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
}
function refreshUniformsPhong( uniforms, material ) {
uniforms.specular.value.copy( material.specular );
uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
if ( material.side === BackSide ) uniforms.normalScale.value.negate();
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsToon( uniforms, material ) {
if ( material.gradientMap ) {
uniforms.gradientMap.value = material.gradientMap;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
if ( material.side === BackSide ) uniforms.normalScale.value.negate();
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsStandard( uniforms, material, environment ) {
uniforms.roughness.value = material.roughness;
uniforms.metalness.value = material.metalness;
if ( material.roughnessMap ) {
uniforms.roughnessMap.value = material.roughnessMap;
}
if ( material.metalnessMap ) {
uniforms.metalnessMap.value = material.metalnessMap;
}
if ( material.emissiveMap ) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
if ( material.side === BackSide ) uniforms.normalScale.value.negate();
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
if ( material.envMap || environment ) {
//uniforms.envMap.value = material.envMap; // part of uniforms common
uniforms.envMapIntensity.value = material.envMapIntensity;
}
}
function refreshUniformsPhysical( uniforms, material, environment ) {
refreshUniformsStandard( uniforms, material, environment );
uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common
uniforms.clearcoat.value = material.clearcoat;
uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
if ( material.sheen ) uniforms.sheen.value.copy( material.sheen );
if ( material.clearcoatMap ) {
uniforms.clearcoatMap.value = material.clearcoatMap;
}
if ( material.clearcoatRoughnessMap ) {
uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
}
if ( material.clearcoatNormalMap ) {
uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale );
uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
if ( material.side === BackSide ) {
uniforms.clearcoatNormalScale.value.negate();
}
}
uniforms.transparency.value = material.transparency;
}
function refreshUniformsMatcap( uniforms, material ) {
if ( material.matcap ) {
uniforms.matcap.value = material.matcap;
}
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
if ( material.side === BackSide ) uniforms.normalScale.value.negate();
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsDepth( uniforms, material ) {
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsDistance( uniforms, material ) {
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
uniforms.referencePosition.value.copy( material.referencePosition );
uniforms.nearDistance.value = material.nearDistance;
uniforms.farDistance.value = material.farDistance;
}
function refreshUniformsNormal( uniforms, material ) {
if ( material.bumpMap ) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;
}
if ( material.normalMap ) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy( material.normalScale );
if ( material.side === BackSide ) uniforms.normalScale.value.negate();
}
if ( material.displacementMap ) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
return {
refreshFogUniforms: refreshFogUniforms,
refreshMaterialUniforms: refreshMaterialUniforms
};
}
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
* @author tschw
*/
function WebGLRenderer( parameters ) {
parameters = parameters || {};
const _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
_context = parameters.context !== undefined ? parameters.context : null,
_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
_depth = parameters.depth !== undefined ? parameters.depth : true,
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
let currentRenderList = null;
let currentRenderState = null;
// public properties
this.domElement = _canvas;
// Debug configuration container
this.debug = {
/**
* Enables error checking and reporting when shader programs are being compiled
* @type {boolean}
*/
checkShaderErrors: true
};
// clearing
this.autoClear = true;
this.autoClearColor = true;
this.autoClearDepth = true;
this.autoClearStencil = true;
// scene graph
this.sortObjects = true;
// user-defined clipping
this.clippingPlanes = [];
this.localClippingEnabled = false;
// physically based shading
this.gammaFactor = 2.0; // for backwards compatibility
this.outputEncoding = LinearEncoding;
// physical lights
this.physicallyCorrectLights = false;
// tone mapping
this.toneMapping = NoToneMapping;
this.toneMappingExposure = 1.0;
// morphs
this.maxMorphTargets = 8;
this.maxMorphNormals = 4;
// internal properties
const _this = this;
let _isContextLost = false;
// internal state cache
let _framebuffer = null;
let _currentActiveCubeFace = 0;
let _currentActiveMipmapLevel = 0;
let _currentRenderTarget = null;
let _currentFramebuffer = null;
let _currentMaterialId = - 1;
let _currentCamera = null;
let _currentArrayCamera = null;
const _currentViewport = new Vector4();
const _currentScissor = new Vector4();
let _currentScissorTest = null;
//
let _width = _canvas.width;
let _height = _canvas.height;
let _pixelRatio = 1;
let _opaqueSort = null;
let _transparentSort = null;
const _viewport = new Vector4( 0, 0, _width, _height );
const _scissor = new Vector4( 0, 0, _width, _height );
let _scissorTest = false;
// frustum
const _frustum = new Frustum();
// clipping
const _clipping = new WebGLClipping();
let _clippingEnabled = false;
let _localClippingEnabled = false;
// camera matrices cache
const _projScreenMatrix = new Matrix4();
const _vector3 = new Vector3();
const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true };
function getTargetPixelRatio() {
return _currentRenderTarget === null ? _pixelRatio : 1;
}
// initialize
let _gl = _context;
function getContext( contextNames, contextAttributes ) {
for ( let i = 0; i < contextNames.length; i ++ ) {
const contextName = contextNames[ i ];
const context = _canvas.getContext( contextName, contextAttributes );
if ( context !== null ) return context;
}
return null;
}
try {
const contextAttributes = {
alpha: _alpha,
depth: _depth,
stencil: _stencil,
antialias: _antialias,
premultipliedAlpha: _premultipliedAlpha,
preserveDrawingBuffer: _preserveDrawingBuffer,
powerPreference: _powerPreference,
failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
};
// event listeners must be registered before WebGL context is created, see #12753
_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
_canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );
if ( _gl === null ) {
const contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ];
if ( _this.isWebGL1Renderer === true ) {
contextNames.shift();
}
_gl = getContext( contextNames, contextAttributes );
if ( _gl === null ) {
if ( getContext( contextNames ) ) {
throw new Error( 'Error creating WebGL context with your selected attributes.' );
} else {
throw new Error( 'Error creating WebGL context.' );
}
}
}
// Some experimental-webgl implementations do not have getShaderPrecisionFormat
if ( _gl.getShaderPrecisionFormat === undefined ) {
_gl.getShaderPrecisionFormat = function () {
return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };
};
}
} catch ( error ) {
console.error( 'THREE.WebGLRenderer: ' + error.message );
throw error;
}
let extensions, capabilities, state, info;
let properties, textures, attributes, geometries, objects;
let programCache, materials, renderLists, renderStates;
let background, morphtargets, bufferRenderer, indexedBufferRenderer;
let utils, bindingStates;
function initGLContext() {
extensions = new WebGLExtensions( _gl );
capabilities = new WebGLCapabilities( _gl, extensions, parameters );
if ( capabilities.isWebGL2 === false ) {
extensions.get( 'WEBGL_depth_texture' );
extensions.get( 'OES_texture_float' );
extensions.get( 'OES_texture_half_float' );
extensions.get( 'OES_texture_half_float_linear' );
extensions.get( 'OES_standard_derivatives' );
extensions.get( 'OES_element_index_uint' );
extensions.get( 'OES_vertex_array_object' );
extensions.get( 'ANGLE_instanced_arrays' );
}
extensions.get( 'OES_texture_float_linear' );
utils = new WebGLUtils( _gl, extensions, capabilities );
state = new WebGLState( _gl, extensions, capabilities );
state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );
state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );
info = new WebGLInfo( _gl );
properties = new WebGLProperties();
textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
attributes = new WebGLAttributes( _gl, capabilities );
bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities );
geometries = new WebGLGeometries( _gl, attributes, info, bindingStates );
objects = new WebGLObjects( _gl, geometries, attributes, info );
morphtargets = new WebGLMorphtargets( _gl );
programCache = new WebGLPrograms( _this, extensions, capabilities, bindingStates );
materials = new WebGLMaterials( properties );
renderLists = new WebGLRenderLists();
renderStates = new WebGLRenderStates();
background = new WebGLBackground( _this, state, objects, _premultipliedAlpha );
bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities );
indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities );
info.programs = programCache.programs;
_this.capabilities = capabilities;
_this.extensions = extensions;
_this.properties = properties;
_this.renderLists = renderLists;
_this.state = state;
_this.info = info;
}
initGLContext();
// xr
const xr = new WebXRManager( _this, _gl );
this.xr = xr;
// shadow map
const shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize );
this.shadowMap = shadowMap;
// API
this.getContext = function () {
return _gl;
};
this.getContextAttributes = function () {
return _gl.getContextAttributes();
};
this.forceContextLoss = function () {
const extension = extensions.get( 'WEBGL_lose_context' );
if ( extension ) extension.loseContext();
};
this.forceContextRestore = function () {
const extension = extensions.get( 'WEBGL_lose_context' );
if ( extension ) extension.restoreContext();
};
this.getPixelRatio = function () {
return _pixelRatio;
};
this.setPixelRatio = function ( value ) {
if ( value === undefined ) return;
_pixelRatio = value;
this.setSize( _width, _height, false );
};
this.getSize = function ( target ) {
if ( target === undefined ) {
console.warn( 'WebGLRenderer: .getsize() now requires a Vector2 as an argument' );
target = new Vector2();
}
return target.set( _width, _height );
};
this.setSize = function ( width, height, updateStyle ) {
if ( xr.isPresenting ) {
console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
return;
}
_width = width;
_height = height;
_canvas.width = Math.floor( width * _pixelRatio );
_canvas.height = Math.floor( height * _pixelRatio );
if ( updateStyle !== false ) {
_canvas.style.width = width + 'px';
_canvas.style.height = height + 'px';
}
this.setViewport( 0, 0, width, height );
};
this.getDrawingBufferSize = function ( target ) {
if ( target === undefined ) {
console.warn( 'WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument' );
target = new Vector2();
}
return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor();
};
this.setDrawingBufferSize = function ( width, height, pixelRatio ) {
_width = width;
_height = height;
_pixelRatio = pixelRatio;
_canvas.width = Math.floor( width * pixelRatio );
_canvas.height = Math.floor( height * pixelRatio );
this.setViewport( 0, 0, width, height );
};
this.getCurrentViewport = function ( target ) {
if ( target === undefined ) {
console.warn( 'WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument' );
target = new Vector4();
}
return target.copy( _currentViewport );
};
this.getViewport = function ( target ) {
return target.copy( _viewport );
};
this.setViewport = function ( x, y, width, height ) {
if ( x.isVector4 ) {
_viewport.set( x.x, x.y, x.z, x.w );
} else {
_viewport.set( x, y, width, height );
}
state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );
};
this.getScissor = function ( target ) {
return target.copy( _scissor );
};
this.setScissor = function ( x, y, width, height ) {
if ( x.isVector4 ) {
_scissor.set( x.x, x.y, x.z, x.w );
} else {
_scissor.set( x, y, width, height );
}
state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );
};
this.getScissorTest = function () {
return _scissorTest;
};
this.setScissorTest = function ( boolean ) {
state.setScissorTest( _scissorTest = boolean );
};
this.setOpaqueSort = function ( method ) {
_opaqueSort = method;
};
this.setTransparentSort = function ( method ) {
_transparentSort = method;
};
// Clearing
this.getClearColor = function () {
return background.getClearColor();
};
this.setClearColor = function () {
background.setClearColor.apply( background, arguments );
};
this.getClearAlpha = function () {
return background.getClearAlpha();
};
this.setClearAlpha = function () {
background.setClearAlpha.apply( background, arguments );
};
this.clear = function ( color, depth, stencil ) {
let bits = 0;
if ( color === undefined || color ) bits |= 16384;
if ( depth === undefined || depth ) bits |= 256;
if ( stencil === undefined || stencil ) bits |= 1024;
_gl.clear( bits );
};
this.clearColor = function () {
this.clear( true, false, false );
};
this.clearDepth = function () {
this.clear( false, true, false );
};
this.clearStencil = function () {
this.clear( false, false, true );
};
//
this.dispose = function () {
_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
_canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );
renderLists.dispose();
renderStates.dispose();
properties.dispose();
objects.dispose();
bindingStates.dispose();
xr.dispose();
animation.stop();
};
// Events
function onContextLost( event ) {
event.preventDefault();
console.log( 'THREE.WebGLRenderer: Context Lost.' );
_isContextLost = true;
}
function onContextRestore( /* event */ ) {
console.log( 'THREE.WebGLRenderer: Context Restored.' );
_isContextLost = false;
initGLContext();
}
function onMaterialDispose( event ) {
const material = event.target;
material.removeEventListener( 'dispose', onMaterialDispose );
deallocateMaterial( material );
}
// Buffer deallocation
function deallocateMaterial( material ) {
releaseMaterialProgramReference( material );
properties.remove( material );
}
function releaseMaterialProgramReference( material ) {
const programInfo = properties.get( material ).program;
material.program = undefined;
if ( programInfo !== undefined ) {
programCache.releaseProgram( programInfo );
}
}
// Buffer rendering
function renderObjectImmediate( object, program ) {
object.render( function ( object ) {
_this.renderBufferImmediate( object, program );
} );
}
this.renderBufferImmediate = function ( object, program ) {
bindingStates.initAttributes();
const buffers = properties.get( object );
if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();
const programAttributes = program.getAttributes();
if ( object.hasPositions ) {
_gl.bindBuffer( 34962, buffers.position );
_gl.bufferData( 34962, object.positionArray, 35048 );
bindingStates.enableAttribute( programAttributes.position );
_gl.vertexAttribPointer( programAttributes.position, 3, 5126, false, 0, 0 );
}
if ( object.hasNormals ) {
_gl.bindBuffer( 34962, buffers.normal );
_gl.bufferData( 34962, object.normalArray, 35048 );
bindingStates.enableAttribute( programAttributes.normal );
_gl.vertexAttribPointer( programAttributes.normal, 3, 5126, false, 0, 0 );
}
if ( object.hasUvs ) {
_gl.bindBuffer( 34962, buffers.uv );
_gl.bufferData( 34962, object.uvArray, 35048 );
bindingStates.enableAttribute( programAttributes.uv );
_gl.vertexAttribPointer( programAttributes.uv, 2, 5126, false, 0, 0 );
}
if ( object.hasColors ) {
_gl.bindBuffer( 34962, buffers.color );
_gl.bufferData( 34962, object.colorArray, 35048 );
bindingStates.enableAttribute( programAttributes.color );
_gl.vertexAttribPointer( programAttributes.color, 3, 5126, false, 0, 0 );
}
bindingStates.disableUnusedAttributes();
_gl.drawArrays( 4, 0, object.count );
object.count = 0;
};
this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) {
if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );
const program = setProgram( camera, scene, material, object );
state.setMaterial( material, frontFaceCW );
//
let index = geometry.index;
const position = geometry.attributes.position;
//
if ( index === null ) {
if ( position === undefined || position.count === 0 ) return;
} else if ( index.count === 0 ) {
return;
}
//
let rangeFactor = 1;
if ( material.wireframe === true ) {
index = geometries.getWireframeAttribute( geometry );
rangeFactor = 2;
}
if ( material.morphTargets || material.morphNormals ) {
morphtargets.update( object, geometry, material, program );
}
bindingStates.setup( object, material, program, geometry, index );
let attribute;
let renderer = bufferRenderer;
if ( index !== null ) {
attribute = attributes.get( index );
renderer = indexedBufferRenderer;
renderer.setIndex( attribute );
}
//
const dataCount = ( index !== null ) ? index.count : position.count;
const rangeStart = geometry.drawRange.start * rangeFactor;
const rangeCount = geometry.drawRange.count * rangeFactor;
const groupStart = group !== null ? group.start * rangeFactor : 0;
const groupCount = group !== null ? group.count * rangeFactor : Infinity;
const drawStart = Math.max( rangeStart, groupStart );
const drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;
const drawCount = Math.max( 0, drawEnd - drawStart + 1 );
if ( drawCount === 0 ) return;
//
if ( object.isMesh ) {
if ( material.wireframe === true ) {
state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
renderer.setMode( 1 );
} else {
renderer.setMode( 4 );
}
} else if ( object.isLine ) {
let lineWidth = material.linewidth;
if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material
state.setLineWidth( lineWidth * getTargetPixelRatio() );
if ( object.isLineSegments ) {
renderer.setMode( 1 );
} else if ( object.isLineLoop ) {
renderer.setMode( 2 );
} else {
renderer.setMode( 3 );
}
} else if ( object.isPoints ) {
renderer.setMode( 0 );
} else if ( object.isSprite ) {
renderer.setMode( 4 );
}
if ( object.isInstancedMesh ) {
renderer.renderInstances( geometry, drawStart, drawCount, object.count );
} else if ( geometry.isInstancedBufferGeometry ) {
const instanceCount = Math.min( geometry.instanceCount, geometry._maxInstanceCount );
renderer.renderInstances( geometry, drawStart, drawCount, instanceCount );
} else {
renderer.render( drawStart, drawCount );
}
};
// Compile
this.compile = function ( scene, camera ) {
currentRenderState = renderStates.get( scene, camera );
currentRenderState.init();
scene.traverse( function ( object ) {
if ( object.isLight ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
}
} );
currentRenderState.setupLights( camera );
const compiled = new WeakMap();
scene.traverse( function ( object ) {
let material = object.material;
if ( material ) {
if ( Array.isArray( material ) ) {
for ( let i = 0; i < material.length; i ++ ) {
let material2 = material[ i ];
if ( compiled.has( material2 ) === false ) {
initMaterial( material2, scene, object );
compiled.set( material2 );
}
}
} else if ( compiled.has( material ) === false ) {
initMaterial( material, scene, object );
compiled.set( material );
}
}
} );
};
// Animation Loop
let onAnimationFrameCallback = null;
function onAnimationFrame( time ) {
if ( xr.isPresenting ) return;
if ( onAnimationFrameCallback ) onAnimationFrameCallback( time );
}
const animation = new WebGLAnimation();
animation.setAnimationLoop( onAnimationFrame );
if ( typeof window !== 'undefined' ) animation.setContext( window );
this.setAnimationLoop = function ( callback ) {
onAnimationFrameCallback = callback;
xr.setAnimationLoop( callback );
( callback === null ) ? animation.stop() : animation.start();
};
// Rendering
this.render = function ( scene, camera ) {
let renderTarget, forceClear;
if ( arguments[ 2 ] !== undefined ) {
console.warn( 'THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.' );
renderTarget = arguments[ 2 ];
}
if ( arguments[ 3 ] !== undefined ) {
console.warn( 'THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.' );
forceClear = arguments[ 3 ];
}
if ( camera !== undefined && camera.isCamera !== true ) {
console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
return;
}
if ( _isContextLost === true ) return;
// reset caching for this frame
bindingStates.resetDefaultState();
_currentMaterialId = - 1;
_currentCamera = null;
// update scene graph
if ( scene.autoUpdate === true ) scene.updateMatrixWorld();
// update camera matrices and frustum
if ( camera.parent === null ) camera.updateMatrixWorld();
if ( xr.enabled === true && xr.isPresenting === true ) {
camera = xr.getCamera( camera );
}
//
if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, renderTarget || _currentRenderTarget );
currentRenderState = renderStates.get( scene, camera );
currentRenderState.init();
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromProjectionMatrix( _projScreenMatrix );
_localClippingEnabled = this.localClippingEnabled;
_clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );
currentRenderList = renderLists.get( scene, camera );
currentRenderList.init();
projectObject( scene, camera, 0, _this.sortObjects );
currentRenderList.finish();
if ( _this.sortObjects === true ) {
currentRenderList.sort( _opaqueSort, _transparentSort );
}
//
if ( _clippingEnabled === true ) _clipping.beginShadows();
const shadowsArray = currentRenderState.state.shadowsArray;
shadowMap.render( shadowsArray, scene, camera );
currentRenderState.setupLights( camera );
if ( _clippingEnabled === true ) _clipping.endShadows();
//
if ( this.info.autoReset === true ) this.info.reset();
if ( renderTarget !== undefined ) {
this.setRenderTarget( renderTarget );
}
//
background.render( currentRenderList, scene, camera, forceClear );
// render scene
const opaqueObjects = currentRenderList.opaque;
const transparentObjects = currentRenderList.transparent;
if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera );
if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera );
//
if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera );
//
if ( _currentRenderTarget !== null ) {
// Generate mipmap if we're using any kind of mipmap filtering
textures.updateRenderTargetMipmap( _currentRenderTarget );
// resolve multisample renderbuffers to a single-sample texture if necessary
textures.updateMultisampleRenderTarget( _currentRenderTarget );
}
// Ensure depth buffer writing is enabled so it can be cleared on next render
state.buffers.depth.setTest( true );
state.buffers.depth.setMask( true );
state.buffers.color.setMask( true );
state.setPolygonOffset( false );
// _gl.finish();
currentRenderList = null;
currentRenderState = null;
};
function projectObject( object, camera, groupOrder, sortObjects ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible ) {
if ( object.isGroup ) {
groupOrder = object.renderOrder;
} else if ( object.isLOD ) {
if ( object.autoUpdate === true ) object.update( camera );
} else if ( object.isLight ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
} else if ( object.isSprite ) {
if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
if ( sortObjects ) {
_vector3.setFromMatrixPosition( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
const geometry = objects.update( object );
const material = object.material;
if ( material.visible ) {
currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );
}
}
} else if ( object.isImmediateRenderObject ) {
if ( sortObjects ) {
_vector3.setFromMatrixPosition( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null );
} else if ( object.isMesh || object.isLine || object.isPoints ) {
if ( object.isSkinnedMesh ) {
// update skeleton only once in a frame
if ( object.skeleton.frame !== info.render.frame ) {
object.skeleton.update();
object.skeleton.frame = info.render.frame;
}
}
if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
if ( sortObjects ) {
_vector3.setFromMatrixPosition( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
const geometry = objects.update( object );
const material = object.material;
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group );
}
}
} else if ( material.visible ) {
currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );
}
}
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera, groupOrder, sortObjects );
}
}
function renderObjects( renderList, scene, camera ) {
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
for ( let i = 0, l = renderList.length; i < l; i ++ ) {
const renderItem = renderList[ i ];
const object = renderItem.object;
const geometry = renderItem.geometry;
const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
const group = renderItem.group;
if ( camera.isArrayCamera ) {
_currentArrayCamera = camera;
const cameras = camera.cameras;
for ( let j = 0, jl = cameras.length; j < jl; j ++ ) {
const camera2 = cameras[ j ];
if ( object.layers.test( camera2.layers ) ) {
state.viewport( _currentViewport.copy( camera2.viewport ) );
currentRenderState.setupLights( camera2 );
renderObject( object, scene, camera2, geometry, material, group );
}
}
} else {
_currentArrayCamera = null;
renderObject( object, scene, camera, geometry, material, group );
}
}
}
function renderObject( object, scene, camera, geometry, material, group ) {
object.onBeforeRender( _this, scene, camera, geometry, material, group );
currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );
object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
if ( object.isImmediateRenderObject ) {
const program = setProgram( camera, scene, material, object );
state.setMaterial( material );
bindingStates.reset();
renderObjectImmediate( object, program );
} else {
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
}
object.onAfterRender( _this, scene, camera, geometry, material, group );
currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );
}
function initMaterial( material, scene, object ) {
if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
const materialProperties = properties.get( material );
const lights = currentRenderState.state.lights;
const shadowsArray = currentRenderState.state.shadowsArray;
const lightsStateVersion = lights.state.version;
const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, _clipping.numPlanes, _clipping.numIntersection, object );
const programCacheKey = programCache.getProgramCacheKey( parameters );
let program = materialProperties.program;
let programChange = true;
if ( program === undefined ) {
// new material
material.addEventListener( 'dispose', onMaterialDispose );
} else if ( program.cacheKey !== programCacheKey ) {
// changed glsl or parameters
releaseMaterialProgramReference( material );
} else if ( materialProperties.lightsStateVersion !== lightsStateVersion ) {
materialProperties.lightsStateVersion = lightsStateVersion;
programChange = false;
} else if ( parameters.shaderID !== undefined ) {
// same glsl and uniform list
return;
} else {
// only rebuild uniform list
programChange = false;
}
if ( programChange ) {
program = programCache.acquireProgram( parameters, programCacheKey );
materialProperties.program = program;
materialProperties.uniforms = parameters.uniforms;
materialProperties.outputEncoding = parameters.outputEncoding;
material.program = program;
}
const programAttributes = program.getAttributes();
if ( material.morphTargets ) {
material.numSupportedMorphTargets = 0;
for ( let i = 0; i < _this.maxMorphTargets; i ++ ) {
if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {
material.numSupportedMorphTargets ++;
}
}
}
if ( material.morphNormals ) {
material.numSupportedMorphNormals = 0;
for ( let i = 0; i < _this.maxMorphNormals; i ++ ) {
if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {
material.numSupportedMorphNormals ++;
}
}
}
const uniforms = materialProperties.uniforms;
if ( ! material.isShaderMaterial &&
! material.isRawShaderMaterial ||
material.clipping === true ) {
materialProperties.numClippingPlanes = _clipping.numPlanes;
materialProperties.numIntersection = _clipping.numIntersection;
uniforms.clippingPlanes = _clipping.uniform;
}
materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
materialProperties.fog = scene.fog;
// store the light setup it was created for
materialProperties.needsLights = materialNeedsLights( material );
materialProperties.lightsStateVersion = lightsStateVersion;
if ( materialProperties.needsLights ) {
// wire up the material to this renderer's lighting state
uniforms.ambientLightColor.value = lights.state.ambient;
uniforms.lightProbe.value = lights.state.probe;
uniforms.directionalLights.value = lights.state.directional;
uniforms.directionalLightShadows.value = lights.state.directionalShadow;
uniforms.spotLights.value = lights.state.spot;
uniforms.spotLightShadows.value = lights.state.spotShadow;
uniforms.rectAreaLights.value = lights.state.rectArea;
uniforms.pointLights.value = lights.state.point;
uniforms.pointLightShadows.value = lights.state.pointShadow;
uniforms.hemisphereLights.value = lights.state.hemi;
uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
uniforms.spotShadowMap.value = lights.state.spotShadowMap;
uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
uniforms.pointShadowMap.value = lights.state.pointShadowMap;
uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
// TODO (abelnation): add area lights shadow info to uniforms
}
const progUniforms = materialProperties.program.getUniforms(),
uniformsList =
WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );
materialProperties.uniformsList = uniformsList;
}
function setProgram( camera, scene, material, object ) {
if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
textures.resetTextureUnits();
const fog = scene.fog;
const environment = material.isMeshStandardMaterial ? scene.environment : null;
const encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
const materialProperties = properties.get( material );
const lights = currentRenderState.state.lights;
if ( _clippingEnabled === true ) {
if ( _localClippingEnabled === true || camera !== _currentCamera ) {
const useCache =
camera === _currentCamera &&
material.id === _currentMaterialId;
// we might want to call this function with some ClippingGroup
// object instead of the material, once it becomes feasible
// (#8465, #8379)
_clipping.setState(
material.clippingPlanes, material.clipIntersection, material.clipShadows,
camera, materialProperties, useCache );
}
}
if ( material.version === materialProperties.__version ) {
if ( materialProperties.program === undefined ) {
initMaterial( material, scene, object );
} else if ( material.fog && materialProperties.fog !== fog ) {
initMaterial( material, scene, object );
} else if ( materialProperties.environment !== environment ) {
initMaterial( material, scene, object );
} else if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) {
initMaterial( material, scene, object );
} else if ( materialProperties.numClippingPlanes !== undefined &&
( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
materialProperties.numIntersection !== _clipping.numIntersection ) ) {
initMaterial( material, scene, object );
} else if ( materialProperties.outputEncoding !== encoding ) {
initMaterial( material, scene, object );
}
} else {
initMaterial( material, scene, object );
materialProperties.__version = material.version;
}
let refreshProgram = false;
let refreshMaterial = false;
let refreshLights = false;
const program = materialProperties.program,
p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.uniforms;
if ( state.useProgram( program.program ) ) {
refreshProgram = true;
refreshMaterial = true;
refreshLights = true;
}
if ( material.id !== _currentMaterialId ) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if ( refreshProgram || _currentCamera !== camera ) {
p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );
if ( capabilities.logarithmicDepthBuffer ) {
p_uniforms.setValue( _gl, 'logDepthBufFC',
2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
}
if ( _currentCamera !== camera ) {
_currentCamera = camera;
// lighting uniforms depend on the camera so enforce an update
// now, in case this material supports lights - or later, when
// the next material that does gets activated:
refreshMaterial = true; // set to true on material change
refreshLights = true; // remains set until update done
}
// load material specific uniforms
// (shader material also gets them for the sake of genericity)
if ( material.isShaderMaterial ||
material.isMeshPhongMaterial ||
material.isMeshToonMaterial ||
material.isMeshStandardMaterial ||
material.envMap ) {
const uCamPos = p_uniforms.map.cameraPosition;
if ( uCamPos !== undefined ) {
uCamPos.setValue( _gl,
_vector3.setFromMatrixPosition( camera.matrixWorld ) );
}
}
if ( material.isMeshPhongMaterial ||
material.isMeshToonMaterial ||
material.isMeshLambertMaterial ||
material.isMeshBasicMaterial ||
material.isMeshStandardMaterial ||
material.isShaderMaterial ) {
p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true );
}
if ( material.isMeshPhongMaterial ||
material.isMeshToonMaterial ||
material.isMeshLambertMaterial ||
material.isMeshBasicMaterial ||
material.isMeshStandardMaterial ||
material.isShaderMaterial ||
material.isShadowMaterial ||
material.skinning ) {
p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
}
}
// skinning uniforms must be set even if material didn't change
// auto-setting of texture unit for bone texture must go before other textures
// otherwise textures used for skinning can take over texture units reserved for other material textures
if ( material.skinning ) {
p_uniforms.setOptional( _gl, object, 'bindMatrix' );
p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
const skeleton = object.skeleton;
if ( skeleton ) {
const bones = skeleton.bones;
if ( capabilities.floatVertexTextures ) {
if ( skeleton.boneTexture === undefined ) {
// layout (1 matrix = 4 pixels)
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
let size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
size = MathUtils.ceilPowerOfTwo( size );
size = Math.max( size, 4 );
const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
boneMatrices.set( skeleton.boneMatrices ); // copy current values
const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );
skeleton.boneMatrices = boneMatrices;
skeleton.boneTexture = boneTexture;
skeleton.boneTextureSize = size;
}
p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures );
p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );
} else {
p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );
}
}
}
if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) {
materialProperties.receiveShadow = object.receiveShadow;
p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow );
}
if ( refreshMaterial ) {
p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
if ( materialProperties.needsLights ) {
// the current material requires lighting info
// note: all lighting uniforms are always set correctly
// they simply reference the renderer's state for their
// values
//
// use the current material's .needsUpdate flags to set
// the GL state when required
markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
}
// refresh uniforms common to several materials
if ( fog && material.fog ) {
materials.refreshFogUniforms( m_uniforms, fog );
}
materials.refreshMaterialUniforms( m_uniforms, material, environment, _pixelRatio, _height );
// RectAreaLight Texture
// TODO (mrdoob): Find a nicer implementation
if ( m_uniforms.ltc_1 !== undefined ) m_uniforms.ltc_1.value = UniformsLib.LTC_1;
if ( m_uniforms.ltc_2 !== undefined ) m_uniforms.ltc_2.value = UniformsLib.LTC_2;
WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );
}
if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {
WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );
material.uniformsNeedUpdate = false;
}
if ( material.isSpriteMaterial ) {
p_uniforms.setValue( _gl, 'center', object.center );
}
// common matrices
p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
return program;
}
// If uniforms are marked as clean, they don't need to be loaded to the GPU.
function markUniformsLightsNeedsUpdate( uniforms, value ) {
uniforms.ambientLightColor.needsUpdate = value;
uniforms.lightProbe.needsUpdate = value;
uniforms.directionalLights.needsUpdate = value;
uniforms.directionalLightShadows.needsUpdate = value;
uniforms.pointLights.needsUpdate = value;
uniforms.pointLightShadows.needsUpdate = value;
uniforms.spotLights.needsUpdate = value;
uniforms.spotLightShadows.needsUpdate = value;
uniforms.rectAreaLights.needsUpdate = value;
uniforms.hemisphereLights.needsUpdate = value;
}
function materialNeedsLights( material ) {
return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial ||
material.isMeshStandardMaterial || material.isShadowMaterial ||
( material.isShaderMaterial && material.lights === true );
}
//
this.setFramebuffer = function ( value ) {
if ( _framebuffer !== value && _currentRenderTarget === null ) _gl.bindFramebuffer( 36160, value );
_framebuffer = value;
};
this.getActiveCubeFace = function () {
return _currentActiveCubeFace;
};
this.getActiveMipmapLevel = function () {
return _currentActiveMipmapLevel;
};
this.getRenderTarget = function () {
return _currentRenderTarget;
};
this.setRenderTarget = function ( renderTarget, activeCubeFace, activeMipmapLevel ) {
_currentRenderTarget = renderTarget;
_currentActiveCubeFace = activeCubeFace;
_currentActiveMipmapLevel = activeMipmapLevel;
if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {
textures.setupRenderTarget( renderTarget );
}
let framebuffer = _framebuffer;
let isCube = false;
if ( renderTarget ) {
const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( renderTarget.isWebGLCubeRenderTarget ) {
framebuffer = __webglFramebuffer[ activeCubeFace || 0 ];
isCube = true;
} else if ( renderTarget.isWebGLMultisampleRenderTarget ) {
framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer;
} else {
framebuffer = __webglFramebuffer;
}
_currentViewport.copy( renderTarget.viewport );
_currentScissor.copy( renderTarget.scissor );
_currentScissorTest = renderTarget.scissorTest;
} else {
_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor();
_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor();
_currentScissorTest = _scissorTest;
}
if ( _currentFramebuffer !== framebuffer ) {
_gl.bindFramebuffer( 36160, framebuffer );
_currentFramebuffer = framebuffer;
}
state.viewport( _currentViewport );
state.scissor( _currentScissor );
state.setScissorTest( _currentScissorTest );
if ( isCube ) {
const textureProperties = properties.get( renderTarget.texture );
_gl.framebufferTexture2D( 36160, 36064, 34069 + ( activeCubeFace || 0 ), textureProperties.__webglTexture, activeMipmapLevel || 0 );
}
};
this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) {
if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
return;
}
let framebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) {
framebuffer = framebuffer[ activeCubeFaceIndex ];
}
if ( framebuffer ) {
let restore = false;
if ( framebuffer !== _currentFramebuffer ) {
_gl.bindFramebuffer( 36160, framebuffer );
restore = true;
}
try {
const texture = renderTarget.texture;
const textureFormat = texture.format;
const textureType = texture.type;
if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
return;
}
if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // IE11, Edge and Chrome Mac < 52 (#9513)
! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
return;
}
if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) {
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {
_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );
}
} else {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );
}
} finally {
if ( restore ) {
_gl.bindFramebuffer( 36160, _currentFramebuffer );
}
}
}
};
this.copyFramebufferToTexture = function ( position, texture, level ) {
if ( level === undefined ) level = 0;
const levelScale = Math.pow( 2, - level );
const width = Math.floor( texture.image.width * levelScale );
const height = Math.floor( texture.image.height * levelScale );
const glFormat = utils.convert( texture.format );
textures.setTexture2D( texture, 0 );
_gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 );
state.unbindTexture();
};
this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) {
if ( level === undefined ) level = 0;
const width = srcTexture.image.width;
const height = srcTexture.image.height;
const glFormat = utils.convert( dstTexture.format );
const glType = utils.convert( dstTexture.type );
textures.setTexture2D( dstTexture, 0 );
// As another texture upload may have changed pixelStorei
// parameters, make sure they are correct for the dstTexture
_gl.pixelStorei( 37440, dstTexture.flipY );
_gl.pixelStorei( 37441, dstTexture.premultiplyAlpha );
_gl.pixelStorei( 3317, dstTexture.unpackAlignment );
if ( srcTexture.isDataTexture ) {
_gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data );
} else {
if ( srcTexture.isCompressedTexture ) {
_gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data );
} else {
_gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image );
}
}
// Generate mipmaps only when copying level 0
if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( 3553 );
state.unbindTexture();
};
this.initTexture = function ( texture ) {
textures.setTexture2D( texture, 0 );
state.unbindTexture();
};
if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef
}
}
/**
* @author Mugen87 / https://github.com/Mugen87
*/
function WebGL1Renderer( parameters ) {
WebGLRenderer.call( this, parameters );
}
WebGL1Renderer.prototype = Object.assign( Object.create( WebGLRenderer.prototype ), {
constructor: WebGL1Renderer,
isWebGL1Renderer: true
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function FogExp2( color, density ) {
this.name = '';
this.color = new Color( color );
this.density = ( density !== undefined ) ? density : 0.00025;
}
Object.assign( FogExp2.prototype, {
isFogExp2: true,
clone: function () {
return new FogExp2( this.color, this.density );
},
toJSON: function ( /* meta */ ) {
return {
type: 'FogExp2',
color: this.color.getHex(),
density: this.density
};
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Fog( color, near, far ) {
this.name = '';
this.color = new Color( color );
this.near = ( near !== undefined ) ? near : 1;
this.far = ( far !== undefined ) ? far : 1000;
}
Object.assign( Fog.prototype, {
isFog: true,
clone: function () {
return new Fog( this.color, this.near, this.far );
},
toJSON: function ( /* meta */ ) {
return {
type: 'Fog',
color: this.color.getHex(),
near: this.near,
far: this.far
};
}
} );
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InterleavedBuffer( array, stride ) {
this.array = array;
this.stride = stride;
this.count = array !== undefined ? array.length / stride : 0;
this.usage = StaticDrawUsage;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
this.uuid = MathUtils.generateUUID();
}
Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
Object.assign( InterleavedBuffer.prototype, {
isInterleavedBuffer: true,
onUploadCallback: function () {},
setUsage: function ( value ) {
this.usage = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.count = source.count;
this.stride = source.stride;
this.usage = source.usage;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.stride;
index2 *= attribute.stride;
for ( let i = 0, l = this.stride; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
clone: function ( data ) {
if ( data.arrayBuffers === undefined ) {
data.arrayBuffers = {};
}
if ( this.array.buffer._uuid === undefined ) {
this.array.buffer._uuid = MathUtils.generateUUID();
}
if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) {
data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer;
}
const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] );
const ib = new InterleavedBuffer( array, this.stride );
ib.setUsage( this.usage );
return ib;
},
onUpload: function ( callback ) {
this.onUploadCallback = callback;
return this;
},
toJSON: function ( data ) {
if ( data.arrayBuffers === undefined ) {
data.arrayBuffers = {};
}
// generate UUID for array buffer if necessary
if ( this.array.buffer._uuid === undefined ) {
this.array.buffer._uuid = MathUtils.generateUUID();
}
if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) {
data.arrayBuffers[ this.array.buffer._uuid ] = Array.prototype.slice.call( new Uint32Array( this.array.buffer ) );
}
//
return {
uuid: this.uuid,
buffer: this.array.buffer._uuid,
type: this.array.constructor.name,
stride: this.stride
};
}
} );
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
const _vector$6 = new Vector3();
function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {
this.name = '';
this.data = interleavedBuffer;
this.itemSize = itemSize;
this.offset = offset;
this.normalized = normalized === true;
}
Object.defineProperties( InterleavedBufferAttribute.prototype, {
count: {
get: function () {
return this.data.count;
}
},
array: {
get: function () {
return this.data.array;
}
}
} );
Object.assign( InterleavedBufferAttribute.prototype, {
isInterleavedBufferAttribute: true,
applyMatrix4: function ( m ) {
for ( let i = 0, l = this.data.count; i < l; i ++ ) {
_vector$6.x = this.getX( i );
_vector$6.y = this.getY( i );
_vector$6.z = this.getZ( i );
_vector$6.applyMatrix4( m );
this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z );
}
return this;
},
setX: function ( index, x ) {
this.data.array[ index * this.data.stride + this.offset ] = x;
return this;
},
setY: function ( index, y ) {
this.data.array[ index * this.data.stride + this.offset + 1 ] = y;
return this;
},
setZ: function ( index, z ) {
this.data.array[ index * this.data.stride + this.offset + 2 ] = z;
return this;
},
setW: function ( index, w ) {
this.data.array[ index * this.data.stride + this.offset + 3 ] = w;
return this;
},
getX: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset ];
},
getY: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 1 ];
},
getZ: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 2 ];
},
getW: function ( index ) {
return this.data.array[ index * this.data.stride + this.offset + 3 ];
},
setXY: function ( index, x, y ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index = index * this.data.stride + this.offset;
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
this.data.array[ index + 3 ] = w;
return this;
},
clone: function ( data ) {
if ( data === undefined ) {
console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.' );
const array = [];
for ( let i = 0; i < this.count; i ++ ) {
const index = i * this.data.stride + this.offset;
for ( let j = 0; j < this.itemSize; j ++ ) {
array.push( this.data.array[ index + j ] );
}
}
return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized );
} else {
if ( data.interleavedBuffers === undefined ) {
data.interleavedBuffers = {};
}
if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) {
data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data );
}
return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized );
}
},
toJSON: function ( data ) {
if ( data === undefined ) {
console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.' );
const array = [];
for ( let i = 0; i < this.count; i ++ ) {
const index = i * this.data.stride + this.offset;
for ( let j = 0; j < this.itemSize; j ++ ) {
array.push( this.data.array[ index + j ] );
}
}
// deinterleave data and save it as an ordinary buffer attribute for now
return {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: array,
normalized: this.normalized
};
} else {
// save as true interlaved attribtue
if ( data.interleavedBuffers === undefined ) {
data.interleavedBuffers = {};
}
if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) {
data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data );
}
return {
isInterleavedBufferAttribute: true,
itemSize: this.itemSize,
data: this.data.uuid,
offset: this.offset,
normalized: this.normalized
};
}
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* map: new THREE.Texture( <Image> ),
* alphaMap: new THREE.Texture( <Image> ),
* rotation: <float>,
* sizeAttenuation: <bool>
* }
*/
function SpriteMaterial( parameters ) {
Material.call( this );
this.type = 'SpriteMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.alphaMap = null;
this.rotation = 0;
this.sizeAttenuation = true;
this.transparent = true;
this.setValues( parameters );
}
SpriteMaterial.prototype = Object.create( Material.prototype );
SpriteMaterial.prototype.constructor = SpriteMaterial;
SpriteMaterial.prototype.isSpriteMaterial = true;
SpriteMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.alphaMap = source.alphaMap;
this.rotation = source.rotation;
this.sizeAttenuation = source.sizeAttenuation;
return this;
};
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
*/
let _geometry;
const _intersectPoint = new Vector3();
const _worldScale = new Vector3();
const _mvPosition = new Vector3();
const _alignedPosition = new Vector2();
const _rotatedPosition = new Vector2();
const _viewWorldMatrix = new Matrix4();
const _vA$1 = new Vector3();
const _vB$1 = new Vector3();
const _vC$1 = new Vector3();
const _uvA$1 = new Vector2();
const _uvB$1 = new Vector2();
const _uvC$1 = new Vector2();
function Sprite( material ) {
Object3D.call( this );
this.type = 'Sprite';
if ( _geometry === undefined ) {
_geometry = new BufferGeometry();
const float32Array = new Float32Array( [
- 0.5, - 0.5, 0, 0, 0,
0.5, - 0.5, 0, 1, 0,
0.5, 0.5, 0, 1, 1,
- 0.5, 0.5, 0, 0, 1
] );
const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
_geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] );
_geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
_geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
}
this.geometry = _geometry;
this.material = ( material !== undefined ) ? material : new SpriteMaterial();
this.center = new Vector2( 0.5, 0.5 );
}
Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Sprite,
isSprite: true,
raycast: function ( raycaster, intersects ) {
if ( raycaster.camera === null ) {
console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' );
}
_worldScale.setFromMatrixScale( this.matrixWorld );
_viewWorldMatrix.copy( raycaster.camera.matrixWorld );
this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld );
_mvPosition.setFromMatrixPosition( this.modelViewMatrix );
if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) {
_worldScale.multiplyScalar( - _mvPosition.z );
}
const rotation = this.material.rotation;
let sin, cos;
if ( rotation !== 0 ) {
cos = Math.cos( rotation );
sin = Math.sin( rotation );
}
const center = this.center;
transformVertex( _vA$1.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
transformVertex( _vB$1.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
transformVertex( _vC$1.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
_uvA$1.set( 0, 0 );
_uvB$1.set( 1, 0 );
_uvC$1.set( 1, 1 );
// check first triangle
let intersect = raycaster.ray.intersectTriangle( _vA$1, _vB$1, _vC$1, false, _intersectPoint );
if ( intersect === null ) {
// check second triangle
transformVertex( _vB$1.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
_uvB$1.set( 0, 1 );
intersect = raycaster.ray.intersectTriangle( _vA$1, _vC$1, _vB$1, false, _intersectPoint );
if ( intersect === null ) {
return;
}
}
const distance = raycaster.ray.origin.distanceTo( _intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
point: _intersectPoint.clone(),
uv: Triangle.getUV( _intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ),
face: null,
object: this
} );
},
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
if ( source.center !== undefined ) this.center.copy( source.center );
this.material = source.material;
return this;
}
} );
function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) {
// compute position in camera space
_alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale );
// to check if rotation is not zero
if ( sin !== undefined ) {
_rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y );
_rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y );
} else {
_rotatedPosition.copy( _alignedPosition );
}
vertexPosition.copy( mvPosition );
vertexPosition.x += _rotatedPosition.x;
vertexPosition.y += _rotatedPosition.y;
// transform to world space
vertexPosition.applyMatrix4( _viewWorldMatrix );
}
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
const _v1$4 = new Vector3();
const _v2$2 = new Vector3();
function LOD() {
Object3D.call( this );
this._currentLevel = 0;
this.type = 'LOD';
Object.defineProperties( this, {
levels: {
enumerable: true,
value: []
}
} );
this.autoUpdate = true;
}
LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: LOD,
isLOD: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source, false );
const levels = source.levels;
for ( let i = 0, l = levels.length; i < l; i ++ ) {
const level = levels[ i ];
this.addLevel( level.object.clone(), level.distance );
}
this.autoUpdate = source.autoUpdate;
return this;
},
addLevel: function ( object, distance ) {
if ( distance === undefined ) distance = 0;
distance = Math.abs( distance );
const levels = this.levels;
let l;
for ( l = 0; l < levels.length; l ++ ) {
if ( distance < levels[ l ].distance ) {
break;
}
}
levels.splice( l, 0, { distance: distance, object: object } );
this.add( object );
return this;
},
getCurrentLevel: function () {
return this._currentLevel;
},
getObjectForDistance: function ( distance ) {
const levels = this.levels;
if ( levels.length > 0 ) {
let i, l;
for ( i = 1, l = levels.length; i < l; i ++ ) {
if ( distance < levels[ i ].distance ) {
break;
}
}
return levels[ i - 1 ].object;
}
return null;
},
raycast: function ( raycaster, intersects ) {
const levels = this.levels;
if ( levels.length > 0 ) {
_v1$4.setFromMatrixPosition( this.matrixWorld );
const distance = raycaster.ray.origin.distanceTo( _v1$4 );
this.getObjectForDistance( distance ).raycast( raycaster, intersects );
}
},
update: function ( camera ) {
const levels = this.levels;
if ( levels.length > 1 ) {
_v1$4.setFromMatrixPosition( camera.matrixWorld );
_v2$2.setFromMatrixPosition( this.matrixWorld );
const distance = _v1$4.distanceTo( _v2$2 ) / camera.zoom;
levels[ 0 ].object.visible = true;
let i, l;
for ( i = 1, l = levels.length; i < l; i ++ ) {
if ( distance >= levels[ i ].distance ) {
levels[ i - 1 ].object.visible = false;
levels[ i ].object.visible = true;
} else {
break;
}
}
this._currentLevel = i - 1;
for ( ; i < l; i ++ ) {
levels[ i ].object.visible = false;
}
}
},
toJSON: function ( meta ) {
const data = Object3D.prototype.toJSON.call( this, meta );
if ( this.autoUpdate === false ) data.object.autoUpdate = false;
data.object.levels = [];
const levels = this.levels;
for ( let i = 0, l = levels.length; i < l; i ++ ) {
const level = levels[ i ];
data.object.levels.push( {
object: level.object.uuid,
distance: level.distance
} );
}
return data;
}
} );
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author ikerr / http://verold.com
*/
function SkinnedMesh( geometry, material ) {
if ( geometry && geometry.isGeometry ) {
console.error( 'THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
}
Mesh.call( this, geometry, material );
this.type = 'SkinnedMesh';
this.bindMode = 'attached';
this.bindMatrix = new Matrix4();
this.bindMatrixInverse = new Matrix4();
}
SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {
constructor: SkinnedMesh,
isSkinnedMesh: true,
copy: function ( source ) {
Mesh.prototype.copy.call( this, source );
this.bindMode = source.bindMode;
this.bindMatrix.copy( source.bindMatrix );
this.bindMatrixInverse.copy( source.bindMatrixInverse );
this.skeleton = source.skeleton;
return this;
},
bind: function ( skeleton, bindMatrix ) {
this.skeleton = skeleton;
if ( bindMatrix === undefined ) {
this.updateMatrixWorld( true );
this.skeleton.calculateInverses();
bindMatrix = this.matrixWorld;
}
this.bindMatrix.copy( bindMatrix );
this.bindMatrixInverse.getInverse( bindMatrix );
},
pose: function () {
this.skeleton.pose();
},
normalizeSkinWeights: function () {
const vector = new Vector4();
const skinWeight = this.geometry.attributes.skinWeight;
for ( let i = 0, l = skinWeight.count; i < l; i ++ ) {
vector.x = skinWeight.getX( i );
vector.y = skinWeight.getY( i );
vector.z = skinWeight.getZ( i );
vector.w = skinWeight.getW( i );
const scale = 1.0 / vector.manhattanLength();
if ( scale !== Infinity ) {
vector.multiplyScalar( scale );
} else {
vector.set( 1, 0, 0, 0 ); // do something reasonable
}
skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w );
}
},
updateMatrixWorld: function ( force ) {
Mesh.prototype.updateMatrixWorld.call( this, force );
if ( this.bindMode === 'attached' ) {
this.bindMatrixInverse.getInverse( this.matrixWorld );
} else if ( this.bindMode === 'detached' ) {
this.bindMatrixInverse.getInverse( this.bindMatrix );
} else {
console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );
}
},
boneTransform: ( function () {
const basePosition = new Vector3();
const skinIndex = new Vector4();
const skinWeight = new Vector4();
const vector = new Vector3();
const matrix = new Matrix4();
return function ( index, target ) {
const skeleton = this.skeleton;
const geometry = this.geometry;
skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index );
skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index );
basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix );
target.set( 0, 0, 0 );
for ( let i = 0; i < 4; i ++ ) {
const weight = skinWeight.getComponent( i );
if ( weight !== 0 ) {
const boneIndex = skinIndex.getComponent( i );
matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] );
target.addScaledVector( vector.copy( basePosition ).applyMatrix4( matrix ), weight );
}
}
return target.applyMatrix4( this.bindMatrixInverse );
};
}() )
} );
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author michael guerrero / http://realitymeltdown.com
* @author ikerr / http://verold.com
*/
const _offsetMatrix = new Matrix4();
const _identityMatrix = new Matrix4();
function Skeleton( bones, boneInverses ) {
// copy the bone array
bones = bones || [];
this.bones = bones.slice( 0 );
this.boneMatrices = new Float32Array( this.bones.length * 16 );
this.frame = - 1;
// use the supplied bone inverses or calculate the inverses
if ( boneInverses === undefined ) {
this.calculateInverses();
} else {
if ( this.bones.length === boneInverses.length ) {
this.boneInverses = boneInverses.slice( 0 );
} else {
console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );
this.boneInverses = [];
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
this.boneInverses.push( new Matrix4() );
}
}
}
}
Object.assign( Skeleton.prototype, {
calculateInverses: function () {
this.boneInverses = [];
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const inverse = new Matrix4();
if ( this.bones[ i ] ) {
inverse.getInverse( this.bones[ i ].matrixWorld );
}
this.boneInverses.push( inverse );
}
},
pose: function () {
// recover the bind-time world matrices
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const bone = this.bones[ i ];
if ( bone ) {
bone.matrixWorld.getInverse( this.boneInverses[ i ] );
}
}
// compute the local matrices, positions, rotations and scales
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const bone = this.bones[ i ];
if ( bone ) {
if ( bone.parent && bone.parent.isBone ) {
bone.matrix.getInverse( bone.parent.matrixWorld );
bone.matrix.multiply( bone.matrixWorld );
} else {
bone.matrix.copy( bone.matrixWorld );
}
bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );
}
}
},
update: function () {
const bones = this.bones;
const boneInverses = this.boneInverses;
const boneMatrices = this.boneMatrices;
const boneTexture = this.boneTexture;
// flatten bone matrices to array
for ( let i = 0, il = bones.length; i < il; i ++ ) {
// compute the offset between the current and the original transform
const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix;
_offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
_offsetMatrix.toArray( boneMatrices, i * 16 );
}
if ( boneTexture !== undefined ) {
boneTexture.needsUpdate = true;
}
},
clone: function () {
return new Skeleton( this.bones, this.boneInverses );
},
getBoneByName: function ( name ) {
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const bone = this.bones[ i ];
if ( bone.name === name ) {
return bone;
}
}
return undefined;
},
dispose: function ( ) {
if ( this.boneTexture ) {
this.boneTexture.dispose();
this.boneTexture = undefined;
}
}
} );
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author ikerr / http://verold.com
*/
function Bone() {
Object3D.call( this );
this.type = 'Bone';
}
Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Bone,
isBone: true
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const _instanceLocalMatrix = new Matrix4();
const _instanceWorldMatrix = new Matrix4();
const _instanceIntersects = [];
const _mesh = new Mesh();
function InstancedMesh( geometry, material, count ) {
Mesh.call( this, geometry, material );
this.instanceMatrix = new BufferAttribute( new Float32Array( count * 16 ), 16 );
this.count = count;
this.frustumCulled = false;
}
InstancedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {
constructor: InstancedMesh,
isInstancedMesh: true,
copy: function ( source ) {
Mesh.prototype.copy.call( this, source );
this.instanceMatrix.copy( source.instanceMatrix );
this.count = source.count;
return this;
},
getMatrixAt: function ( index, matrix ) {
matrix.fromArray( this.instanceMatrix.array, index * 16 );
},
raycast: function ( raycaster, intersects ) {
const matrixWorld = this.matrixWorld;
const raycastTimes = this.count;
_mesh.geometry = this.geometry;
_mesh.material = this.material;
if ( _mesh.material === undefined ) return;
for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) {
// calculate the world matrix for each instance
this.getMatrixAt( instanceId, _instanceLocalMatrix );
_instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix );
// the mesh represents this single instance
_mesh.matrixWorld = _instanceWorldMatrix;
_mesh.raycast( raycaster, _instanceIntersects );
// process the result of raycast
for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) {
const intersect = _instanceIntersects[ i ];
intersect.instanceId = instanceId;
intersect.object = this;
intersects.push( intersect );
}
_instanceIntersects.length = 0;
}
},
setMatrixAt: function ( index, matrix ) {
matrix.toArray( this.instanceMatrix.array, index * 16 );
},
updateMorphTargets: function () {
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round"
* }
*/
function LineBasicMaterial( parameters ) {
Material.call( this );
this.type = 'LineBasicMaterial';
this.color = new Color( 0xffffff );
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.morphTargets = false;
this.setValues( parameters );
}
LineBasicMaterial.prototype = Object.create( Material.prototype );
LineBasicMaterial.prototype.constructor = LineBasicMaterial;
LineBasicMaterial.prototype.isLineBasicMaterial = true;
LineBasicMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
this.morphTargets = source.morphTargets;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
const _start = new Vector3();
const _end = new Vector3();
const _inverseMatrix$1 = new Matrix4();
const _ray$1 = new Ray();
const _sphere$2 = new Sphere();
function Line( geometry, material, mode ) {
if ( mode === 1 ) {
console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' );
}
Object3D.call( this );
this.type = 'Line';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new LineBasicMaterial();
this.updateMorphTargets();
}
Line.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Line,
isLine: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.material = source.material;
this.geometry = source.geometry;
return this;
},
computeLineDistances: function () {
const geometry = this.geometry;
if ( geometry.isBufferGeometry ) {
// we assume non-indexed geometry
if ( geometry.index === null ) {
const positionAttribute = geometry.attributes.position;
const lineDistances = [ 0 ];
for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) {
_start.fromBufferAttribute( positionAttribute, i - 1 );
_end.fromBufferAttribute( positionAttribute, i );
lineDistances[ i ] = lineDistances[ i - 1 ];
lineDistances[ i ] += _start.distanceTo( _end );
}
geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );
} else {
console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );
}
} else if ( geometry.isGeometry ) {
const vertices = geometry.vertices;
const lineDistances = geometry.lineDistances;
lineDistances[ 0 ] = 0;
for ( let i = 1, l = vertices.length; i < l; i ++ ) {
lineDistances[ i ] = lineDistances[ i - 1 ];
lineDistances[ i ] += vertices[ i - 1 ].distanceTo( vertices[ i ] );
}
}
return this;
},
raycast: function ( raycaster, intersects ) {
const geometry = this.geometry;
const matrixWorld = this.matrixWorld;
const threshold = raycaster.params.Line.threshold;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$2.copy( geometry.boundingSphere );
_sphere$2.applyMatrix4( matrixWorld );
_sphere$2.radius += threshold;
if ( raycaster.ray.intersectsSphere( _sphere$2 ) === false ) return;
//
_inverseMatrix$1.getInverse( matrixWorld );
_ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 );
const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
const localThresholdSq = localThreshold * localThreshold;
const vStart = new Vector3();
const vEnd = new Vector3();
const interSegment = new Vector3();
const interRay = new Vector3();
const step = ( this && this.isLineSegments ) ? 2 : 1;
if ( geometry.isBufferGeometry ) {
const index = geometry.index;
const attributes = geometry.attributes;
const positions = attributes.position.array;
if ( index !== null ) {
const indices = index.array;
for ( let i = 0, l = indices.length - 1; i < l; i += step ) {
const a = indices[ i ];
const b = indices[ i + 1 ];
vStart.fromArray( positions, a * 3 );
vEnd.fromArray( positions, b * 3 );
const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > localThresholdSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
const distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
} else {
for ( let i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
vStart.fromArray( positions, 3 * i );
vEnd.fromArray( positions, 3 * i + 3 );
const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > localThresholdSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
const distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
} else if ( geometry.isGeometry ) {
const vertices = geometry.vertices;
const nbVertices = vertices.length;
for ( let i = 0; i < nbVertices - 1; i += step ) {
const distSq = _ray$1.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
if ( distSq > localThresholdSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
const distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
},
updateMorphTargets: function () {
const geometry = this.geometry;
if ( geometry.isBufferGeometry ) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if ( morphTargets !== undefined && morphTargets.length > 0 ) {
console.error( 'THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' );
}
}
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const _start$1 = new Vector3();
const _end$1 = new Vector3();
function LineSegments( geometry, material ) {
Line.call( this, geometry, material );
this.type = 'LineSegments';
}
LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {
constructor: LineSegments,
isLineSegments: true,
computeLineDistances: function () {
const geometry = this.geometry;
if ( geometry.isBufferGeometry ) {
// we assume non-indexed geometry
if ( geometry.index === null ) {
const positionAttribute = geometry.attributes.position;
const lineDistances = [];
for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) {
_start$1.fromBufferAttribute( positionAttribute, i );
_end$1.fromBufferAttribute( positionAttribute, i + 1 );
lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );
}
geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );
} else {
console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );
}
} else if ( geometry.isGeometry ) {
const vertices = geometry.vertices;
const lineDistances = geometry.lineDistances;
for ( let i = 0, l = vertices.length; i < l; i += 2 ) {
_start$1.copy( vertices[ i ] );
_end$1.copy( vertices[ i + 1 ] );
lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );
}
}
return this;
}
} );
/**
* @author mgreter / http://github.com/mgreter
*/
function LineLoop( geometry, material ) {
Line.call( this, geometry, material );
this.type = 'LineLoop';
}
LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {
constructor: LineLoop,
isLineLoop: true,
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
* alphaMap: new THREE.Texture( <Image> ),
*
* size: <float>,
* sizeAttenuation: <bool>
*
* morphTargets: <bool>
* }
*/
function PointsMaterial( parameters ) {
Material.call( this );
this.type = 'PointsMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.alphaMap = null;
this.size = 1;
this.sizeAttenuation = true;
this.morphTargets = false;
this.setValues( parameters );
}
PointsMaterial.prototype = Object.create( Material.prototype );
PointsMaterial.prototype.constructor = PointsMaterial;
PointsMaterial.prototype.isPointsMaterial = true;
PointsMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.alphaMap = source.alphaMap;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
this.morphTargets = source.morphTargets;
return this;
};
/**
* @author alteredq / http://alteredqualia.com/
*/
const _inverseMatrix$2 = new Matrix4();
const _ray$2 = new Ray();
const _sphere$3 = new Sphere();
const _position$1 = new Vector3();
function Points( geometry, material ) {
Object3D.call( this );
this.type = 'Points';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new PointsMaterial();
this.updateMorphTargets();
}
Points.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Points,
isPoints: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.material = source.material;
this.geometry = source.geometry;
return this;
},
raycast: function ( raycaster, intersects ) {
const geometry = this.geometry;
const matrixWorld = this.matrixWorld;
const threshold = raycaster.params.Points.threshold;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$3.copy( geometry.boundingSphere );
_sphere$3.applyMatrix4( matrixWorld );
_sphere$3.radius += threshold;
if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) return;
//
_inverseMatrix$2.getInverse( matrixWorld );
_ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );
const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
const localThresholdSq = localThreshold * localThreshold;
if ( geometry.isBufferGeometry ) {
const index = geometry.index;
const attributes = geometry.attributes;
const positions = attributes.position.array;
if ( index !== null ) {
const indices = index.array;
for ( let i = 0, il = indices.length; i < il; i ++ ) {
const a = indices[ i ];
_position$1.fromArray( positions, a * 3 );
testPoint( _position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this );
}
} else {
for ( let i = 0, l = positions.length / 3; i < l; i ++ ) {
_position$1.fromArray( positions, i * 3 );
testPoint( _position$1, i, localThresholdSq, matrixWorld, raycaster, intersects, this );
}
}
} else {
const vertices = geometry.vertices;
for ( let i = 0, l = vertices.length; i < l; i ++ ) {
testPoint( vertices[ i ], i, localThresholdSq, matrixWorld, raycaster, intersects, this );
}
}
},
updateMorphTargets: function () {
const geometry = this.geometry;
if ( geometry.isBufferGeometry ) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if ( morphTargets !== undefined && morphTargets.length > 0 ) {
console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' );
}
}
}
} );
function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) {
const rayPointDistanceSq = _ray$2.distanceSqToPoint( point );
if ( rayPointDistanceSq < localThresholdSq ) {
const intersectPoint = new Vector3();
_ray$2.closestPointToPoint( point, intersectPoint );
intersectPoint.applyMatrix4( matrixWorld );
const distance = raycaster.ray.origin.distanceTo( intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
distanceToRay: Math.sqrt( rayPointDistanceSq ),
point: intersectPoint,
index: index,
face: null,
object: object
} );
}
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.format = format !== undefined ? format : RGBFormat;
this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
this.generateMipmaps = false;
}
VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), {
constructor: VideoTexture,
isVideoTexture: true,
update: function () {
const video = this.image;
if ( video.readyState >= video.HAVE_CURRENT_DATA ) {
this.needsUpdate = true;
}
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.image = { width: width, height: height };
this.mipmaps = mipmaps;
// no flipping for cube textures
// (also flipping doesn't work for compressed textures )
this.flipY = false;
// can't generate mipmaps for compressed textures
// mips must be embedded in DDS files
this.generateMipmaps = false;
}
CompressedTexture.prototype = Object.create( Texture.prototype );
CompressedTexture.prototype.constructor = CompressedTexture;
CompressedTexture.prototype.isCompressedTexture = true;
/**
* @author mrdoob / http://mrdoob.com/
*/
function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.needsUpdate = true;
}
CanvasTexture.prototype = Object.create( Texture.prototype );
CanvasTexture.prototype.constructor = CanvasTexture;
CanvasTexture.prototype.isCanvasTexture = true;
/**
* @author Matt DesLauriers / @mattdesl
* @author atix / arthursilber.de
*/
function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {
format = format !== undefined ? format : DepthFormat;
if ( format !== DepthFormat && format !== DepthStencilFormat ) {
throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );
}
if ( type === undefined && format === DepthFormat ) type = UnsignedShortType;
if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type;
Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.image = { width: width, height: height };
this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
}
DepthTexture.prototype = Object.create( Texture.prototype );
DepthTexture.prototype.constructor = DepthTexture;
DepthTexture.prototype.isDepthTexture = true;
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
function WireframeGeometry( geometry ) {
BufferGeometry.call( this );
this.type = 'WireframeGeometry';
// buffer
const vertices = [];
// helper variables
const edge = [ 0, 0 ], edges = {};
const keys = [ 'a', 'b', 'c' ];
// different logic for Geometry and BufferGeometry
if ( geometry && geometry.isGeometry ) {
// create a data structure that contains all edges without duplicates
const faces = geometry.faces;
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const face = faces[ i ];
for ( let j = 0; j < 3; j ++ ) {
const edge1 = face[ keys[ j ] ];
const edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
edge[ 1 ] = Math.max( edge1, edge2 );
const key = edge[ 0 ] + ',' + edge[ 1 ];
if ( edges[ key ] === undefined ) {
edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };
}
}
}
// generate vertices
for ( const key in edges ) {
const e = edges[ key ];
let vertex = geometry.vertices[ e.index1 ];
vertices.push( vertex.x, vertex.y, vertex.z );
vertex = geometry.vertices[ e.index2 ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
} else if ( geometry && geometry.isBufferGeometry ) {
let vertex = new Vector3();
if ( geometry.index !== null ) {
// indexed BufferGeometry
const position = geometry.attributes.position;
const indices = geometry.index;
let groups = geometry.groups;
if ( groups.length === 0 ) {
groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];
}
// create a data structure that contains all eges without duplicates
for ( let o = 0, ol = groups.length; o < ol; ++ o ) {
const group = groups[ o ];
const start = group.start;
const count = group.count;
for ( let i = start, l = ( start + count ); i < l; i += 3 ) {
for ( let j = 0; j < 3; j ++ ) {
const edge1 = indices.getX( i + j );
const edge2 = indices.getX( i + ( j + 1 ) % 3 );
edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
edge[ 1 ] = Math.max( edge1, edge2 );
const key = edge[ 0 ] + ',' + edge[ 1 ];
if ( edges[ key ] === undefined ) {
edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };
}
}
}
}
// generate vertices
for ( const key in edges ) {
const e = edges[ key ];
vertex.fromBufferAttribute( position, e.index1 );
vertices.push( vertex.x, vertex.y, vertex.z );
vertex.fromBufferAttribute( position, e.index2 );
vertices.push( vertex.x, vertex.y, vertex.z );
}
} else {
// non-indexed BufferGeometry
const position = geometry.attributes.position;
for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) {
for ( let j = 0; j < 3; j ++ ) {
// three edges per triangle, an edge is represented as (index1, index2)
// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
const index1 = 3 * i + j;
vertex.fromBufferAttribute( position, index1 );
vertices.push( vertex.x, vertex.y, vertex.z );
const index2 = 3 * i + ( ( j + 1 ) % 3 );
vertex.fromBufferAttribute( position, index2 );
vertices.push( vertex.x, vertex.y, vertex.z );
}
}
}
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
WireframeGeometry.prototype.constructor = WireframeGeometry;
/**
* @author zz85 / https://github.com/zz85
* @author Mugen87 / https://github.com/Mugen87
*
* Parametric Surfaces Geometry
* based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
*/
// ParametricGeometry
function ParametricGeometry( func, slices, stacks ) {
Geometry.call( this );
this.type = 'ParametricGeometry';
this.parameters = {
func: func,
slices: slices,
stacks: stacks
};
this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
this.mergeVertices();
}
ParametricGeometry.prototype = Object.create( Geometry.prototype );
ParametricGeometry.prototype.constructor = ParametricGeometry;
// ParametricBufferGeometry
function ParametricBufferGeometry( func, slices, stacks ) {
BufferGeometry.call( this );
this.type = 'ParametricBufferGeometry';
this.parameters = {
func: func,
slices: slices,
stacks: stacks
};
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
const EPS = 0.00001;
const normal = new Vector3();
const p0 = new Vector3(), p1 = new Vector3();
const pu = new Vector3(), pv = new Vector3();
if ( func.length < 3 ) {
console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' );
}
// generate vertices, normals and uvs
const sliceCount = slices + 1;
for ( let i = 0; i <= stacks; i ++ ) {
const v = i / stacks;
for ( let j = 0; j <= slices; j ++ ) {
const u = j / slices;
// vertex
func( u, v, p0 );
vertices.push( p0.x, p0.y, p0.z );
// normal
// approximate tangent vectors via finite differences
if ( u - EPS >= 0 ) {
func( u - EPS, v, p1 );
pu.subVectors( p0, p1 );
} else {
func( u + EPS, v, p1 );
pu.subVectors( p1, p0 );
}
if ( v - EPS >= 0 ) {
func( u, v - EPS, p1 );
pv.subVectors( p0, p1 );
} else {
func( u, v + EPS, p1 );
pv.subVectors( p1, p0 );
}
// cross product of tangent vectors returns surface normal
normal.crossVectors( pu, pv ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u, v );
}
}
// generate indices
for ( let i = 0; i < stacks; i ++ ) {
for ( let j = 0; j < slices; j ++ ) {
const a = i * sliceCount + j;
const b = i * sliceCount + j + 1;
const c = ( i + 1 ) * sliceCount + j + 1;
const d = ( i + 1 ) * sliceCount + j;
// faces one and two
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;
/**
* @author clockworkgeek / https://github.com/clockworkgeek
* @author timothypratley / https://github.com/timothypratley
* @author WestLangley / http://github.com/WestLangley
* @author Mugen87 / https://github.com/Mugen87
*/
// PolyhedronGeometry
function PolyhedronGeometry( vertices, indices, radius, detail ) {
Geometry.call( this );
this.type = 'PolyhedronGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
};
this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
this.mergeVertices();
}
PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;
// PolyhedronBufferGeometry
function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {
BufferGeometry.call( this );
this.type = 'PolyhedronBufferGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
};
radius = radius || 1;
detail = detail || 0;
// default buffer data
const vertexBuffer = [];
const uvBuffer = [];
// the subdivision creates the vertex buffer data
subdivide( detail );
// all vertices should lie on a conceptual sphere with a given radius
applyRadius( radius );
// finally, create the uv data
generateUVs();
// build non-indexed geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );
if ( detail === 0 ) {
this.computeVertexNormals(); // flat normals
} else {
this.normalizeNormals(); // smooth normals
}
// helper functions
function subdivide( detail ) {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
// iterate over all faces and apply a subdivison with the given detail value
for ( let i = 0; i < indices.length; i += 3 ) {
// get the vertices of the face
getVertexByIndex( indices[ i + 0 ], a );
getVertexByIndex( indices[ i + 1 ], b );
getVertexByIndex( indices[ i + 2 ], c );
// perform subdivision
subdivideFace( a, b, c, detail );
}
}
function subdivideFace( a, b, c, detail ) {
const cols = Math.pow( 2, detail );
// we use this multidimensional array as a data structure for creating the subdivision
const v = [];
// construct all of the vertices for this subdivision
for ( let i = 0; i <= cols; i ++ ) {
v[ i ] = [];
const aj = a.clone().lerp( c, i / cols );
const bj = b.clone().lerp( c, i / cols );
const rows = cols - i;
for ( let j = 0; j <= rows; j ++ ) {
if ( j === 0 && i === cols ) {
v[ i ][ j ] = aj;
} else {
v[ i ][ j ] = aj.clone().lerp( bj, j / rows );
}
}
}
// construct all of the faces
for ( let i = 0; i < cols; i ++ ) {
for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
const k = Math.floor( j / 2 );
if ( j % 2 === 0 ) {
pushVertex( v[ i ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k ] );
pushVertex( v[ i ][ k ] );
} else {
pushVertex( v[ i ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k ] );
}
}
}
}
function applyRadius( radius ) {
const vertex = new Vector3();
// iterate over the entire buffer and apply the radius to each vertex
for ( let i = 0; i < vertexBuffer.length; i += 3 ) {
vertex.x = vertexBuffer[ i + 0 ];
vertex.y = vertexBuffer[ i + 1 ];
vertex.z = vertexBuffer[ i + 2 ];
vertex.normalize().multiplyScalar( radius );
vertexBuffer[ i + 0 ] = vertex.x;
vertexBuffer[ i + 1 ] = vertex.y;
vertexBuffer[ i + 2 ] = vertex.z;
}
}
function generateUVs() {
const vertex = new Vector3();
for ( let i = 0; i < vertexBuffer.length; i += 3 ) {
vertex.x = vertexBuffer[ i + 0 ];
vertex.y = vertexBuffer[ i + 1 ];
vertex.z = vertexBuffer[ i + 2 ];
const u = azimuth( vertex ) / 2 / Math.PI + 0.5;
const v = inclination( vertex ) / Math.PI + 0.5;
uvBuffer.push( u, 1 - v );
}
correctUVs();
correctSeam();
}
function correctSeam() {
// handle case when face straddles the seam, see #3269
for ( let i = 0; i < uvBuffer.length; i += 6 ) {
// uv data of a single face
const x0 = uvBuffer[ i + 0 ];
const x1 = uvBuffer[ i + 2 ];
const x2 = uvBuffer[ i + 4 ];
const max = Math.max( x0, x1, x2 );
const min = Math.min( x0, x1, x2 );
// 0.9 is somewhat arbitrary
if ( max > 0.9 && min < 0.1 ) {
if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;
}
}
}
function pushVertex( vertex ) {
vertexBuffer.push( vertex.x, vertex.y, vertex.z );
}
function getVertexByIndex( index, vertex ) {
const stride = index * 3;
vertex.x = vertices[ stride + 0 ];
vertex.y = vertices[ stride + 1 ];
vertex.z = vertices[ stride + 2 ];
}
function correctUVs() {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
const centroid = new Vector3();
const uvA = new Vector2();
const uvB = new Vector2();
const uvC = new Vector2();
for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {
a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );
uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );
centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );
const azi = azimuth( centroid );
correctUV( uvA, j + 0, a, azi );
correctUV( uvB, j + 2, b, azi );
correctUV( uvC, j + 4, c, azi );
}
}
function correctUV( uv, stride, vector, azimuth ) {
if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {
uvBuffer[ stride ] = uv.x - 1;
}
if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {
uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;
}
}
// Angle around the Y axis, counter-clockwise when looking from above.
function azimuth( vector ) {
return Math.atan2( vector.z, - vector.x );
}
// Angle above the XZ plane.
function inclination( vector ) {
return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
}
}
PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;
/**
* @author timothypratley / https://github.com/timothypratley
* @author Mugen87 / https://github.com/Mugen87
*/
// TetrahedronGeometry
function TetrahedronGeometry( radius, detail ) {
Geometry.call( this );
this.type = 'TetrahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
this.mergeVertices();
}
TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;
// TetrahedronBufferGeometry
function TetrahedronBufferGeometry( radius, detail ) {
const vertices = [
1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1
];
const indices = [
2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1
];
PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
this.type = 'TetrahedronBufferGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;
/**
* @author timothypratley / https://github.com/timothypratley
* @author Mugen87 / https://github.com/Mugen87
*/
// OctahedronGeometry
function OctahedronGeometry( radius, detail ) {
Geometry.call( this );
this.type = 'OctahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
this.mergeVertices();
}
OctahedronGeometry.prototype = Object.create( Geometry.prototype );
OctahedronGeometry.prototype.constructor = OctahedronGeometry;
// OctahedronBufferGeometry
function OctahedronBufferGeometry( radius, detail ) {
const vertices = [
1, 0, 0, - 1, 0, 0, 0, 1, 0,
0, - 1, 0, 0, 0, 1, 0, 0, - 1
];
const indices = [
0, 2, 4, 0, 4, 3, 0, 3, 5,
0, 5, 2, 1, 2, 5, 1, 5, 3,
1, 3, 4, 1, 4, 2
];
PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
this.type = 'OctahedronBufferGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;
/**
* @author timothypratley / https://github.com/timothypratley
* @author Mugen87 / https://github.com/Mugen87
*/
// IcosahedronGeometry
function IcosahedronGeometry( radius, detail ) {
Geometry.call( this );
this.type = 'IcosahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
this.mergeVertices();
}
IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;
// IcosahedronBufferGeometry
function IcosahedronBufferGeometry( radius, detail ) {
const t = ( 1 + Math.sqrt( 5 ) ) / 2;
const vertices = [
- 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0,
0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t,
t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1
];
const indices = [
0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11,
1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8,
3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9,
4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1
];
PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
this.type = 'IcosahedronBufferGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;
/**
* @author Abe Pazos / https://hamoid.com
* @author Mugen87 / https://github.com/Mugen87
*/
// DodecahedronGeometry
function DodecahedronGeometry( radius, detail ) {
Geometry.call( this );
this.type = 'DodecahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
this.mergeVertices();
}
DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;
// DodecahedronBufferGeometry
function DodecahedronBufferGeometry( radius, detail ) {
const t = ( 1 + Math.sqrt( 5 ) ) / 2;
const r = 1 / t;
const vertices = [
// (±1, ±1, ±1)
- 1, - 1, - 1, - 1, - 1, 1,
- 1, 1, - 1, - 1, 1, 1,
1, - 1, - 1, 1, - 1, 1,
1, 1, - 1, 1, 1, 1,
// (0, ±1/φ, ±φ)
0, - r, - t, 0, - r, t,
0, r, - t, 0, r, t,
// (±1/φ, ±φ, 0)
- r, - t, 0, - r, t, 0,
r, - t, 0, r, t, 0,
// (±φ, 0, ±1/φ)
- t, 0, - r, t, 0, - r,
- t, 0, r, t, 0, r
];
const indices = [
3, 11, 7, 3, 7, 15, 3, 15, 13,
7, 19, 17, 7, 17, 6, 7, 6, 15,
17, 4, 8, 17, 8, 10, 17, 10, 6,
8, 0, 16, 8, 16, 2, 8, 2, 10,
0, 12, 1, 0, 1, 18, 0, 18, 16,
6, 10, 2, 6, 2, 13, 6, 13, 15,
2, 16, 18, 2, 18, 3, 2, 3, 13,
18, 1, 9, 18, 9, 11, 18, 11, 3,
4, 14, 12, 4, 12, 0, 4, 0, 8,
11, 9, 5, 11, 5, 19, 11, 19, 7,
19, 5, 14, 19, 14, 4, 19, 4, 17,
1, 12, 14, 1, 14, 5, 1, 5, 9
];
PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
this.type = 'DodecahedronBufferGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;
/**
* @author oosmoxiecode / https://github.com/oosmoxiecode
* @author WestLangley / https://github.com/WestLangley
* @author zz85 / https://github.com/zz85
* @author miningold / https://github.com/miningold
* @author jonobr1 / https://github.com/jonobr1
* @author Mugen87 / https://github.com/Mugen87
*
*/
// TubeGeometry
function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {
Geometry.call( this );
this.type = 'TubeGeometry';
this.parameters = {
path: path,
tubularSegments: tubularSegments,
radius: radius,
radialSegments: radialSegments,
closed: closed
};
if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' );
const bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );
// expose internals
this.tangents = bufferGeometry.tangents;
this.normals = bufferGeometry.normals;
this.binormals = bufferGeometry.binormals;
// create geometry
this.fromBufferGeometry( bufferGeometry );
this.mergeVertices();
}
TubeGeometry.prototype = Object.create( Geometry.prototype );
TubeGeometry.prototype.constructor = TubeGeometry;
// TubeBufferGeometry
function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {
BufferGeometry.call( this );
this.type = 'TubeBufferGeometry';
this.parameters = {
path: path,
tubularSegments: tubularSegments,
radius: radius,
radialSegments: radialSegments,
closed: closed
};
tubularSegments = tubularSegments || 64;
radius = radius || 1;
radialSegments = radialSegments || 8;
closed = closed || false;
const frames = path.computeFrenetFrames( tubularSegments, closed );
// expose internals
this.tangents = frames.tangents;
this.normals = frames.normals;
this.binormals = frames.binormals;
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const uv = new Vector2();
let P = new Vector3();
// buffer
const vertices = [];
const normals = [];
const uvs = [];
const indices = [];
// create buffer data
generateBufferData();
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// functions
function generateBufferData() {
for ( let i = 0; i < tubularSegments; i ++ ) {
generateSegment( i );
}
// if the geometry is not closed, generate the last row of vertices and normals
// at the regular position on the given path
//
// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
generateSegment( ( closed === false ) ? tubularSegments : 0 );
// uvs are generated in a separate function.
// this makes it easy compute correct values for closed geometries
generateUVs();
// finally create faces
generateIndices();
}
function generateSegment( i ) {
// we use getPointAt to sample evenly distributed points from the given path
P = path.getPointAt( i / tubularSegments, P );
// retrieve corresponding normal and binormal
const N = frames.normals[ i ];
const B = frames.binormals[ i ];
// generate normals and vertices for the current segment
for ( let j = 0; j <= radialSegments; j ++ ) {
const v = j / radialSegments * Math.PI * 2;
const sin = Math.sin( v );
const cos = - Math.cos( v );
// normal
normal.x = ( cos * N.x + sin * B.x );
normal.y = ( cos * N.y + sin * B.y );
normal.z = ( cos * N.z + sin * B.z );
normal.normalize();
normals.push( normal.x, normal.y, normal.z );
// vertex
vertex.x = P.x + radius * normal.x;
vertex.y = P.y + radius * normal.y;
vertex.z = P.z + radius * normal.z;
vertices.push( vertex.x, vertex.y, vertex.z );
}
}
function generateIndices() {
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
}
function generateUVs() {
for ( let i = 0; i <= tubularSegments; i ++ ) {
for ( let j = 0; j <= radialSegments; j ++ ) {
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.push( uv.x, uv.y );
}
}
}
}
TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;
TubeBufferGeometry.prototype.toJSON = function () {
const data = BufferGeometry.prototype.toJSON.call( this );
data.path = this.parameters.path.toJSON();
return data;
};
/**
* @author oosmoxiecode
* @author Mugen87 / https://github.com/Mugen87
*
* based on http://www.blackpawn.com/texts/pqtorus/
*/
// TorusKnotGeometry
function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {
Geometry.call( this );
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );
this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
this.mergeVertices();
}
TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;
// TorusKnotBufferGeometry
function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {
BufferGeometry.call( this );
this.type = 'TorusKnotBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
radius = radius || 1;
tube = tube || 0.4;
tubularSegments = Math.floor( tubularSegments ) || 64;
radialSegments = Math.floor( radialSegments ) || 8;
p = p || 2;
q = q || 3;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const P1 = new Vector3();
const P2 = new Vector3();
const B = new Vector3();
const T = new Vector3();
const N = new Vector3();
// generate vertices, normals and uvs
for ( let i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
const u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( let j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
const v = j / radialSegments * Math.PI * 2;
const cx = - tube * Math.cos( v );
const cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
// indices
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
const cu = Math.cos( u );
const su = Math.sin( u );
const quOverP = q / p * u;
const cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
}
TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;
/**
* @author oosmoxiecode
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
// TorusGeometry
function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {
Geometry.call( this );
this.type = 'TorusGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
this.mergeVertices();
}
TorusGeometry.prototype = Object.create( Geometry.prototype );
TorusGeometry.prototype.constructor = TorusGeometry;
// TorusBufferGeometry
function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {
BufferGeometry.call( this );
this.type = 'TorusBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
radius = radius || 1;
tube = tube || 0.4;
radialSegments = Math.floor( radialSegments ) || 8;
tubularSegments = Math.floor( tubularSegments ) || 6;
arc = arc || Math.PI * 2;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const center = new Vector3();
const vertex = new Vector3();
const normal = new Vector3();
// generate vertices, normals and uvs
for ( let j = 0; j <= radialSegments; j ++ ) {
for ( let i = 0; i <= tubularSegments; i ++ ) {
const u = i / tubularSegments * arc;
const v = j / radialSegments * Math.PI * 2;
// vertex
vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
vertex.z = tube * Math.sin( v );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
center.x = radius * Math.cos( u );
center.y = radius * Math.sin( u );
normal.subVectors( vertex, center ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= radialSegments; j ++ ) {
for ( let i = 1; i <= tubularSegments; i ++ ) {
// indices
const a = ( tubularSegments + 1 ) * j + i - 1;
const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
const c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
const d = ( tubularSegments + 1 ) * j + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;
/**
* @author Mugen87 / https://github.com/Mugen87
* Port from https://github.com/mapbox/earcut (v2.2.2)
*/
const Earcut = {
triangulate: function ( data, holeIndices, dim ) {
dim = dim || 2;
let hasHoles = holeIndices && holeIndices.length,
outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length,
outerNode = linkedList( data, 0, outerLen, dim, true ),
triangles = [];
if ( ! outerNode || outerNode.next === outerNode.prev ) return triangles;
let minX, minY, maxX, maxY, x, y, invSize;
if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim );
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if ( data.length > 80 * dim ) {
minX = maxX = data[ 0 ];
minY = maxY = data[ 1 ];
for ( let i = dim; i < outerLen; i += dim ) {
x = data[ i ];
y = data[ i + 1 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max( maxX - minX, maxY - minY );
invSize = invSize !== 0 ? 1 / invSize : 0;
}
earcutLinked( outerNode, triangles, dim, minX, minY, invSize );
return triangles;
}
};
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList( data, start, end, dim, clockwise ) {
let i, last;
if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {
for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );
} else {
for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );
}
if ( last && equals( last, last.next ) ) {
removeNode( last );
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints( start, end ) {
if ( ! start ) return start;
if ( ! end ) end = start;
let p = start,
again;
do {
again = false;
if ( ! p.steiner && ( equals( p, p.next ) || three_module_area( p.prev, p, p.next ) === 0 ) ) {
removeNode( p );
p = end = p.prev;
if ( p === p.next ) break;
again = true;
} else {
p = p.next;
}
} while ( again || p !== end );
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {
if ( ! ear ) return;
// interlink polygon nodes in z-order
if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize );
let stop = ear,
prev, next;
// iterate through ears, slicing them one by one
while ( ear.prev !== ear.next ) {
prev = ear.prev;
next = ear.next;
if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {
// cut off the triangle
triangles.push( prev.i / dim );
triangles.push( ear.i / dim );
triangles.push( next.i / dim );
removeNode( ear );
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if ( ear === stop ) {
// try filtering points and slicing again
if ( ! pass ) {
earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );
// if this didn't work, try curing all small self-intersections locally
} else if ( pass === 1 ) {
ear = cureLocalIntersections( filterPoints( ear ), triangles, dim );
earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );
// as a last resort, try splitting the remaining polygon into two
} else if ( pass === 2 ) {
splitEarcut( ear, triangles, dim, minX, minY, invSize );
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar( ear ) {
let a = ear.prev,
b = ear,
c = ear.next;
if ( three_module_area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
let p = ear.next.next;
while ( p !== ear.prev ) {
if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
three_module_area( p.prev, p, p.next ) >= 0 ) return false;
p = p.next;
}
return true;
}
function isEarHashed( ear, minX, minY, invSize ) {
let a = ear.prev,
b = ear,
c = ear.next;
if ( three_module_area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
let minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ),
minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ),
maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ),
maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );
// z-order range for the current triangle bbox;
let minZ = zOrder( minTX, minTY, minX, minY, invSize ),
maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );
let p = ear.prevZ,
n = ear.nextZ;
// look for points inside the triangle in both directions
while ( p && p.z >= minZ && n && n.z <= maxZ ) {
if ( p !== ear.prev && p !== ear.next &&
pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
three_module_area( p.prev, p, p.next ) >= 0 ) return false;
p = p.prevZ;
if ( n !== ear.prev && n !== ear.next &&
pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
three_module_area( n.prev, n, n.next ) >= 0 ) return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while ( p && p.z >= minZ ) {
if ( p !== ear.prev && p !== ear.next &&
pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
three_module_area( p.prev, p, p.next ) >= 0 ) return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while ( n && n.z <= maxZ ) {
if ( n !== ear.prev && n !== ear.next &&
pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
three_module_area( n.prev, n, n.next ) >= 0 ) return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections( start, triangles, dim ) {
let p = start;
do {
let a = p.prev,
b = p.next.next;
if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {
triangles.push( a.i / dim );
triangles.push( p.i / dim );
triangles.push( b.i / dim );
// remove two nodes involved
removeNode( p );
removeNode( p.next );
p = start = b;
}
p = p.next;
} while ( p !== start );
return filterPoints( p );
}
// try splitting polygon into two and triangulate them independently
function splitEarcut( start, triangles, dim, minX, minY, invSize ) {
// look for a valid diagonal that divides the polygon into two
let a = start;
do {
let b = a.next.next;
while ( b !== a.prev ) {
if ( a.i !== b.i && isValidDiagonal( a, b ) ) {
// split the polygon in two by the diagonal
let c = splitPolygon( a, b );
// filter colinear points around the cuts
a = filterPoints( a, a.next );
c = filterPoints( c, c.next );
// run earcut on each half
earcutLinked( a, triangles, dim, minX, minY, invSize );
earcutLinked( c, triangles, dim, minX, minY, invSize );
return;
}
b = b.next;
}
a = a.next;
} while ( a !== start );
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles( data, holeIndices, outerNode, dim ) {
let queue = [],
i, len, start, end, list;
for ( i = 0, len = holeIndices.length; i < len; i ++ ) {
start = holeIndices[ i ] * dim;
end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
list = linkedList( data, start, end, dim, false );
if ( list === list.next ) list.steiner = true;
queue.push( getLeftmost( list ) );
}
queue.sort( compareX );
// process holes from left to right
for ( i = 0; i < queue.length; i ++ ) {
eliminateHole( queue[ i ], outerNode );
outerNode = filterPoints( outerNode, outerNode.next );
}
return outerNode;
}
function compareX( a, b ) {
return a.x - b.x;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole( hole, outerNode ) {
outerNode = findHoleBridge( hole, outerNode );
if ( outerNode ) {
const b = splitPolygon( outerNode, hole );
// filter collinear points around the cuts
filterPoints( outerNode, outerNode.next );
filterPoints( b, b.next );
}
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge( hole, outerNode ) {
let p = outerNode,
hx = hole.x,
hy = hole.y,
qx = - Infinity,
m;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {
let x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );
if ( x <= hx && x > qx ) {
qx = x;
if ( x === hx ) {
if ( hy === p.y ) return p;
if ( hy === p.next.y ) return p.next;
}
m = p.x < p.next.x ? p : p.next;
}
}
p = p.next;
} while ( p !== outerNode );
if ( ! m ) return null;
if ( hx === qx ) return m; // hole touches outer segment; pick leftmost endpoint
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
let stop = m,
mx = m.x,
my = m.y,
tanMin = Infinity,
tan;
p = m;
do {
if ( hx >= p.x && p.x >= mx && hx !== p.x &&
pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {
tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential
if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while ( p !== stop );
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector( m, p ) {
return three_module_area( m.prev, m, p.prev ) < 0 && three_module_area( p.next, m, m.next ) < 0;
}
// interlink polygon nodes in z-order
function indexCurve( start, minX, minY, invSize ) {
let p = start;
do {
if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize );
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while ( p !== start );
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked( p );
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked( list ) {
let i, p, q, e, tail, numMerges, pSize, qSize,
inSize = 1;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while ( p ) {
numMerges ++;
q = p;
pSize = 0;
for ( i = 0; i < inSize; i ++ ) {
pSize ++;
q = q.nextZ;
if ( ! q ) break;
}
qSize = inSize;
while ( pSize > 0 || ( qSize > 0 && q ) ) {
if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {
e = p;
p = p.nextZ;
pSize --;
} else {
e = q;
q = q.nextZ;
qSize --;
}
if ( tail ) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while ( numMerges > 1 );
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder( x, y, minX, minY, invSize ) {
// coords are transformed into non-negative 15-bit integer range
x = 32767 * ( x - minX ) * invSize;
y = 32767 * ( y - minY ) * invSize;
x = ( x | ( x << 8 ) ) & 0x00FF00FF;
x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
x = ( x | ( x << 2 ) ) & 0x33333333;
x = ( x | ( x << 1 ) ) & 0x55555555;
y = ( y | ( y << 8 ) ) & 0x00FF00FF;
y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
y = ( y | ( y << 2 ) ) & 0x33333333;
y = ( y | ( y << 1 ) ) & 0x55555555;
return x | ( y << 1 );
}
// find the leftmost node of a polygon ring
function getLeftmost( start ) {
let p = start,
leftmost = start;
do {
if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) leftmost = p;
p = p.next;
} while ( p !== start );
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {
return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 &&
( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 &&
( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal( a, b ) {
return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges
( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible
( three_module_area( a.prev, a, b.prev ) || three_module_area( a, b.prev, b ) ) || // does not create opposite-facing sectors
equals( a, b ) && three_module_area( a.prev, a, a.next ) > 0 && three_module_area( b.prev, b, b.next ) > 0 ); // special zero-length case
}
// signed area of a triangle
function three_module_area( p, q, r ) {
return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );
}
// check if two points are equal
function equals( p1, p2 ) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects( p1, q1, p2, q2 ) {
const o1 = sign( three_module_area( p1, q1, p2 ) );
const o2 = sign( three_module_area( p1, q1, q2 ) );
const o3 = sign( three_module_area( p2, q2, p1 ) );
const o4 = sign( three_module_area( p2, q2, q1 ) );
if ( o1 !== o2 && o3 !== o4 ) return true; // general case
if ( o1 === 0 && onSegment( p1, p2, q1 ) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if ( o2 === 0 && onSegment( p1, q2, q1 ) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if ( o3 === 0 && onSegment( p2, p1, q2 ) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if ( o4 === 0 && onSegment( p2, q1, q2 ) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
function onSegment( p, q, r ) {
return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y );
}
function sign( num ) {
return num > 0 ? 1 : num < 0 ? - 1 : 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon( a, b ) {
let p = a;
do {
if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
intersects( p, p.next, a, b ) ) return true;
p = p.next;
} while ( p !== a );
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside( a, b ) {
return three_module_area( a.prev, a, a.next ) < 0 ?
three_module_area( a, b, a.next ) >= 0 && three_module_area( a, a.prev, b ) >= 0 :
three_module_area( a, b, a.prev ) < 0 || three_module_area( a, a.next, b ) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside( a, b ) {
let p = a,
inside = false,
px = ( a.x + b.x ) / 2,
py = ( a.y + b.y ) / 2;
do {
if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) )
inside = ! inside;
p = p.next;
} while ( p !== a );
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon( a, b ) {
let a2 = new three_module_Node( a.i, a.x, a.y ),
b2 = new three_module_Node( b.i, b.x, b.y ),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode( i, x, y, last ) {
const p = new three_module_Node( i, x, y );
if ( ! last ) {
p.prev = p;
p.next = p;
} else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode( p ) {
p.next.prev = p.prev;
p.prev.next = p.next;
if ( p.prevZ ) p.prevZ.nextZ = p.nextZ;
if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;
}
function three_module_Node( i, x, y ) {
// vertex index in coordinates array
this.i = i;
// vertex coordinates
this.x = x;
this.y = y;
// previous and next vertex nodes in a polygon ring
this.prev = null;
this.next = null;
// z-order curve value
this.z = null;
// previous and next nodes in z-order
this.prevZ = null;
this.nextZ = null;
// indicates whether this is a steiner point
this.steiner = false;
}
function signedArea( data, start, end, dim ) {
let sum = 0;
for ( let i = start, j = end - dim; i < end; i += dim ) {
sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
j = i;
}
return sum;
}
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
const ShapeUtils = {
// calculate area of the contour polygon
area: function ( contour ) {
const n = contour.length;
let a = 0.0;
for ( let p = n - 1, q = 0; q < n; p = q ++ ) {
a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
}
return a * 0.5;
},
isClockWise: function ( pts ) {
return ShapeUtils.area( pts ) < 0;
},
triangulateShape: function ( contour, holes ) {
const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
const holeIndices = []; // array of hole indices
const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
removeDupEndPts( contour );
addContour( vertices, contour );
//
let holeIndex = contour.length;
holes.forEach( removeDupEndPts );
for ( let i = 0; i < holes.length; i ++ ) {
holeIndices.push( holeIndex );
holeIndex += holes[ i ].length;
addContour( vertices, holes[ i ] );
}
//
const triangles = Earcut.triangulate( vertices, holeIndices );
//
for ( let i = 0; i < triangles.length; i += 3 ) {
faces.push( triangles.slice( i, i + 3 ) );
}
return faces;
}
};
function removeDupEndPts( points ) {
const l = points.length;
if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {
points.pop();
}
}
function addContour( vertices, contour ) {
for ( let i = 0; i < contour.length; i ++ ) {
vertices.push( contour[ i ].x );
vertices.push( contour[ i ].y );
}
}
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
* depth: <float>, // Depth to extrude the shape
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into the original shape bevel goes
* bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
* bevelOffset: <float>, // how far from shape outline does bevel start
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.Curve> // curve to extrude shape along
*
* UVGenerator: <Object> // object that provides UV generator functions
*
* }
*/
// ExtrudeGeometry
function ExtrudeGeometry( shapes, options ) {
Geometry.call( this );
this.type = 'ExtrudeGeometry';
this.parameters = {
shapes: shapes,
options: options
};
this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
this.mergeVertices();
}
ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;
ExtrudeGeometry.prototype.toJSON = function () {
const data = Geometry.prototype.toJSON.call( this );
const shapes = this.parameters.shapes;
const options = this.parameters.options;
return toJSON( shapes, options, data );
};
// ExtrudeBufferGeometry
function ExtrudeBufferGeometry( shapes, options ) {
BufferGeometry.call( this );
this.type = 'ExtrudeBufferGeometry';
this.parameters = {
shapes: shapes,
options: options
};
shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
const scope = this;
const verticesArray = [];
const uvArray = [];
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
addShape( shape );
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );
this.computeVertexNormals();
// functions
function addShape( shape ) {
const placeholder = [];
// options
const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
const steps = options.steps !== undefined ? options.steps : 1;
let depth = options.depth !== undefined ? options.depth : 100;
let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
const extrudePath = options.extrudePath;
const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;
// deprecated options
if ( options.amount !== undefined ) {
console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' );
depth = options.amount;
}
//
let extrudePts, extrudeByPath = false;
let splineTube, binormal, normal, position2;
if ( extrudePath ) {
extrudePts = extrudePath.getSpacedPoints( steps );
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// TODO1 - have a .isClosed in spline?
splineTube = extrudePath.computeFrenetFrames( steps, false );
// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new Vector3();
normal = new Vector3();
position2 = new Vector3();
}
// Safeguards if bevels are not enabled
if ( ! bevelEnabled ) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
bevelOffset = 0;
}
// Variables initialization
const shapePoints = shape.extractPoints( curveSegments );
let vertices = shapePoints.shape;
const holes = shapePoints.holes;
const reverse = ! ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe ...
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
if ( ShapeUtils.isClockWise( ahole ) ) {
holes[ h ] = ahole.reverse();
}
}
}
const faces = ShapeUtils.triangulateShape( vertices, holes );
/* Vertices */
const contour = vertices; // vertices has all points but contour has only points of circumference
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
vertices = vertices.concat( ahole );
}
function scalePt2( pt, vec, size ) {
if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );
return vec.clone().multiplyScalar( size ).add( pt );
}
const vlen = vertices.length, flen = faces.length;
// Find directions for point movement
function getBevelVec( inPt, inPrev, inNext ) {
// computes for inPt the corresponding point inPt' on a new contour
// shifted by 1 unit (length of normalized vector) to the left
// if we walk along contour clockwise, this new contour is outside the old one
//
// inPt' is the intersection of the two lines parallel to the two
// adjacent edges of inPt at a distance of 1 unit on the left side.
let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
// good reading for geometry algorithms (here: line-line intersection)
// http://geomalgorithms.com/a05-_intersect-1.html
const v_prev_x = inPt.x - inPrev.x,
v_prev_y = inPt.y - inPrev.y;
const v_next_x = inNext.x - inPt.x,
v_next_y = inNext.y - inPt.y;
const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
// check for collinear edges
const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
if ( Math.abs( collinear0 ) > Number.EPSILON ) {
// not collinear
// length of vectors for normalizing
const v_prev_len = Math.sqrt( v_prev_lensq );
const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
// shift adjacent points by unit vectors to the left
const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
const ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
const ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
// scaling factor for v_prev to intersection point
const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
( v_prev_x * v_next_y - v_prev_y * v_next_x );
// vector from inPt to intersection point
v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
// Don't normalize!, otherwise sharp corners become ugly
// but prevent crazy spikes
const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
if ( v_trans_lensq <= 2 ) {
return new Vector2( v_trans_x, v_trans_y );
} else {
shrink_by = Math.sqrt( v_trans_lensq / 2 );
}
} else {
// handle special case of collinear edges
let direction_eq = false; // assumes: opposite
if ( v_prev_x > Number.EPSILON ) {
if ( v_next_x > Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( v_prev_x < - Number.EPSILON ) {
if ( v_next_x < - Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
direction_eq = true;
}
}
}
if ( direction_eq ) {
// console.log("Warning: lines are a straight sequence");
v_trans_x = - v_prev_y;
v_trans_y = v_prev_x;
shrink_by = Math.sqrt( v_prev_lensq );
} else {
// console.log("Warning: lines are a straight spike");
v_trans_x = v_prev_x;
v_trans_y = v_prev_y;
shrink_by = Math.sqrt( v_prev_lensq / 2 );
}
}
return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
}
const contourMovements = [];
for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
}
const holesMovements = [];
let oneHoleMovements, verticesMovements = contourMovements.concat();
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = [];
for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
}
holesMovements.push( oneHoleMovements );
verticesMovements = verticesMovements.concat( oneHoleMovements );
}
// Loop bevelSegments, 1 for the front, 1 for the back
for ( let b = 0; b < bevelSegments; b ++ ) {
//for ( b = bevelSegments; b > 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos( t * Math.PI / 2 );
const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
// contract shape
for ( let i = 0, il = contour.length; i < il; i ++ ) {
const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
// expand holes
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( let i = 0, il = ahole.length; i < il; i ++ ) {
const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
}
}
const bs = bevelSize + bevelOffset;
// Back facing vertices
for ( let i = 0; i < vlen; i ++ ) {
const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, 0 );
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
// Add stepped vertices...
// Including front facing vertices
for ( let s = 1; s <= steps; s ++ ) {
for ( let i = 0; i < vlen; i ++ ) {
const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, depth / steps * s );
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
}
// Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for ( let b = bevelSegments - 1; b >= 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos( t * Math.PI / 2 );
const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
// contract shape
for ( let i = 0, il = contour.length; i < il; i ++ ) {
const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, depth + z );
}
// expand holes
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( let i = 0, il = ahole.length; i < il; i ++ ) {
const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
if ( ! extrudeByPath ) {
v( vert.x, vert.y, depth + z );
} else {
v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
}
}
}
}
/* Faces */
// Top and bottom faces
buildLidFaces();
// Sides faces
buildSideFaces();
///// Internal functions
function buildLidFaces() {
const start = verticesArray.length / 3;
if ( bevelEnabled ) {
let layer = 0; // steps + 1
let offset = vlen * layer;
// Bottom faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
}
layer = steps + bevelSegments * 2;
offset = vlen * layer;
// Top faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
}
} else {
// Bottom faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 2 ], face[ 1 ], face[ 0 ] );
}
// Top faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
}
}
scope.addGroup( start, verticesArray.length / 3 - start, 0 );
}
// Create faces for the z-sides of the shape
function buildSideFaces() {
const start = verticesArray.length / 3;
let layeroffset = 0;
sidewalls( contour, layeroffset );
layeroffset += contour.length;
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
sidewalls( ahole, layeroffset );
//, true
layeroffset += ahole.length;
}
scope.addGroup( start, verticesArray.length / 3 - start, 1 );
}
function sidewalls( contour, layeroffset ) {
let i = contour.length;
while ( -- i >= 0 ) {
const j = i;
let k = i - 1;
if ( k < 0 ) k = contour.length - 1;
//console.log('b', i,j, i-1, k,vertices.length);
for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) {
const slen1 = vlen * s;
const slen2 = vlen * ( s + 1 );
const a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4( a, b, c, d );
}
}
}
function v( x, y, z ) {
placeholder.push( x );
placeholder.push( y );
placeholder.push( z );
}
function f3( a, b, c ) {
addVertex( a );
addVertex( b );
addVertex( c );
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
addUV( uvs[ 0 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 2 ] );
}
function f4( a, b, c, d ) {
addVertex( a );
addVertex( b );
addVertex( d );
addVertex( b );
addVertex( c );
addVertex( d );
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
addUV( uvs[ 0 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 3 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 2 ] );
addUV( uvs[ 3 ] );
}
function addVertex( index ) {
verticesArray.push( placeholder[ index * 3 + 0 ] );
verticesArray.push( placeholder[ index * 3 + 1 ] );
verticesArray.push( placeholder[ index * 3 + 2 ] );
}
function addUV( vector2 ) {
uvArray.push( vector2.x );
uvArray.push( vector2.y );
}
}
}
ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;
ExtrudeBufferGeometry.prototype.toJSON = function () {
const data = BufferGeometry.prototype.toJSON.call( this );
const shapes = this.parameters.shapes;
const options = this.parameters.options;
return toJSON( shapes, options, data );
};
//
const WorldUVGenerator = {
generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {
const a_x = vertices[ indexA * 3 ];
const a_y = vertices[ indexA * 3 + 1 ];
const b_x = vertices[ indexB * 3 ];
const b_y = vertices[ indexB * 3 + 1 ];
const c_x = vertices[ indexC * 3 ];
const c_y = vertices[ indexC * 3 + 1 ];
return [
new Vector2( a_x, a_y ),
new Vector2( b_x, b_y ),
new Vector2( c_x, c_y )
];
},
generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {
const a_x = vertices[ indexA * 3 ];
const a_y = vertices[ indexA * 3 + 1 ];
const a_z = vertices[ indexA * 3 + 2 ];
const b_x = vertices[ indexB * 3 ];
const b_y = vertices[ indexB * 3 + 1 ];
const b_z = vertices[ indexB * 3 + 2 ];
const c_x = vertices[ indexC * 3 ];
const c_y = vertices[ indexC * 3 + 1 ];
const c_z = vertices[ indexC * 3 + 2 ];
const d_x = vertices[ indexD * 3 ];
const d_y = vertices[ indexD * 3 + 1 ];
const d_z = vertices[ indexD * 3 + 2 ];
if ( Math.abs( a_y - b_y ) < 0.01 ) {
return [
new Vector2( a_x, 1 - a_z ),
new Vector2( b_x, 1 - b_z ),
new Vector2( c_x, 1 - c_z ),
new Vector2( d_x, 1 - d_z )
];
} else {
return [
new Vector2( a_y, 1 - a_z ),
new Vector2( b_y, 1 - b_z ),
new Vector2( c_y, 1 - c_z ),
new Vector2( d_y, 1 - d_z )
];
}
}
};
function toJSON( shapes, options, data ) {
//
data.shapes = [];
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
data.shapes.push( shape.uuid );
}
} else {
data.shapes.push( shapes.uuid );
}
//
if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON();
return data;
}
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author alteredq / http://alteredqualia.com/
*
* Text = 3D Text
*
* parameters = {
* font: <THREE.Font>, // font
*
* size: <float>, // size of the text
* height: <float>, // thickness to extrude text
* curveSegments: <int>, // number of points on the curves
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into text bevel goes
* bevelSize: <float>, // how far from text outline (including bevelOffset) is bevel
* bevelOffset: <float> // how far from text outline does bevel start
* }
*/
// TextGeometry
function TextGeometry( text, parameters ) {
Geometry.call( this );
this.type = 'TextGeometry';
this.parameters = {
text: text,
parameters: parameters
};
this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
this.mergeVertices();
}
TextGeometry.prototype = Object.create( Geometry.prototype );
TextGeometry.prototype.constructor = TextGeometry;
// TextBufferGeometry
function TextBufferGeometry( text, parameters ) {
parameters = parameters || {};
const font = parameters.font;
if ( ! ( font && font.isFont ) ) {
console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
return new Geometry();
}
const shapes = font.generateShapes( text, parameters.size );
// translate parameters to ExtrudeGeometry API
parameters.depth = parameters.height !== undefined ? parameters.height : 50;
// defaults
if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;
ExtrudeBufferGeometry.call( this, shapes, parameters );
this.type = 'TextBufferGeometry';
}
TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
TextBufferGeometry.prototype.constructor = TextBufferGeometry;
/**
* @author mrdoob / http://mrdoob.com/
* @author benaadams / https://twitter.com/ben_a_adams
* @author Mugen87 / https://github.com/Mugen87
*/
// SphereGeometry
function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
Geometry.call( this );
this.type = 'SphereGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
this.mergeVertices();
}
SphereGeometry.prototype = Object.create( Geometry.prototype );
SphereGeometry.prototype.constructor = SphereGeometry;
// SphereBufferGeometry
function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
BufferGeometry.call( this );
this.type = 'SphereBufferGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
radius = radius || 1;
widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );
phiStart = phiStart !== undefined ? phiStart : 0;
phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;
const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI );
let index = 0;
const grid = [];
const vertex = new Vector3();
const normal = new Vector3();
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// generate vertices, normals and uvs
for ( let iy = 0; iy <= heightSegments; iy ++ ) {
const verticesRow = [];
const v = iy / heightSegments;
// special case for the poles
let uOffset = 0;
if ( iy == 0 && thetaStart == 0 ) {
uOffset = 0.5 / widthSegments;
} else if ( iy == heightSegments && thetaEnd == Math.PI ) {
uOffset = - 0.5 / widthSegments;
}
for ( let ix = 0; ix <= widthSegments; ix ++ ) {
const u = ix / widthSegments;
// vertex
vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normal.copy( vertex ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u + uOffset, 1 - v );
verticesRow.push( index ++ );
}
grid.push( verticesRow );
}
// indices
for ( let iy = 0; iy < heightSegments; iy ++ ) {
for ( let ix = 0; ix < widthSegments; ix ++ ) {
const a = grid[ iy ][ ix + 1 ];
const b = grid[ iy ][ ix ];
const c = grid[ iy + 1 ][ ix ];
const d = grid[ iy + 1 ][ ix + 1 ];
if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;
/**
* @author Kaleb Murphy
* @author Mugen87 / https://github.com/Mugen87
*/
// RingGeometry
function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
Geometry.call( this );
this.type = 'RingGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
this.mergeVertices();
}
RingGeometry.prototype = Object.create( Geometry.prototype );
RingGeometry.prototype.constructor = RingGeometry;
// RingBufferGeometry
function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
BufferGeometry.call( this );
this.type = 'RingBufferGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
innerRadius = innerRadius || 0.5;
outerRadius = outerRadius || 1;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// some helper variables
let radius = innerRadius;
const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
const vertex = new Vector3();
const uv = new Vector2();
// generate vertices, normals and uvs
for ( let j = 0; j <= phiSegments; j ++ ) {
for ( let i = 0; i <= thetaSegments; i ++ ) {
// values are generate from the inside of the ring to the outside
const segment = thetaStart + i / thetaSegments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, 0, 1 );
// uv
uv.x = ( vertex.x / outerRadius + 1 ) / 2;
uv.y = ( vertex.y / outerRadius + 1 ) / 2;
uvs.push( uv.x, uv.y );
}
// increase the radius for next row of vertices
radius += radiusStep;
}
// indices
for ( let j = 0; j < phiSegments; j ++ ) {
const thetaSegmentLevel = j * ( thetaSegments + 1 );
for ( let i = 0; i < thetaSegments; i ++ ) {
const segment = i + thetaSegmentLevel;
const a = segment;
const b = segment + thetaSegments + 1;
const c = segment + thetaSegments + 2;
const d = segment + 1;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
RingBufferGeometry.prototype.constructor = RingBufferGeometry;
/**
* @author zz85 / https://github.com/zz85
* @author bhouston / http://clara.io
* @author Mugen87 / https://github.com/Mugen87
*/
// LatheGeometry
function LatheGeometry( points, segments, phiStart, phiLength ) {
Geometry.call( this );
this.type = 'LatheGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
this.mergeVertices();
}
LatheGeometry.prototype = Object.create( Geometry.prototype );
LatheGeometry.prototype.constructor = LatheGeometry;
// LatheBufferGeometry
function LatheBufferGeometry( points, segments, phiStart, phiLength ) {
BufferGeometry.call( this );
this.type = 'LatheBufferGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
segments = Math.floor( segments ) || 12;
phiStart = phiStart || 0;
phiLength = phiLength || Math.PI * 2;
// clamp phiLength so it's in range of [ 0, 2PI ]
phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 );
// buffers
const indices = [];
const vertices = [];
const uvs = [];
// helper variables
const inverseSegments = 1.0 / segments;
const vertex = new Vector3();
const uv = new Vector2();
// generate vertices and uvs
for ( let i = 0; i <= segments; i ++ ) {
const phi = phiStart + i * inverseSegments * phiLength;
const sin = Math.sin( phi );
const cos = Math.cos( phi );
for ( let j = 0; j <= ( points.length - 1 ); j ++ ) {
// vertex
vertex.x = points[ j ].x * sin;
vertex.y = points[ j ].y;
vertex.z = points[ j ].x * cos;
vertices.push( vertex.x, vertex.y, vertex.z );
// uv
uv.x = i / segments;
uv.y = j / ( points.length - 1 );
uvs.push( uv.x, uv.y );
}
}
// indices
for ( let i = 0; i < segments; i ++ ) {
for ( let j = 0; j < ( points.length - 1 ); j ++ ) {
const base = j + i * points.length;
const a = base;
const b = base + points.length;
const c = base + points.length + 1;
const d = base + 1;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// generate normals
this.computeVertexNormals();
// if the geometry is closed, we need to average the normals along the seam.
// because the corresponding vertices are identical (but still have different UVs).
if ( phiLength === Math.PI * 2 ) {
const normals = this.attributes.normal.array;
const n1 = new Vector3();
const n2 = new Vector3();
const n = new Vector3();
// this is the buffer offset for the last line of vertices
const base = segments * points.length * 3;
for ( let i = 0, j = 0; i < points.length; i ++, j += 3 ) {
// select the normal of the vertex in the first line
n1.x = normals[ j + 0 ];
n1.y = normals[ j + 1 ];
n1.z = normals[ j + 2 ];
// select the normal of the vertex in the last line
n2.x = normals[ base + j + 0 ];
n2.y = normals[ base + j + 1 ];
n2.z = normals[ base + j + 2 ];
// average normals
n.addVectors( n1, n2 ).normalize();
// assign the new values to both normals
normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;
}
}
}
LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;
/**
* @author jonobr1 / http://jonobr1.com
* @author Mugen87 / https://github.com/Mugen87
*/
// ShapeGeometry
function ShapeGeometry( shapes, curveSegments ) {
Geometry.call( this );
this.type = 'ShapeGeometry';
if ( typeof curveSegments === 'object' ) {
console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );
curveSegments = curveSegments.curveSegments;
}
this.parameters = {
shapes: shapes,
curveSegments: curveSegments
};
this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
this.mergeVertices();
}
ShapeGeometry.prototype = Object.create( Geometry.prototype );
ShapeGeometry.prototype.constructor = ShapeGeometry;
ShapeGeometry.prototype.toJSON = function () {
const data = Geometry.prototype.toJSON.call( this );
const shapes = this.parameters.shapes;
return toJSON$1( shapes, data );
};
// ShapeBufferGeometry
function ShapeBufferGeometry( shapes, curveSegments ) {
BufferGeometry.call( this );
this.type = 'ShapeBufferGeometry';
this.parameters = {
shapes: shapes,
curveSegments: curveSegments
};
curveSegments = curveSegments || 12;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let groupStart = 0;
let groupCount = 0;
// allow single and array values for "shapes" parameter
if ( Array.isArray( shapes ) === false ) {
addShape( shapes );
} else {
for ( let i = 0; i < shapes.length; i ++ ) {
addShape( shapes[ i ] );
this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support
groupStart += groupCount;
groupCount = 0;
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// helper functions
function addShape( shape ) {
const indexOffset = vertices.length / 3;
const points = shape.extractPoints( curveSegments );
let shapeVertices = points.shape;
const shapeHoles = points.holes;
// check direction of vertices
if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {
shapeVertices = shapeVertices.reverse();
}
for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {
const shapeHole = shapeHoles[ i ];
if ( ShapeUtils.isClockWise( shapeHole ) === true ) {
shapeHoles[ i ] = shapeHole.reverse();
}
}
const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );
// join vertices of inner and outer paths to a single array
for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {
const shapeHole = shapeHoles[ i ];
shapeVertices = shapeVertices.concat( shapeHole );
}
// vertices, normals, uvs
for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) {
const vertex = shapeVertices[ i ];
vertices.push( vertex.x, vertex.y, 0 );
normals.push( 0, 0, 1 );
uvs.push( vertex.x, vertex.y ); // world uvs
}
// incides
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const face = faces[ i ];
const a = face[ 0 ] + indexOffset;
const b = face[ 1 ] + indexOffset;
const c = face[ 2 ] + indexOffset;
indices.push( a, b, c );
groupCount += 3;
}
}
}
ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;
ShapeBufferGeometry.prototype.toJSON = function () {
const data = BufferGeometry.prototype.toJSON.call( this );
const shapes = this.parameters.shapes;
return toJSON$1( shapes, data );
};
//
function toJSON$1( shapes, data ) {
data.shapes = [];
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
data.shapes.push( shape.uuid );
}
} else {
data.shapes.push( shapes.uuid );
}
return data;
}
/**
* @author WestLangley / http://github.com/WestLangley
* @author Mugen87 / https://github.com/Mugen87
*/
function EdgesGeometry( geometry, thresholdAngle ) {
BufferGeometry.call( this );
this.type = 'EdgesGeometry';
this.parameters = {
thresholdAngle: thresholdAngle
};
thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;
// buffer
const vertices = [];
// helper variables
const thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle );
const edge = [ 0, 0 ], edges = {};
let edge1, edge2, key;
const keys = [ 'a', 'b', 'c' ];
// prepare source geometry
let geometry2;
if ( geometry.isBufferGeometry ) {
geometry2 = new Geometry();
geometry2.fromBufferGeometry( geometry );
} else {
geometry2 = geometry.clone();
}
geometry2.mergeVertices();
geometry2.computeFaceNormals();
const sourceVertices = geometry2.vertices;
const faces = geometry2.faces;
// now create a data structure where each entry represents an edge with its adjoining faces
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const face = faces[ i ];
for ( let j = 0; j < 3; j ++ ) {
edge1 = face[ keys[ j ] ];
edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
edge[ 0 ] = Math.min( edge1, edge2 );
edge[ 1 ] = Math.max( edge1, edge2 );
key = edge[ 0 ] + ',' + edge[ 1 ];
if ( edges[ key ] === undefined ) {
edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };
} else {
edges[ key ].face2 = i;
}
}
}
// generate vertices
for ( key in edges ) {
const e = edges[ key ];
// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.
if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {
let vertex = sourceVertices[ e.index1 ];
vertices.push( vertex.x, vertex.y, vertex.z );
vertex = sourceVertices[ e.index2 ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
EdgesGeometry.prototype.constructor = EdgesGeometry;
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
// CylinderGeometry
function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
Geometry.call( this );
this.type = 'CylinderGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
this.mergeVertices();
}
CylinderGeometry.prototype = Object.create( Geometry.prototype );
CylinderGeometry.prototype.constructor = CylinderGeometry;
// CylinderBufferGeometry
function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
BufferGeometry.call( this );
this.type = 'CylinderBufferGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
const scope = this;
radiusTop = radiusTop !== undefined ? radiusTop : 1;
radiusBottom = radiusBottom !== undefined ? radiusBottom : 1;
height = height || 1;
radialSegments = Math.floor( radialSegments ) || 8;
heightSegments = Math.floor( heightSegments ) || 1;
openEnded = openEnded !== undefined ? openEnded : false;
thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let index = 0;
const indexArray = [];
const halfHeight = height / 2;
let groupStart = 0;
// generate geometry
generateTorso();
if ( openEnded === false ) {
if ( radiusTop > 0 ) generateCap( true );
if ( radiusBottom > 0 ) generateCap( false );
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function generateTorso() {
const normal = new Vector3();
const vertex = new Vector3();
let groupCount = 0;
// this will be used to calculate the normal
const slope = ( radiusBottom - radiusTop ) / height;
// generate vertices, normals and uvs
for ( let y = 0; y <= heightSegments; y ++ ) {
const indexRow = [];
const v = y / heightSegments;
// calculate the radius of the current row
const radius = v * ( radiusBottom - radiusTop ) + radiusTop;
for ( let x = 0; x <= radialSegments; x ++ ) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const sinTheta = Math.sin( theta );
const cosTheta = Math.cos( theta );
// vertex
vertex.x = radius * sinTheta;
vertex.y = - v * height + halfHeight;
vertex.z = radius * cosTheta;
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normal.set( sinTheta, slope, cosTheta ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u, 1 - v );
// save index of vertex in respective row
indexRow.push( index ++ );
}
// now save vertices of the row in our index array
indexArray.push( indexRow );
}
// generate indices
for ( let x = 0; x < radialSegments; x ++ ) {
for ( let y = 0; y < heightSegments; y ++ ) {
// we use the index array to access the correct indices
const a = indexArray[ y ][ x ];
const b = indexArray[ y + 1 ][ x ];
const c = indexArray[ y + 1 ][ x + 1 ];
const d = indexArray[ y ][ x + 1 ];
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// update group counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, 0 );
// calculate new start value for groups
groupStart += groupCount;
}
function generateCap( top ) {
let centerIndexStart, centerIndexEnd;
const uv = new Vector2();
const vertex = new Vector3();
let groupCount = 0;
const radius = ( top === true ) ? radiusTop : radiusBottom;
const sign = ( top === true ) ? 1 : - 1;
// save the index of the first center vertex
centerIndexStart = index;
// first we generate the center vertex data of the cap.
// because the geometry needs one set of uvs per face,
// we must generate a center vertex per face/segment
for ( let x = 1; x <= radialSegments; x ++ ) {
// vertex
vertices.push( 0, halfHeight * sign, 0 );
// normal
normals.push( 0, sign, 0 );
// uv
uvs.push( 0.5, 0.5 );
// increase index
index ++;
}
// save the index of the last center vertex
centerIndexEnd = index;
// now we generate the surrounding vertices, normals and uvs
for ( let x = 0; x <= radialSegments; x ++ ) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const cosTheta = Math.cos( theta );
const sinTheta = Math.sin( theta );
// vertex
vertex.x = radius * sinTheta;
vertex.y = halfHeight * sign;
vertex.z = radius * cosTheta;
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, sign, 0 );
// uv
uv.x = ( cosTheta * 0.5 ) + 0.5;
uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
uvs.push( uv.x, uv.y );
// increase index
index ++;
}
// generate indices
for ( let x = 0; x < radialSegments; x ++ ) {
const c = centerIndexStart + x;
const i = centerIndexEnd + x;
if ( top === true ) {
// face top
indices.push( i, i + 1, c );
} else {
// face bottom
indices.push( i + 1, i, c );
}
groupCount += 3;
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
// calculate new start value for groups
groupStart += groupCount;
}
}
CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;
/**
* @author abelnation / http://github.com/abelnation
*/
// ConeGeometry
function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
this.type = 'ConeGeometry';
this.parameters = {
radius: radius,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
}
ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
ConeGeometry.prototype.constructor = ConeGeometry;
// ConeBufferGeometry
function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
this.type = 'ConeBufferGeometry';
this.parameters = {
radius: radius,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
}
ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;
/**
* @author benaadams / https://twitter.com/ben_a_adams
* @author Mugen87 / https://github.com/Mugen87
* @author hughes
*/
// CircleGeometry
function CircleGeometry( radius, segments, thetaStart, thetaLength ) {
Geometry.call( this );
this.type = 'CircleGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
this.mergeVertices();
}
CircleGeometry.prototype = Object.create( Geometry.prototype );
CircleGeometry.prototype.constructor = CircleGeometry;
// CircleBufferGeometry
function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {
BufferGeometry.call( this );
this.type = 'CircleBufferGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
radius = radius || 1;
segments = segments !== undefined ? Math.max( 3, segments ) : 8;
thetaStart = thetaStart !== undefined ? thetaStart : 0;
thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const uv = new Vector2();
// center point
vertices.push( 0, 0, 0 );
normals.push( 0, 0, 1 );
uvs.push( 0.5, 0.5 );
for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) {
const segment = thetaStart + s / segments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, 0, 1 );
// uvs
uv.x = ( vertices[ i ] / radius + 1 ) / 2;
uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;
uvs.push( uv.x, uv.y );
}
// indices
for ( let i = 1; i <= segments; i ++ ) {
indices.push( i, i + 1, 0 );
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;
var Geometries = /*#__PURE__*/Object.freeze({
__proto__: null,
WireframeGeometry: WireframeGeometry,
ParametricGeometry: ParametricGeometry,
ParametricBufferGeometry: ParametricBufferGeometry,
TetrahedronGeometry: TetrahedronGeometry,
TetrahedronBufferGeometry: TetrahedronBufferGeometry,
OctahedronGeometry: OctahedronGeometry,
OctahedronBufferGeometry: OctahedronBufferGeometry,
IcosahedronGeometry: IcosahedronGeometry,
IcosahedronBufferGeometry: IcosahedronBufferGeometry,
DodecahedronGeometry: DodecahedronGeometry,
DodecahedronBufferGeometry: DodecahedronBufferGeometry,
PolyhedronGeometry: PolyhedronGeometry,
PolyhedronBufferGeometry: PolyhedronBufferGeometry,
TubeGeometry: TubeGeometry,
TubeBufferGeometry: TubeBufferGeometry,
TorusKnotGeometry: TorusKnotGeometry,
TorusKnotBufferGeometry: TorusKnotBufferGeometry,
TorusGeometry: TorusGeometry,
TorusBufferGeometry: TorusBufferGeometry,
TextGeometry: TextGeometry,
TextBufferGeometry: TextBufferGeometry,
SphereGeometry: SphereGeometry,
SphereBufferGeometry: SphereBufferGeometry,
RingGeometry: RingGeometry,
RingBufferGeometry: RingBufferGeometry,
PlaneGeometry: PlaneGeometry,
PlaneBufferGeometry: PlaneBufferGeometry,
LatheGeometry: LatheGeometry,
LatheBufferGeometry: LatheBufferGeometry,
ShapeGeometry: ShapeGeometry,
ShapeBufferGeometry: ShapeBufferGeometry,
ExtrudeGeometry: ExtrudeGeometry,
ExtrudeBufferGeometry: ExtrudeBufferGeometry,
EdgesGeometry: EdgesGeometry,
ConeGeometry: ConeGeometry,
ConeBufferGeometry: ConeBufferGeometry,
CylinderGeometry: CylinderGeometry,
CylinderBufferGeometry: CylinderBufferGeometry,
CircleGeometry: CircleGeometry,
CircleBufferGeometry: CircleBufferGeometry,
BoxGeometry: BoxGeometry,
BoxBufferGeometry: BoxBufferGeometry
});
/**
* @author mrdoob / http://mrdoob.com/
*
* parameters = {
* color: <THREE.Color>
* }
*/
function ShadowMaterial( parameters ) {
Material.call( this );
this.type = 'ShadowMaterial';
this.color = new Color( 0x000000 );
this.transparent = true;
this.setValues( parameters );
}
ShadowMaterial.prototype = Object.create( Material.prototype );
ShadowMaterial.prototype.constructor = ShadowMaterial;
ShadowMaterial.prototype.isShadowMaterial = true;
ShadowMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function RawShaderMaterial( parameters ) {
ShaderMaterial.call( this, parameters );
this.type = 'RawShaderMaterial';
}
RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
RawShaderMaterial.prototype.constructor = RawShaderMaterial;
RawShaderMaterial.prototype.isRawShaderMaterial = true;
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* color: <hex>,
* roughness: <float>,
* metalness: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* roughnessMap: new THREE.Texture( <Image> ),
*
* metalnessMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* envMapIntensity: <float>
*
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshStandardMaterial( parameters ) {
Material.call( this );
this.defines = { 'STANDARD': '' };
this.type = 'MeshStandardMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.roughness = 1.0;
this.metalness = 0.0;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.roughnessMap = null;
this.metalnessMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapIntensity = 1.0;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.vertexTangents = false;
this.setValues( parameters );
}
MeshStandardMaterial.prototype = Object.create( Material.prototype );
MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;
MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
MeshStandardMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.defines = { 'STANDARD': '' };
this.color.copy( source.color );
this.roughness = source.roughness;
this.metalness = source.metalness;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.roughnessMap = source.roughnessMap;
this.metalnessMap = source.metalnessMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapIntensity = source.envMapIntensity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.vertexTangents = source.vertexTangents;
return this;
};
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* clearcoat: <float>,
* clearcoatMap: new THREE.Texture( <Image> ),
* clearcoatRoughness: <float>,
* clearcoatRoughnessMap: new THREE.Texture( <Image> ),
* clearcoatNormalScale: <Vector2>,
* clearcoatNormalMap: new THREE.Texture( <Image> ),
*
* reflectivity: <float>,
*
* sheen: <Color>,
*
* transparency: <float>
* }
*/
function MeshPhysicalMaterial( parameters ) {
MeshStandardMaterial.call( this );
this.defines = {
'STANDARD': '',
'PHYSICAL': ''
};
this.type = 'MeshPhysicalMaterial';
this.clearcoat = 0.0;
this.clearcoatMap = null;
this.clearcoatRoughness = 0.0;
this.clearcoatRoughnessMap = null;
this.clearcoatNormalScale = new Vector2( 1, 1 );
this.clearcoatNormalMap = null;
this.reflectivity = 0.5; // maps to F0 = 0.04
this.sheen = null; // null will disable sheen bsdf
this.transparency = 0.0;
this.setValues( parameters );
}
MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;
MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
MeshPhysicalMaterial.prototype.copy = function ( source ) {
MeshStandardMaterial.prototype.copy.call( this, source );
this.defines = {
'STANDARD': '',
'PHYSICAL': ''
};
this.clearcoat = source.clearcoat;
this.clearcoatMap = source.clearcoatMap;
this.clearcoatRoughness = source.clearcoatRoughness;
this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
this.clearcoatNormalMap = source.clearcoatNormalMap;
this.clearcoatNormalScale.copy( source.clearcoatNormalScale );
this.reflectivity = source.reflectivity;
if ( source.sheen ) {
this.sheen = ( this.sheen || new Color() ).copy( source.sheen );
} else {
this.sheen = null;
}
this.transparency = source.transparency;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.MultiplyOperation,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshPhongMaterial( parameters ) {
Material.call( this );
this.type = 'MeshPhongMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.specular = new Color( 0x111111 );
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshPhongMaterial.prototype = Object.create( Material.prototype );
MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;
MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
MeshPhongMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.specular.copy( source.specular );
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author takahirox / http://github.com/takahirox
*
* parameters = {
* color: <hex>,
*
* map: new THREE.Texture( <Image> ),
* gradientMap: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* alphaMap: new THREE.Texture( <Image> ),
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshToonMaterial( parameters ) {
Material.call( this );
this.defines = { 'TOON': '' };
this.type = 'MeshToonMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.gradientMap = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.alphaMap = null;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshToonMaterial.prototype = Object.create( Material.prototype );
MeshToonMaterial.prototype.constructor = MeshToonMaterial;
MeshToonMaterial.prototype.isMeshToonMaterial = true;
MeshToonMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.gradientMap = source.gradientMap;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.alphaMap = source.alphaMap;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* opacity: <float>,
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshNormalMaterial( parameters ) {
Material.call( this );
this.type = 'MeshNormalMaterial';
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshNormalMaterial.prototype = Object.create( Material.prototype );
MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;
MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
MeshNormalMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshLambertMaterial( parameters ) {
Material.call( this );
this.type = 'MeshLambertMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshLambertMaterial.prototype = Object.create( Material.prototype );
MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;
MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
MeshLambertMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author WestLangley / http://github.com/WestLangley
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* matcap: new THREE.Texture( <Image> ),
*
* map: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* alphaMap: new THREE.Texture( <Image> ),
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshMatcapMaterial( parameters ) {
Material.call( this );
this.defines = { 'MATCAP': '' };
this.type = 'MeshMatcapMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.matcap = null;
this.map = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.alphaMap = null;
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshMatcapMaterial.prototype = Object.create( Material.prototype );
MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial;
MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
MeshMatcapMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.defines = { 'MATCAP': '' };
this.color.copy( source.color );
this.matcap = source.matcap;
this.map = source.map;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.alphaMap = source.alphaMap;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
*
* scale: <float>,
* dashSize: <float>,
* gapSize: <float>
* }
*/
function LineDashedMaterial( parameters ) {
LineBasicMaterial.call( this );
this.type = 'LineDashedMaterial';
this.scale = 1;
this.dashSize = 3;
this.gapSize = 1;
this.setValues( parameters );
}
LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype );
LineDashedMaterial.prototype.constructor = LineDashedMaterial;
LineDashedMaterial.prototype.isLineDashedMaterial = true;
LineDashedMaterial.prototype.copy = function ( source ) {
LineBasicMaterial.prototype.copy.call( this, source );
this.scale = source.scale;
this.dashSize = source.dashSize;
this.gapSize = source.gapSize;
return this;
};
var Materials = /*#__PURE__*/Object.freeze({
__proto__: null,
ShadowMaterial: ShadowMaterial,
SpriteMaterial: SpriteMaterial,
RawShaderMaterial: RawShaderMaterial,
ShaderMaterial: ShaderMaterial,
PointsMaterial: PointsMaterial,
MeshPhysicalMaterial: MeshPhysicalMaterial,
MeshStandardMaterial: MeshStandardMaterial,
MeshPhongMaterial: MeshPhongMaterial,
MeshToonMaterial: MeshToonMaterial,
MeshNormalMaterial: MeshNormalMaterial,
MeshLambertMaterial: MeshLambertMaterial,
MeshDepthMaterial: MeshDepthMaterial,
MeshDistanceMaterial: MeshDistanceMaterial,
MeshBasicMaterial: MeshBasicMaterial,
MeshMatcapMaterial: MeshMatcapMaterial,
LineDashedMaterial: LineDashedMaterial,
LineBasicMaterial: LineBasicMaterial,
Material: Material
});
/**
* @author tschw
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
const AnimationUtils = {
// same as Array.prototype.slice, but also works on typed arrays
arraySlice: function ( array, from, to ) {
if ( AnimationUtils.isTypedArray( array ) ) {
// in ios9 array.subarray(from, undefined) will return empty array
// but array.subarray(from) or array.subarray(from, len) is correct
return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );
}
return array.slice( from, to );
},
// converts an array to a specific type
convertArray: function ( array, type, forceClone ) {
if ( ! array || // let 'undefined' and 'null' pass
! forceClone && array.constructor === type ) return array;
if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
return new type( array ); // create typed array
}
return Array.prototype.slice.call( array ); // create Array
},
isTypedArray: function ( object ) {
return ArrayBuffer.isView( object ) &&
! ( object instanceof DataView );
},
// returns an array by which times and values can be sorted
getKeyframeOrder: function ( times ) {
function compareTime( i, j ) {
return times[ i ] - times[ j ];
}
const n = times.length;
const result = new Array( n );
for ( let i = 0; i !== n; ++ i ) result[ i ] = i;
result.sort( compareTime );
return result;
},
// uses the array previously returned by 'getKeyframeOrder' to sort data
sortedArray: function ( values, stride, order ) {
const nValues = values.length;
const result = new values.constructor( nValues );
for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
const srcOffset = order[ i ] * stride;
for ( let j = 0; j !== stride; ++ j ) {
result[ dstOffset ++ ] = values[ srcOffset + j ];
}
}
return result;
},
// function for parsing AOS keyframe formats
flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {
let i = 1, key = jsonKeys[ 0 ];
while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
key = jsonKeys[ i ++ ];
}
if ( key === undefined ) return; // no data
let value = key[ valuePropertyName ];
if ( value === undefined ) return; // no data
if ( Array.isArray( value ) ) {
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push.apply( values, value ); // push all elements
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else if ( value.toArray !== undefined ) {
// ...assume THREE.Math-ish
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
value.toArray( values, values.length );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else {
// otherwise push as-is
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push( value );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
}
},
subclip: function ( sourceClip, name, startFrame, endFrame, fps ) {
fps = fps || 30;
const clip = sourceClip.clone();
clip.name = name;
const tracks = [];
for ( let i = 0; i < clip.tracks.length; ++ i ) {
const track = clip.tracks[ i ];
const valueSize = track.getValueSize();
const times = [];
const values = [];
for ( let j = 0; j < track.times.length; ++ j ) {
const frame = track.times[ j ] * fps;
if ( frame < startFrame || frame >= endFrame ) continue;
times.push( track.times[ j ] );
for ( let k = 0; k < valueSize; ++ k ) {
values.push( track.values[ j * valueSize + k ] );
}
}
if ( times.length === 0 ) continue;
track.times = AnimationUtils.convertArray( times, track.times.constructor );
track.values = AnimationUtils.convertArray( values, track.values.constructor );
tracks.push( track );
}
clip.tracks = tracks;
// find minimum .times value across all tracks in the trimmed clip
let minStartTime = Infinity;
for ( let i = 0; i < clip.tracks.length; ++ i ) {
if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) {
minStartTime = clip.tracks[ i ].times[ 0 ];
}
}
// shift all tracks such that clip begins at t=0
for ( let i = 0; i < clip.tracks.length; ++ i ) {
clip.tracks[ i ].shift( - 1 * minStartTime );
}
clip.resetDuration();
return clip;
},
makeClipAdditive: function ( targetClip, referenceFrame, referenceClip, fps ) {
if ( referenceFrame === undefined ) referenceFrame = 0;
if ( referenceClip === undefined ) referenceClip = targetClip;
if ( fps === undefined || fps <= 0 ) fps = 30;
const numTracks = targetClip.tracks.length;
const referenceTime = referenceFrame / fps;
// Make each track's values relative to the values at the reference frame
for ( let i = 0; i < numTracks; ++ i ) {
const referenceTrack = referenceClip.tracks[ i ];
const referenceTrackType = referenceTrack.ValueTypeName;
// Skip this track if it's non-numeric
if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) continue;
// Find the track in the target clip whose name and type matches the reference track
const targetTrack = targetClip.tracks.find( function ( track ) {
return track.name === referenceTrack.name
&& track.ValueTypeName === referenceTrackType;
} );
if ( targetTrack === undefined ) continue;
const valueSize = referenceTrack.getValueSize();
const lastIndex = referenceTrack.times.length - 1;
let referenceValue;
// Find the value to subtract out of the track
if ( referenceTime <= referenceTrack.times[ 0 ] ) {
// Reference frame is earlier than the first keyframe, so just use the first keyframe
referenceValue = AnimationUtils.arraySlice( referenceTrack.values, 0, referenceTrack.valueSize );
} else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) {
// Reference frame is after the last keyframe, so just use the last keyframe
const startIndex = lastIndex * valueSize;
referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex );
} else {
// Interpolate to the reference value
const interpolant = referenceTrack.createInterpolant();
interpolant.evaluate( referenceTime );
referenceValue = interpolant.resultBuffer;
}
// Conjugate the quaternion
if ( referenceTrackType === 'quaternion' ) {
const referenceQuat = new Quaternion(
referenceValue[ 0 ],
referenceValue[ 1 ],
referenceValue[ 2 ],
referenceValue[ 3 ]
).normalize().conjugate();
referenceQuat.toArray( referenceValue );
}
// Subtract the reference value from all of the track values
const numTimes = targetTrack.times.length;
for ( let j = 0; j < numTimes; ++ j ) {
const valueStart = j * valueSize;
if ( referenceTrackType === 'quaternion' ) {
// Multiply the conjugate for quaternion track types
Quaternion.multiplyQuaternionsFlat(
targetTrack.values,
valueStart,
referenceValue,
0,
targetTrack.values,
valueStart
);
} else {
// Subtract each value for all other numeric track types
for ( let k = 0; k < valueSize; ++ k ) {
targetTrack.values[ valueStart + k ] -= referenceValue[ k ];
}
}
}
}
targetClip.blendMode = AdditiveAnimationBlendMode;
return targetClip;
}
};
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
* @author tschw
*/
function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ?
resultBuffer : new sampleValues.constructor( sampleSize );
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
}
Object.assign( Interpolant.prototype, {
evaluate: function ( t ) {
let pp = this.parameterPositions,
i1 = this._cachedIndex,
t1 = pp[ i1 ],
t0 = pp[ i1 - 1 ];
validate_interval: {
seek: {
let right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if ( ! ( t < t1 ) ) {
for ( let giveUpAt = i1 + 2; ; ) {
if ( t1 === undefined ) {
if ( t < t0 ) break forward_scan;
// after end
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t, t0 );
}
if ( i1 === giveUpAt ) break; // this loop
t0 = t1;
t1 = pp[ ++ i1 ];
if ( t < t1 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
}
//- slower code:
//- if ( t < t0 || t0 === undefined ) {
if ( ! ( t >= t0 ) ) {
// looping?
const t1global = pp[ 1 ];
if ( t < t1global ) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
}
// linear reverse scan
for ( let giveUpAt = i1 - 2; ; ) {
if ( t0 === undefined ) {
// before start
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( i1 === giveUpAt ) break; // this loop
t1 = t0;
t0 = pp[ -- i1 - 1 ];
if ( t >= t0 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
}
// the interval is valid
break validate_interval;
} // linear scan
// binary search
while ( i1 < right ) {
const mid = ( i1 + right ) >>> 1;
if ( t < pp[ mid ] ) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[ i1 ];
t0 = pp[ i1 - 1 ];
// check boundary cases, again
if ( t0 === undefined ) {
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( t1 === undefined ) {
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t0, t );
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_( i1, t0, t1 );
} // validate_interval
return this.interpolate_( i1, t0, t, t1 );
},
settings: null, // optional, subclass-specific settings structure
// Note: The indirection allows central control of many interpolants.
// --- Protected interface
DefaultSettings_: {},
getSettings_: function () {
return this.settings || this.DefaultSettings_;
},
copySampleValue_: function ( index ) {
// copies a sample value to the result buffer
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for ( let i = 0; i !== stride; ++ i ) {
result[ i ] = values[ offset + i ];
}
return result;
},
// Template methods for derived classes:
interpolate_: function ( /* i1, t0, t, t1 */ ) {
throw new Error( 'call to abstract method' );
// implementations shall return this.resultBuffer
},
intervalChanged_: function ( /* i1, t0, t1 */ ) {
// empty
}
} );
// DECLARE ALIAS AFTER assign prototype
Object.assign( Interpolant.prototype, {
//( 0, t, t0 ), returns this.resultBuffer
beforeStart_: Interpolant.prototype.copySampleValue_,
//( N-1, tN-1, t ), returns this.resultBuffer
afterEnd_: Interpolant.prototype.copySampleValue_,
} );
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*
* @author tschw
*/
function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
this._weightPrev = - 0;
this._offsetPrev = - 0;
this._weightNext = - 0;
this._offsetNext = - 0;
}
CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: CubicInterpolant,
DefaultSettings_: {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
},
intervalChanged_: function ( i1, t0, t1 ) {
let pp = this.parameterPositions,
iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[ iPrev ],
tNext = pp[ iNext ];
if ( tPrev === undefined ) {
switch ( this.getSettings_().endingStart ) {
case ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
break;
default: // ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if ( tNext === undefined ) {
switch ( this.getSettings_().endingEnd ) {
case ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[ 1 ] - pp[ 0 ];
break;
default: // ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
const halfDt = ( t1 - t0 ) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / ( t0 - tPrev );
this._weightNext = halfDt / ( tNext - t1 );
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
},
interpolate_: function ( i1, t0, t, t1 ) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride, o0 = o1 - stride,
oP = this._offsetPrev, oN = this._offsetNext,
wP = this._weightPrev, wN = this._weightNext,
p = ( t - t0 ) / ( t1 - t0 ),
pp = p * p,
ppp = pp * p;
// evaluate polynomials
const sP = - wP * ppp + 2 * wP * pp - wP * p;
const s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1;
const s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
const sN = wN * ppp - wN * pp;
// combine data linearly
for ( let i = 0; i !== stride; ++ i ) {
result[ i ] =
sP * values[ oP + i ] +
s0 * values[ o0 + i ] +
s1 * values[ o1 + i ] +
sN * values[ oN + i ];
}
return result;
}
} );
/**
* @author tschw
*/
function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: LinearInterpolant,
interpolate_: function ( i1, t0, t, t1 ) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = ( t - t0 ) / ( t1 - t0 ),
weight0 = 1 - weight1;
for ( let i = 0; i !== stride; ++ i ) {
result[ i ] =
values[ offset0 + i ] * weight0 +
values[ offset1 + i ] * weight1;
}
return result;
}
} );
/**
*
* Interpolant that evaluates to the sample value at the position preceeding
* the parameter.
*
* @author tschw
*/
function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: DiscreteInterpolant,
interpolate_: function ( i1 /*, t0, t, t1 */ ) {
return this.copySampleValue_( i1 - 1 );
}
} );
/**
*
* A timed sequence of keyframes for a specific property.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function KeyframeTrack( name, times, values, interpolation ) {
if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' );
if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name );
this.name = name;
this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
this.values = AnimationUtils.convertArray( values, this.ValueBufferType );
this.setInterpolation( interpolation || this.DefaultInterpolation );
}
// Static methods
Object.assign( KeyframeTrack, {
// Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
toJSON: function ( track ) {
const trackType = track.constructor;
let json;
// derived classes can define a static toJSON method
if ( trackType.toJSON !== undefined ) {
json = trackType.toJSON( track );
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': AnimationUtils.convertArray( track.times, Array ),
'values': AnimationUtils.convertArray( track.values, Array )
};
const interpolation = track.getInterpolation();
if ( interpolation !== track.DefaultInterpolation ) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
}
} );
Object.assign( KeyframeTrack.prototype, {
constructor: KeyframeTrack,
TimeBufferType: Float32Array,
ValueBufferType: Float32Array,
DefaultInterpolation: InterpolateLinear,
InterpolantFactoryMethodDiscrete: function ( result ) {
return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodLinear: function ( result ) {
return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: function ( result ) {
return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );
},
setInterpolation: function ( interpolation ) {
let factoryMethod;
switch ( interpolation ) {
case InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if ( factoryMethod === undefined ) {
const message = "unsupported interpolation for " +
this.ValueTypeName + " keyframe track named " + this.name;
if ( this.createInterpolant === undefined ) {
// fall back to default, unless the default itself is messed up
if ( interpolation !== this.DefaultInterpolation ) {
this.setInterpolation( this.DefaultInterpolation );
} else {
throw new Error( message ); // fatal, in this case
}
}
console.warn( 'THREE.KeyframeTrack:', message );
return this;
}
this.createInterpolant = factoryMethod;
return this;
},
getInterpolation: function () {
switch ( this.createInterpolant ) {
case this.InterpolantFactoryMethodDiscrete:
return InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return InterpolateSmooth;
}
},
getValueSize: function () {
return this.values.length / this.times.length;
},
// move all keyframes either forwards or backwards in time
shift: function ( timeOffset ) {
if ( timeOffset !== 0.0 ) {
const times = this.times;
for ( let i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] += timeOffset;
}
}
return this;
},
// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale: function ( timeScale ) {
if ( timeScale !== 1.0 ) {
const times = this.times;
for ( let i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] *= timeScale;
}
}
return this;
},
// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim: function ( startTime, endTime ) {
const times = this.times,
nKeys = times.length;
let from = 0,
to = nKeys - 1;
while ( from !== nKeys && times[ from ] < startTime ) {
++ from;
}
while ( to !== - 1 && times[ to ] > endTime ) {
-- to;
}
++ to; // inclusive -> exclusive bound
if ( from !== 0 || to !== nKeys ) {
// empty tracks are forbidden, so keep at least one keyframe
if ( from >= to ) {
to = Math.max( to, 1 );
from = to - 1;
}
const stride = this.getValueSize();
this.times = AnimationUtils.arraySlice( times, from, to );
this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride );
}
return this;
},
// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate: function () {
let valid = true;
const valueSize = this.getValueSize();
if ( valueSize - Math.floor( valueSize ) !== 0 ) {
console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this );
valid = false;
}
const times = this.times,
values = this.values,
nKeys = times.length;
if ( nKeys === 0 ) {
console.error( 'THREE.KeyframeTrack: Track is empty.', this );
valid = false;
}
let prevTime = null;
for ( let i = 0; i !== nKeys; i ++ ) {
const currTime = times[ i ];
if ( typeof currTime === 'number' && isNaN( currTime ) ) {
console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime );
valid = false;
break;
}
if ( prevTime !== null && prevTime > currTime ) {
console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime );
valid = false;
break;
}
prevTime = currTime;
}
if ( values !== undefined ) {
if ( AnimationUtils.isTypedArray( values ) ) {
for ( let i = 0, n = values.length; i !== n; ++ i ) {
const value = values[ i ];
if ( isNaN( value ) ) {
console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value );
valid = false;
break;
}
}
}
}
return valid;
},
// removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize: function () {
// times or values may be shared with other tracks, so overwriting is unsafe
const times = AnimationUtils.arraySlice( this.times ),
values = AnimationUtils.arraySlice( this.values ),
stride = this.getValueSize(),
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
lastIndex = times.length - 1;
let writeIndex = 1;
for ( let i = 1; i < lastIndex; ++ i ) {
let keep = false;
const time = times[ i ];
const timeNext = times[ i + 1 ];
// remove adjacent keyframes scheduled at the same time
if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
if ( ! smoothInterpolation ) {
// remove unnecessary keyframes same as their neighbors
const offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for ( let j = 0; j !== stride; ++ j ) {
const value = values[ offset + j ];
if ( value !== values[ offsetP + j ] ||
value !== values[ offsetN + j ] ) {
keep = true;
break;
}
}
} else {
keep = true;
}
}
// in-place compaction
if ( keep ) {
if ( i !== writeIndex ) {
times[ writeIndex ] = times[ i ];
const readOffset = i * stride,
writeOffset = writeIndex * stride;
for ( let j = 0; j !== stride; ++ j ) {
values[ writeOffset + j ] = values[ readOffset + j ];
}
}
++ writeIndex;
}
}
// flush last keyframe (compaction looks ahead)
if ( lastIndex > 0 ) {
times[ writeIndex ] = times[ lastIndex ];
for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {
values[ writeOffset + j ] = values[ readOffset + j ];
}
++ writeIndex;
}
if ( writeIndex !== times.length ) {
this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );
} else {
this.times = times;
this.values = values;
}
return this;
},
clone: function () {
const times = AnimationUtils.arraySlice( this.times, 0 );
const values = AnimationUtils.arraySlice( this.values, 0 );
const TypedKeyframeTrack = this.constructor;
const track = new TypedKeyframeTrack( this.name, times, values );
// Interpolant argument to constructor is not saved, so copy the factory method directly.
track.createInterpolant = this.createInterpolant;
return track;
}
} );
/**
*
* A Track of Boolean keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function BooleanKeyframeTrack( name, times, values ) {
KeyframeTrack.call( this, name, times, values );
}
BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
constructor: BooleanKeyframeTrack,
ValueTypeName: 'bool',
ValueBufferType: Array,
DefaultInterpolation: InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
// Note: Actually this track could have a optimized / compressed
// representation of a single value and a custom interpolant that
// computes "firstValue ^ isOdd( index )".
} );
/**
*
* A Track of keyframe values that represent color.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function ColorKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrack.call( this, name, times, values, interpolation );
}
ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
constructor: ColorKeyframeTrack,
ValueTypeName: 'color'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
// Note: Very basic implementation and nothing special yet.
// However, this is the place for color space parameterization.
} );
/**
*
* A Track of numeric keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function NumberKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrack.call( this, name, times, values, interpolation );
}
NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
constructor: NumberKeyframeTrack,
ValueTypeName: 'number'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
/**
* Spherical linear unit quaternion interpolant.
*
* @author tschw
*/
function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: QuaternionLinearInterpolant,
interpolate_: function ( i1, t0, t, t1 ) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
alpha = ( t - t0 ) / ( t1 - t0 );
let offset = i1 * stride;
for ( let end = offset + stride; offset !== end; offset += 4 ) {
Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );
}
return result;
}
} );
/**
*
* A Track of quaternion keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function QuaternionKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrack.call( this, name, times, values, interpolation );
}
QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
constructor: QuaternionKeyframeTrack,
ValueTypeName: 'quaternion',
// ValueBufferType is inherited
DefaultInterpolation: InterpolateLinear,
InterpolantFactoryMethodLinear: function ( result ) {
return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: undefined // not yet implemented
} );
/**
*
* A Track that interpolates Strings
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function StringKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrack.call( this, name, times, values, interpolation );
}
StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
constructor: StringKeyframeTrack,
ValueTypeName: 'string',
ValueBufferType: Array,
DefaultInterpolation: InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
} );
/**
*
* A Track of vectored keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function VectorKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrack.call( this, name, times, values, interpolation );
}
VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
constructor: VectorKeyframeTrack,
ValueTypeName: 'vector'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
/**
*
* Reusable set of Tracks that represent an animation.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
function AnimationClip( name, duration, tracks, blendMode ) {
this.name = name;
this.tracks = tracks;
this.duration = ( duration !== undefined ) ? duration : - 1;
this.blendMode = ( blendMode !== undefined ) ? blendMode : NormalAnimationBlendMode;
this.uuid = MathUtils.generateUUID();
// this means it should figure out its duration by scanning the tracks
if ( this.duration < 0 ) {
this.resetDuration();
}
}
function getTrackTypeForValueTypeName( typeName ) {
switch ( typeName.toLowerCase() ) {
case 'scalar':
case 'double':
case 'float':
case 'number':
case 'integer':
return NumberKeyframeTrack;
case 'vector':
case 'vector2':
case 'vector3':
case 'vector4':
return VectorKeyframeTrack;
case 'color':
return ColorKeyframeTrack;
case 'quaternion':
return QuaternionKeyframeTrack;
case 'bool':
case 'boolean':
return BooleanKeyframeTrack;
case 'string':
return StringKeyframeTrack;
}
throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );
}
function parseKeyframeTrack( json ) {
if ( json.type === undefined ) {
throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );
}
const trackType = getTrackTypeForValueTypeName( json.type );
if ( json.times === undefined ) {
const times = [], values = [];
AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
json.times = times;
json.values = values;
}
// derived classes can define a static parse method
if ( trackType.parse !== undefined ) {
return trackType.parse( json );
} else {
// by default, we assume a constructor compatible with the base
return new trackType( json.name, json.times, json.values, json.interpolation );
}
}
Object.assign( AnimationClip, {
parse: function ( json ) {
const tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / ( json.fps || 1.0 );
for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) {
tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) );
}
return new AnimationClip( json.name, json.duration, tracks, json.blendMode );
},
toJSON: function ( clip ) {
const tracks = [],
clipTracks = clip.tracks;
const json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks,
'uuid': clip.uuid,
'blendMode': clip.blendMode
};
for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) {
tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );
}
return json;
},
CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {
const numMorphTargets = morphTargetSequence.length;
const tracks = [];
for ( let i = 0; i < numMorphTargets; i ++ ) {
let times = [];
let values = [];
times.push(
( i + numMorphTargets - 1 ) % numMorphTargets,
i,
( i + 1 ) % numMorphTargets );
values.push( 0, 1, 0 );
const order = AnimationUtils.getKeyframeOrder( times );
times = AnimationUtils.sortedArray( times, 1, order );
values = AnimationUtils.sortedArray( values, 1, order );
// if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if ( ! noLoop && times[ 0 ] === 0 ) {
times.push( numMorphTargets );
values.push( values[ 0 ] );
}
tracks.push(
new NumberKeyframeTrack(
'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
times, values
).scale( 1.0 / fps ) );
}
return new AnimationClip( name, - 1, tracks );
},
findByName: function ( objectOrClipArray, name ) {
let clipArray = objectOrClipArray;
if ( ! Array.isArray( objectOrClipArray ) ) {
const o = objectOrClipArray;
clipArray = o.geometry && o.geometry.animations || o.animations;
}
for ( let i = 0; i < clipArray.length; i ++ ) {
if ( clipArray[ i ].name === name ) {
return clipArray[ i ];
}
}
return null;
},
CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {
const animationToMorphTargets = {};
// tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
const pattern = /^([\w-]*?)([\d]+)$/;
// sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for ( let i = 0, il = morphTargets.length; i < il; i ++ ) {
const morphTarget = morphTargets[ i ];
const parts = morphTarget.name.match( pattern );
if ( parts && parts.length > 1 ) {
const name = parts[ 1 ];
let animationMorphTargets = animationToMorphTargets[ name ];
if ( ! animationMorphTargets ) {
animationToMorphTargets[ name ] = animationMorphTargets = [];
}
animationMorphTargets.push( morphTarget );
}
}
const clips = [];
for ( const name in animationToMorphTargets ) {
clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
}
return clips;
},
// parse the animation.hierarchy format
parseAnimation: function ( animation, bones ) {
if ( ! animation ) {
console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
return null;
}
const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {
// only return track if there are actually keys.
if ( animationKeys.length !== 0 ) {
const times = [];
const values = [];
AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );
// empty keys are filtered out, so check again
if ( times.length !== 0 ) {
destTracks.push( new trackType( trackName, times, values ) );
}
}
};
const tracks = [];
const clipName = animation.name || 'default';
const fps = animation.fps || 30;
const blendMode = animation.blendMode;
// automatic length determination in AnimationClip.
let duration = animation.length || - 1;
const hierarchyTracks = animation.hierarchy || [];
for ( let h = 0; h < hierarchyTracks.length; h ++ ) {
const animationKeys = hierarchyTracks[ h ].keys;
// skip empty tracks
if ( ! animationKeys || animationKeys.length === 0 ) continue;
// process morph targets
if ( animationKeys[ 0 ].morphTargets ) {
// figure out all morph targets used in this track
const morphTargetNames = {};
let k;
for ( k = 0; k < animationKeys.length; k ++ ) {
if ( animationKeys[ k ].morphTargets ) {
for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {
morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;
}
}
}
// create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for ( const morphTargetName in morphTargetNames ) {
const times = [];
const values = [];
for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {
const animationKey = animationKeys[ k ];
times.push( animationKey.time );
values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );
}
tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
}
duration = morphTargetNames.length * ( fps || 1.0 );
} else {
// ...assume skeletal animation
const boneName = '.bones[' + bones[ h ].name + ']';
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.position',
animationKeys, 'pos', tracks );
addNonemptyTrack(
QuaternionKeyframeTrack, boneName + '.quaternion',
animationKeys, 'rot', tracks );
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.scale',
animationKeys, 'scl', tracks );
}
}
if ( tracks.length === 0 ) {
return null;
}
const clip = new AnimationClip( clipName, duration, tracks, blendMode );
return clip;
}
} );
Object.assign( AnimationClip.prototype, {
resetDuration: function () {
const tracks = this.tracks;
let duration = 0;
for ( let i = 0, n = tracks.length; i !== n; ++ i ) {
const track = this.tracks[ i ];
duration = Math.max( duration, track.times[ track.times.length - 1 ] );
}
this.duration = duration;
return this;
},
trim: function () {
for ( let i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].trim( 0, this.duration );
}
return this;
},
validate: function () {
let valid = true;
for ( let i = 0; i < this.tracks.length; i ++ ) {
valid = valid && this.tracks[ i ].validate();
}
return valid;
},
optimize: function () {
for ( let i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].optimize();
}
return this;
},
clone: function () {
const tracks = [];
for ( let i = 0; i < this.tracks.length; i ++ ) {
tracks.push( this.tracks[ i ].clone() );
}
return new AnimationClip( this.name, this.duration, tracks, this.blendMode );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const Cache = {
enabled: false,
files: {},
add: function ( key, file ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Adding key:', key );
this.files[ key ] = file;
},
get: function ( key ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[ key ];
},
remove: function ( key ) {
delete this.files[ key ];
},
clear: function () {
this.files = {};
}
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function LoadingManager( onLoad, onProgress, onError ) {
const scope = this;
let isLoading = false;
let itemsLoaded = 0;
let itemsTotal = 0;
let urlModifier = undefined;
const handlers = [];
// Refer to #5689 for the reason why we don't set .onStart
// in the constructor
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
this.resolveURL = function ( url ) {
if ( urlModifier ) {
return urlModifier( url );
}
return url;
};
this.setURLModifier = function ( transform ) {
urlModifier = transform;
return this;
};
this.addHandler = function ( regex, loader ) {
handlers.push( regex, loader );
return this;
};
this.removeHandler = function ( regex ) {
const index = handlers.indexOf( regex );
if ( index !== - 1 ) {
handlers.splice( index, 2 );
}
return this;
};
this.getHandler = function ( file ) {
for ( let i = 0, l = handlers.length; i < l; i += 2 ) {
const regex = handlers[ i ];
const loader = handlers[ i + 1 ];
if ( regex.global ) regex.lastIndex = 0; // see #17920
if ( regex.test( file ) ) {
return loader;
}
}
return null;
};
}
const DefaultLoadingManager = new LoadingManager();
/**
* @author alteredq / http://alteredqualia.com/
*/
function Loader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
this.crossOrigin = 'anonymous';
this.path = '';
this.resourcePath = '';
this.requestHeader = {};
}
Object.assign( Loader.prototype, {
load: function ( /* url, onLoad, onProgress, onError */ ) {},
loadAsync: function ( url, onProgress ) {
const scope = this;
return new Promise( function ( resolve, reject ) {
scope.load( url, resolve, onProgress, reject );
} );
},
parse: function ( /* data */ ) {},
setCrossOrigin: function ( crossOrigin ) {
this.crossOrigin = crossOrigin;
return this;
},
setPath: function ( path ) {
this.path = path;
return this;
},
setResourcePath: function ( resourcePath ) {
this.resourcePath = resourcePath;
return this;
},
setRequestHeader: function ( requestHeader ) {
this.requestHeader = requestHeader;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const loading = {};
function FileLoader( manager ) {
Loader.call( this, manager );
}
FileLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: FileLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
url = this.manager.resolveURL( url );
const scope = this;
const cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
// Check if request is duplicate
if ( loading[ url ] !== undefined ) {
loading[ url ].push( {
onLoad: onLoad,
onProgress: onProgress,
onError: onError
} );
return;
}
// Check for data: URI
const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
const dataUriRegexResult = url.match( dataUriRegex );
let request;
// Safari can not handle Data URIs through XMLHttpRequest so process manually
if ( dataUriRegexResult ) {
const mimeType = dataUriRegexResult[ 1 ];
const isBase64 = !! dataUriRegexResult[ 2 ];
let data = dataUriRegexResult[ 3 ];
data = decodeURIComponent( data );
if ( isBase64 ) data = atob( data );
try {
let response;
const responseType = ( this.responseType || '' ).toLowerCase();
switch ( responseType ) {
case 'arraybuffer':
case 'blob':
const view = new Uint8Array( data.length );
for ( let i = 0; i < data.length; i ++ ) {
view[ i ] = data.charCodeAt( i );
}
if ( responseType === 'blob' ) {
response = new Blob( [ view.buffer ], { type: mimeType } );
} else {
response = view.buffer;
}
break;
case 'document':
const parser = new DOMParser();
response = parser.parseFromString( data, mimeType );
break;
case 'json':
response = JSON.parse( data );
break;
default: // 'text' or other
response = data;
break;
}
// Wait for next browser tick like standard XMLHttpRequest event dispatching does
setTimeout( function () {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
}, 0 );
} catch ( error ) {
// Wait for next browser tick like standard XMLHttpRequest event dispatching does
setTimeout( function () {
if ( onError ) onError( error );
scope.manager.itemError( url );
scope.manager.itemEnd( url );
}, 0 );
}
} else {
// Initialise array for duplicate requests
loading[ url ] = [];
loading[ url ].push( {
onLoad: onLoad,
onProgress: onProgress,
onError: onError
} );
request = new XMLHttpRequest();
request.open( 'GET', url, true );
request.addEventListener( 'load', function ( event ) {
const response = this.response;
const callbacks = loading[ url ];
delete loading[ url ];
if ( this.status === 200 || this.status === 0 ) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
if ( this.status === 0 ) console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );
// Add to cache only on HTTP success, so that we do not cache
// error response bodies as proper responses to requests.
Cache.add( url, response );
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onLoad ) callback.onLoad( response );
}
scope.manager.itemEnd( url );
} else {
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onError ) callback.onError( event );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
}
}, false );
request.addEventListener( 'progress', function ( event ) {
const callbacks = loading[ url ];
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onProgress ) callback.onProgress( event );
}
}, false );
request.addEventListener( 'error', function ( event ) {
const callbacks = loading[ url ];
delete loading[ url ];
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onError ) callback.onError( event );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
}, false );
request.addEventListener( 'abort', function ( event ) {
const callbacks = loading[ url ];
delete loading[ url ];
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onError ) callback.onError( event );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
}, false );
if ( this.responseType !== undefined ) request.responseType = this.responseType;
if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;
if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );
for ( const header in this.requestHeader ) {
request.setRequestHeader( header, this.requestHeader[ header ] );
}
request.send( null );
}
scope.manager.itemStart( url );
return request;
},
setResponseType: function ( value ) {
this.responseType = value;
return this;
},
setWithCredentials: function ( value ) {
this.withCredentials = value;
return this;
},
setMimeType: function ( value ) {
this.mimeType = value;
return this;
}
} );
/**
* @author bhouston / http://clara.io/
*/
function AnimationLoader( manager ) {
Loader.call( this, manager );
}
AnimationLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: AnimationLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
parse: function ( json ) {
const animations = [];
for ( let i = 0; i < json.length; i ++ ) {
const clip = AnimationClip.parse( json[ i ] );
animations.push( clip );
}
return animations;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*
* Abstract Base class to block based textures loader (dds, pvr, ...)
*
* Sub classes have to implement the parse() method which will be used in load().
*/
function CompressedTextureLoader( manager ) {
Loader.call( this, manager );
}
CompressedTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: CompressedTextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const images = [];
const texture = new CompressedTexture();
texture.image = images;
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
let loaded = 0;
function loadTexture( i ) {
loader.load( url[ i ], function ( buffer ) {
const texDatas = scope.parse( buffer, true );
images[ i ] = {
width: texDatas.width,
height: texDatas.height,
format: texDatas.format,
mipmaps: texDatas.mipmaps
};
loaded += 1;
if ( loaded === 6 ) {
if ( texDatas.mipmapCount === 1 )
texture.minFilter = LinearFilter;
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, onProgress, onError );
}
if ( Array.isArray( url ) ) {
for ( let i = 0, il = url.length; i < il; ++ i ) {
loadTexture( i );
}
} else {
// compressed cubemap texture stored in a single DDS file
loader.load( url, function ( buffer ) {
const texDatas = scope.parse( buffer, true );
if ( texDatas.isCubemap ) {
const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
for ( let f = 0; f < faces; f ++ ) {
images[ f ] = { mipmaps: [] };
for ( let i = 0; i < texDatas.mipmapCount; i ++ ) {
images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
images[ f ].format = texDatas.format;
images[ f ].width = texDatas.width;
images[ f ].height = texDatas.height;
}
}
} else {
texture.image.width = texDatas.width;
texture.image.height = texDatas.height;
texture.mipmaps = texDatas.mipmaps;
}
if ( texDatas.mipmapCount === 1 ) {
texture.minFilter = LinearFilter;
}
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}, onProgress, onError );
}
return texture;
}
} );
/**
* @author Nikos M. / https://github.com/foo123/
*
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
*
* Sub classes have to implement the parse() method which will be used in load().
*/
function DataTextureLoader( manager ) {
Loader.call( this, manager );
}
DataTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: DataTextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const texture = new DataTexture();
const loader = new FileLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.setPath( this.path );
loader.load( url, function ( buffer ) {
const texData = scope.parse( buffer );
if ( ! texData ) return;
if ( texData.image !== undefined ) {
texture.image = texData.image;
} else if ( texData.data !== undefined ) {
texture.image.width = texData.width;
texture.image.height = texData.height;
texture.image.data = texData.data;
}
texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
if ( texData.format !== undefined ) {
texture.format = texData.format;
}
if ( texData.type !== undefined ) {
texture.type = texData.type;
}
if ( texData.mipmaps !== undefined ) {
texture.mipmaps = texData.mipmaps;
texture.minFilter = LinearMipmapLinearFilter; // presumably...
}
if ( texData.mipmapCount === 1 ) {
texture.minFilter = LinearFilter;
}
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture, texData );
}, onProgress, onError );
return texture;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function ImageLoader( manager ) {
Loader.call( this, manager );
}
ImageLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: ImageLoader,
load: function ( url, onLoad, onProgress, onError ) {
if ( this.path !== undefined ) url = this.path + url;
url = this.manager.resolveURL( url );
const scope = this;
const cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
const image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );
function onImageLoad() {
image.removeEventListener( 'load', onImageLoad, false );
image.removeEventListener( 'error', onImageError, false );
Cache.add( url, this );
if ( onLoad ) onLoad( this );
scope.manager.itemEnd( url );
}
function onImageError( event ) {
image.removeEventListener( 'load', onImageLoad, false );
image.removeEventListener( 'error', onImageError, false );
if ( onError ) onError( event );
scope.manager.itemError( url );
scope.manager.itemEnd( url );
}
image.addEventListener( 'load', onImageLoad, false );
image.addEventListener( 'error', onImageError, false );
if ( url.substr( 0, 5 ) !== 'data:' ) {
if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
}
scope.manager.itemStart( url );
image.src = url;
return image;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function CubeTextureLoader( manager ) {
Loader.call( this, manager );
}
CubeTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: CubeTextureLoader,
load: function ( urls, onLoad, onProgress, onError ) {
const texture = new CubeTexture();
const loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
let loaded = 0;
function loadTexture( i ) {
loader.load( urls[ i ], function ( image ) {
texture.images[ i ] = image;
loaded ++;
if ( loaded === 6 ) {
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, undefined, onError );
}
for ( let i = 0; i < urls.length; ++ i ) {
loadTexture( i );
}
return texture;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function TextureLoader( manager ) {
Loader.call( this, manager );
}
TextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: TextureLoader,
load: function ( url, onLoad, onProgress, onError ) {
const texture = new Texture();
const loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
loader.load( url, function ( image ) {
texture.image = image;
// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
const isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;
texture.format = isJPEG ? RGBFormat : RGBAFormat;
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of curve methods:
* .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
* .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
function Curve() {
this.type = 'Curve';
this.arcLengthDivisions = 200;
}
Object.assign( Curve.prototype, {
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint: function ( /* t, optionalTarget */ ) {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
return null;
},
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt: function ( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getPoint( t, optionalTarget );
},
// Get sequence of points using getPoint( t )
getPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
},
// Get sequence of points using getPointAt( u )
getSpacedPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
},
// Get total curve arc length
getLength: function () {
const lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
},
// Get list of cumulative segment lengths
getLengths: function ( divisions ) {
if ( divisions === undefined ) divisions = this.arcLengthDivisions;
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
const cache = [];
let current, last = this.getPoint( 0 );
let sum = 0;
cache.push( 0 );
for ( let p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
},
updateArcLengths: function () {
this.needsUpdate = true;
this.getLengths();
},
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping: function ( u, distance ) {
const arcLengths = this.getLengths();
let i = 0, il = arcLengths.length;
let targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
let low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
const lengthBefore = arcLengths[ i ];
const lengthAfter = arcLengths[ i + 1 ];
const segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
const t = ( i + segmentFraction ) / ( il - 1 );
return t;
},
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent: function ( t, optionalTarget ) {
const delta = 0.0001;
let t1 = t - delta;
let t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
const pt1 = this.getPoint( t1 );
const pt2 = this.getPoint( t2 );
const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );
tangent.copy( pt2 ).sub( pt1 ).normalize();
return tangent;
},
getTangentAt: function ( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getTangent( t, optionalTarget );
},
computeFrenetFrames: function ( segments, closed ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
const normal = new Vector3();
const tangents = [];
const normals = [];
const binormals = [];
const vec = new Vector3();
const mat = new Matrix4();
// compute the tangent vectors for each segment on the curve
for ( let i = 0; i <= segments; i ++ ) {
const u = i / segments;
tangents[ i ] = this.getTangentAt( u, new Vector3() );
tangents[ i ].normalize();
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
let min = Number.MAX_VALUE;
const tx = Math.abs( tangents[ 0 ].x );
const ty = Math.abs( tangents[ 0 ].y );
const tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( let i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
const theta = Math.acos( MathUtils.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
let theta = Math.acos( MathUtils.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( let i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.arcLengthDivisions = source.arcLengthDivisions;
return this;
},
toJSON: function () {
const data = {
metadata: {
version: 4.5,
type: 'Curve',
generator: 'Curve.toJSON'
}
};
data.arcLengthDivisions = this.arcLengthDivisions;
data.type = this.type;
return data;
},
fromJSON: function ( json ) {
this.arcLengthDivisions = json.arcLengthDivisions;
return this;
}
} );
function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
Curve.call( this );
this.type = 'EllipseCurve';
this.aX = aX || 0;
this.aY = aY || 0;
this.xRadius = xRadius || 1;
this.yRadius = yRadius || 1;
this.aStartAngle = aStartAngle || 0;
this.aEndAngle = aEndAngle || 2 * Math.PI;
this.aClockwise = aClockwise || false;
this.aRotation = aRotation || 0;
}
EllipseCurve.prototype = Object.create( Curve.prototype );
EllipseCurve.prototype.constructor = EllipseCurve;
EllipseCurve.prototype.isEllipseCurve = true;
EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector2();
const twoPi = Math.PI * 2;
let deltaAngle = this.aEndAngle - this.aStartAngle;
const samePoints = Math.abs( deltaAngle ) < Number.EPSILON;
// ensures that deltaAngle is 0 .. 2 PI
while ( deltaAngle < 0 ) deltaAngle += twoPi;
while ( deltaAngle > twoPi ) deltaAngle -= twoPi;
if ( deltaAngle < Number.EPSILON ) {
if ( samePoints ) {
deltaAngle = 0;
} else {
deltaAngle = twoPi;
}
}
if ( this.aClockwise === true && ! samePoints ) {
if ( deltaAngle === twoPi ) {
deltaAngle = - twoPi;
} else {
deltaAngle = deltaAngle - twoPi;
}
}
const angle = this.aStartAngle + t * deltaAngle;
let x = this.aX + this.xRadius * Math.cos( angle );
let y = this.aY + this.yRadius * Math.sin( angle );
if ( this.aRotation !== 0 ) {
const cos = Math.cos( this.aRotation );
const sin = Math.sin( this.aRotation );
const tx = x - this.aX;
const ty = y - this.aY;
// Rotate the point about the center of the ellipse.
x = tx * cos - ty * sin + this.aX;
y = tx * sin + ty * cos + this.aY;
}
return point.set( x, y );
};
EllipseCurve.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.aX = source.aX;
this.aY = source.aY;
this.xRadius = source.xRadius;
this.yRadius = source.yRadius;
this.aStartAngle = source.aStartAngle;
this.aEndAngle = source.aEndAngle;
this.aClockwise = source.aClockwise;
this.aRotation = source.aRotation;
return this;
};
EllipseCurve.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.aX = this.aX;
data.aY = this.aY;
data.xRadius = this.xRadius;
data.yRadius = this.yRadius;
data.aStartAngle = this.aStartAngle;
data.aEndAngle = this.aEndAngle;
data.aClockwise = this.aClockwise;
data.aRotation = this.aRotation;
return data;
};
EllipseCurve.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.aX = json.aX;
this.aY = json.aY;
this.xRadius = json.xRadius;
this.yRadius = json.yRadius;
this.aStartAngle = json.aStartAngle;
this.aEndAngle = json.aEndAngle;
this.aClockwise = json.aClockwise;
this.aRotation = json.aRotation;
return this;
};
function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
this.type = 'ArcCurve';
}
ArcCurve.prototype = Object.create( EllipseCurve.prototype );
ArcCurve.prototype.constructor = ArcCurve;
ArcCurve.prototype.isArcCurve = true;
/**
* @author zz85 https://github.com/zz85
*
* Centripetal CatmullRom Curve - which is useful for avoiding
* cusps and self-intersections in non-uniform catmull rom curves.
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* curve.type accepts centripetal(default), chordal and catmullrom
* curve.tension is used for catmullrom which defaults to 0.5
*/
/*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/
function CubicPoly() {
let c0 = 0, c1 = 0, c2 = 0, c3 = 0;
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
function init( x0, x1, t0, t1 ) {
c0 = x0;
c1 = t0;
c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
c3 = 2 * x0 - 2 * x1 + t0 + t1;
}
return {
initCatmullRom: function ( x0, x1, x2, x3, tension ) {
init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );
},
initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {
// compute tangents when parameterized in [t1,t2]
let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;
// rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
init( x1, x2, t1, t2 );
},
calc: function ( t ) {
const t2 = t * t;
const t3 = t2 * t;
return c0 + c1 * t + c2 * t2 + c3 * t3;
}
};
}
//
const tmp = new Vector3();
const px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly();
function CatmullRomCurve3( points, closed, curveType, tension ) {
Curve.call( this );
this.type = 'CatmullRomCurve3';
this.points = points || [];
this.closed = closed || false;
this.curveType = curveType || 'centripetal';
this.tension = tension || 0.5;
}
CatmullRomCurve3.prototype = Object.create( Curve.prototype );
CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;
CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector3();
const points = this.points;
const l = points.length;
const p = ( l - ( this.closed ? 0 : 1 ) ) * t;
let intPoint = Math.floor( p );
let weight = p - intPoint;
if ( this.closed ) {
intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l;
} else if ( weight === 0 && intPoint === l - 1 ) {
intPoint = l - 2;
weight = 1;
}
let p0, p1, p2, p3; // 4 points
if ( this.closed || intPoint > 0 ) {
p0 = points[ ( intPoint - 1 ) % l ];
} else {
// extrapolate first point
tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
p0 = tmp;
}
p1 = points[ intPoint % l ];
p2 = points[ ( intPoint + 1 ) % l ];
if ( this.closed || intPoint + 2 < l ) {
p3 = points[ ( intPoint + 2 ) % l ];
} else {
// extrapolate last point
tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
p3 = tmp;
}
if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) {
// init Centripetal / Chordal Catmull-Rom
const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );
// safety check for repeated points
if ( dt1 < 1e-4 ) dt1 = 1.0;
if ( dt0 < 1e-4 ) dt0 = dt1;
if ( dt2 < 1e-4 ) dt2 = dt1;
px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );
} else if ( this.curveType === 'catmullrom' ) {
px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension );
py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension );
pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension );
}
point.set(
px.calc( weight ),
py.calc( weight ),
pz.calc( weight )
);
return point;
};
CatmullRomCurve3.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.points = [];
for ( let i = 0, l = source.points.length; i < l; i ++ ) {
const point = source.points[ i ];
this.points.push( point.clone() );
}
this.closed = source.closed;
this.curveType = source.curveType;
this.tension = source.tension;
return this;
};
CatmullRomCurve3.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.points = [];
for ( let i = 0, l = this.points.length; i < l; i ++ ) {
const point = this.points[ i ];
data.points.push( point.toArray() );
}
data.closed = this.closed;
data.curveType = this.curveType;
data.tension = this.tension;
return data;
};
CatmullRomCurve3.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.points = [];
for ( let i = 0, l = json.points.length; i < l; i ++ ) {
const point = json.points[ i ];
this.points.push( new Vector3().fromArray( point ) );
}
this.closed = json.closed;
this.curveType = json.curveType;
this.tension = json.tension;
return this;
};
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Bezier Curves formulas obtained from
* http://en.wikipedia.org/wiki/Bézier_curve
*/
function CatmullRom( t, p0, p1, p2, p3 ) {
const v0 = ( p2 - p0 ) * 0.5;
const v1 = ( p3 - p1 ) * 0.5;
const t2 = t * t;
const t3 = t * t2;
return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
//
function QuadraticBezierP0( t, p ) {
const k = 1 - t;
return k * k * p;
}
function QuadraticBezierP1( t, p ) {
return 2 * ( 1 - t ) * t * p;
}
function QuadraticBezierP2( t, p ) {
return t * t * p;
}
function QuadraticBezier( t, p0, p1, p2 ) {
return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
QuadraticBezierP2( t, p2 );
}
//
function CubicBezierP0( t, p ) {
const k = 1 - t;
return k * k * k * p;
}
function CubicBezierP1( t, p ) {
const k = 1 - t;
return 3 * k * k * t * p;
}
function CubicBezierP2( t, p ) {
return 3 * ( 1 - t ) * t * t * p;
}
function CubicBezierP3( t, p ) {
return t * t * t * p;
}
function CubicBezier( t, p0, p1, p2, p3 ) {
return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
CubicBezierP3( t, p3 );
}
function CubicBezierCurve( v0, v1, v2, v3 ) {
Curve.call( this );
this.type = 'CubicBezierCurve';
this.v0 = v0 || new Vector2();
this.v1 = v1 || new Vector2();
this.v2 = v2 || new Vector2();
this.v3 = v3 || new Vector2();
}
CubicBezierCurve.prototype = Object.create( Curve.prototype );
CubicBezierCurve.prototype.constructor = CubicBezierCurve;
CubicBezierCurve.prototype.isCubicBezierCurve = true;
CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector2();
const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;
point.set(
CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
);
return point;
};
CubicBezierCurve.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
this.v3.copy( source.v3 );
return this;
};
CubicBezierCurve.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
data.v3 = this.v3.toArray();
return data;
};
CubicBezierCurve.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
this.v3.fromArray( json.v3 );
return this;
};
function CubicBezierCurve3( v0, v1, v2, v3 ) {
Curve.call( this );
this.type = 'CubicBezierCurve3';
this.v0 = v0 || new Vector3();
this.v1 = v1 || new Vector3();
this.v2 = v2 || new Vector3();
this.v3 = v3 || new Vector3();
}
CubicBezierCurve3.prototype = Object.create( Curve.prototype );
CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;
CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector3();
const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;
point.set(
CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
);
return point;
};
CubicBezierCurve3.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
this.v3.copy( source.v3 );
return this;
};
CubicBezierCurve3.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
data.v3 = this.v3.toArray();
return data;
};
CubicBezierCurve3.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
this.v3.fromArray( json.v3 );
return this;
};
function LineCurve( v1, v2 ) {
Curve.call( this );
this.type = 'LineCurve';
this.v1 = v1 || new Vector2();
this.v2 = v2 || new Vector2();
}
LineCurve.prototype = Object.create( Curve.prototype );
LineCurve.prototype.constructor = LineCurve;
LineCurve.prototype.isLineCurve = true;
LineCurve.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector2();
if ( t === 1 ) {
point.copy( this.v2 );
} else {
point.copy( this.v2 ).sub( this.v1 );
point.multiplyScalar( t ).add( this.v1 );
}
return point;
};
// Line curve is linear, so we can overwrite default getPointAt
LineCurve.prototype.getPointAt = function ( u, optionalTarget ) {
return this.getPoint( u, optionalTarget );
};
LineCurve.prototype.getTangent = function ( t, optionalTarget ) {
const tangent = optionalTarget || new Vector2();
tangent.copy( this.v2 ).sub( this.v1 ).normalize();
return tangent;
};
LineCurve.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
};
LineCurve.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
};
LineCurve.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
};
function LineCurve3( v1, v2 ) {
Curve.call( this );
this.type = 'LineCurve3';
this.v1 = v1 || new Vector3();
this.v2 = v2 || new Vector3();
}
LineCurve3.prototype = Object.create( Curve.prototype );
LineCurve3.prototype.constructor = LineCurve3;
LineCurve3.prototype.isLineCurve3 = true;
LineCurve3.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector3();
if ( t === 1 ) {
point.copy( this.v2 );
} else {
point.copy( this.v2 ).sub( this.v1 );
point.multiplyScalar( t ).add( this.v1 );
}
return point;
};
// Line curve is linear, so we can overwrite default getPointAt
LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) {
return this.getPoint( u, optionalTarget );
};
LineCurve3.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
};
LineCurve3.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
};
LineCurve3.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
};
function QuadraticBezierCurve( v0, v1, v2 ) {
Curve.call( this );
this.type = 'QuadraticBezierCurve';
this.v0 = v0 || new Vector2();
this.v1 = v1 || new Vector2();
this.v2 = v2 || new Vector2();
}
QuadraticBezierCurve.prototype = Object.create( Curve.prototype );
QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;
QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector2();
const v0 = this.v0, v1 = this.v1, v2 = this.v2;
point.set(
QuadraticBezier( t, v0.x, v1.x, v2.x ),
QuadraticBezier( t, v0.y, v1.y, v2.y )
);
return point;
};
QuadraticBezierCurve.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
};
QuadraticBezierCurve.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
};
QuadraticBezierCurve.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
};
function QuadraticBezierCurve3( v0, v1, v2 ) {
Curve.call( this );
this.type = 'QuadraticBezierCurve3';
this.v0 = v0 || new Vector3();
this.v1 = v1 || new Vector3();
this.v2 = v2 || new Vector3();
}
QuadraticBezierCurve3.prototype = Object.create( Curve.prototype );
QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;
QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector3();
const v0 = this.v0, v1 = this.v1, v2 = this.v2;
point.set(
QuadraticBezier( t, v0.x, v1.x, v2.x ),
QuadraticBezier( t, v0.y, v1.y, v2.y ),
QuadraticBezier( t, v0.z, v1.z, v2.z )
);
return point;
};
QuadraticBezierCurve3.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
};
QuadraticBezierCurve3.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
};
QuadraticBezierCurve3.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
};
function SplineCurve( points /* array of Vector2 */ ) {
Curve.call( this );
this.type = 'SplineCurve';
this.points = points || [];
}
SplineCurve.prototype = Object.create( Curve.prototype );
SplineCurve.prototype.constructor = SplineCurve;
SplineCurve.prototype.isSplineCurve = true;
SplineCurve.prototype.getPoint = function ( t, optionalTarget ) {
const point = optionalTarget || new Vector2();
const points = this.points;
const p = ( points.length - 1 ) * t;
const intPoint = Math.floor( p );
const weight = p - intPoint;
const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
const p1 = points[ intPoint ];
const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
point.set(
CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ),
CatmullRom( weight, p0.y, p1.y, p2.y, p3.y )
);
return point;
};
SplineCurve.prototype.copy = function ( source ) {
Curve.prototype.copy.call( this, source );
this.points = [];
for ( let i = 0, l = source.points.length; i < l; i ++ ) {
const point = source.points[ i ];
this.points.push( point.clone() );
}
return this;
};
SplineCurve.prototype.toJSON = function () {
const data = Curve.prototype.toJSON.call( this );
data.points = [];
for ( let i = 0, l = this.points.length; i < l; i ++ ) {
const point = this.points[ i ];
data.points.push( point.toArray() );
}
return data;
};
SplineCurve.prototype.fromJSON = function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.points = [];
for ( let i = 0, l = json.points.length; i < l; i ++ ) {
const point = json.points[ i ];
this.points.push( new Vector2().fromArray( point ) );
}
return this;
};
var Curves = /*#__PURE__*/Object.freeze({
__proto__: null,
ArcCurve: ArcCurve,
CatmullRomCurve3: CatmullRomCurve3,
CubicBezierCurve: CubicBezierCurve,
CubicBezierCurve3: CubicBezierCurve3,
EllipseCurve: EllipseCurve,
LineCurve: LineCurve,
LineCurve3: LineCurve3,
QuadraticBezierCurve: QuadraticBezierCurve,
QuadraticBezierCurve3: QuadraticBezierCurve3,
SplineCurve: SplineCurve
});
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
**/
/**************************************************************
* Curved Path - a curve path is simply a array of connected
* curves, but retains the api of a curve
**************************************************************/
function CurvePath() {
Curve.call( this );
this.type = 'CurvePath';
this.curves = [];
this.autoClose = false; // Automatically closes the path
}
CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {
constructor: CurvePath,
add: function ( curve ) {
this.curves.push( curve );
},
closePath: function () {
// Add a line curve if start and end of lines are not connected
const startPoint = this.curves[ 0 ].getPoint( 0 );
const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );
if ( ! startPoint.equals( endPoint ) ) {
this.curves.push( new LineCurve( endPoint, startPoint ) );
}
},
// To get accurate point with reference to
// entire path distance at time t,
// following has to be done:
// 1. Length of each sub path have to be known
// 2. Locate and identify type of curve
// 3. Get t for the curve
// 4. Return curve.getPointAt(t')
getPoint: function ( t ) {
const d = t * this.getLength();
const curveLengths = this.getCurveLengths();
let i = 0;
// To think about boundaries points.
while ( i < curveLengths.length ) {
if ( curveLengths[ i ] >= d ) {
const diff = curveLengths[ i ] - d;
const curve = this.curves[ i ];
const segmentLength = curve.getLength();
const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
return curve.getPointAt( u );
}
i ++;
}
return null;
// loop where sum != 0, sum > d , sum+1 <d
},
// We cannot use the default THREE.Curve getPoint() with getLength() because in
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
// getPoint() depends on getLength
getLength: function () {
const lens = this.getCurveLengths();
return lens[ lens.length - 1 ];
},
// cacheLengths must be recalculated.
updateArcLengths: function () {
this.needsUpdate = true;
this.cacheLengths = null;
this.getCurveLengths();
},
// Compute lengths and cache them
// We cannot overwrite getLengths() because UtoT mapping uses it.
getCurveLengths: function () {
// We use cache values if curves and cache array are same length
if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {
return this.cacheLengths;
}
// Get length of sub-curve
// Push sums into cached array
const lengths = [];
let sums = 0;
for ( let i = 0, l = this.curves.length; i < l; i ++ ) {
sums += this.curves[ i ].getLength();
lengths.push( sums );
}
this.cacheLengths = lengths;
return lengths;
},
getSpacedPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 40;
const points = [];
for ( let i = 0; i <= divisions; i ++ ) {
points.push( this.getPoint( i / divisions ) );
}
if ( this.autoClose ) {
points.push( points[ 0 ] );
}
return points;
},
getPoints: function ( divisions ) {
divisions = divisions || 12;
const points = [];
let last;
for ( let i = 0, curves = this.curves; i < curves.length; i ++ ) {
const curve = curves[ i ];
const resolution = ( curve && curve.isEllipseCurve ) ? divisions * 2
: ( curve && ( curve.isLineCurve || curve.isLineCurve3 ) ) ? 1
: ( curve && curve.isSplineCurve ) ? divisions * curve.points.length
: divisions;
const pts = curve.getPoints( resolution );
for ( let j = 0; j < pts.length; j ++ ) {
const point = pts[ j ];
if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates
points.push( point );
last = point;
}
}
if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) {
points.push( points[ 0 ] );
}
return points;
},
copy: function ( source ) {
Curve.prototype.copy.call( this, source );
this.curves = [];
for ( let i = 0, l = source.curves.length; i < l; i ++ ) {
const curve = source.curves[ i ];
this.curves.push( curve.clone() );
}
this.autoClose = source.autoClose;
return this;
},
toJSON: function () {
const data = Curve.prototype.toJSON.call( this );
data.autoClose = this.autoClose;
data.curves = [];
for ( let i = 0, l = this.curves.length; i < l; i ++ ) {
const curve = this.curves[ i ];
data.curves.push( curve.toJSON() );
}
return data;
},
fromJSON: function ( json ) {
Curve.prototype.fromJSON.call( this, json );
this.autoClose = json.autoClose;
this.curves = [];
for ( let i = 0, l = json.curves.length; i < l; i ++ ) {
const curve = json.curves[ i ];
this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) );
}
return this;
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Creates free form 2d path using series of points, lines or curves.
**/
function Path( points ) {
CurvePath.call( this );
this.type = 'Path';
this.currentPoint = new Vector2();
if ( points ) {
this.setFromPoints( points );
}
}
Path.prototype = Object.assign( Object.create( CurvePath.prototype ), {
constructor: Path,
setFromPoints: function ( points ) {
this.moveTo( points[ 0 ].x, points[ 0 ].y );
for ( let i = 1, l = points.length; i < l; i ++ ) {
this.lineTo( points[ i ].x, points[ i ].y );
}
return this;
},
moveTo: function ( x, y ) {
this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?
return this;
},
lineTo: function ( x, y ) {
const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
this.curves.push( curve );
this.currentPoint.set( x, y );
return this;
},
quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {
const curve = new QuadraticBezierCurve(
this.currentPoint.clone(),
new Vector2( aCPx, aCPy ),
new Vector2( aX, aY )
);
this.curves.push( curve );
this.currentPoint.set( aX, aY );
return this;
},
bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
const curve = new CubicBezierCurve(
this.currentPoint.clone(),
new Vector2( aCP1x, aCP1y ),
new Vector2( aCP2x, aCP2y ),
new Vector2( aX, aY )
);
this.curves.push( curve );
this.currentPoint.set( aX, aY );
return this;
},
splineThru: function ( pts /*Array of Vector*/ ) {
const npts = [ this.currentPoint.clone() ].concat( pts );
const curve = new SplineCurve( npts );
this.curves.push( curve );
this.currentPoint.copy( pts[ pts.length - 1 ] );
return this;
},
arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
const x0 = this.currentPoint.x;
const y0 = this.currentPoint.y;
this.absarc( aX + x0, aY + y0, aRadius,
aStartAngle, aEndAngle, aClockwise );
return this;
},
absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
return this;
},
ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
const x0 = this.currentPoint.x;
const y0 = this.currentPoint.y;
this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
return this;
},
absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
if ( this.curves.length > 0 ) {
// if a previous curve is present, attempt to join
const firstPoint = curve.getPoint( 0 );
if ( ! firstPoint.equals( this.currentPoint ) ) {
this.lineTo( firstPoint.x, firstPoint.y );
}
}
this.curves.push( curve );
const lastPoint = curve.getPoint( 1 );
this.currentPoint.copy( lastPoint );
return this;
},
copy: function ( source ) {
CurvePath.prototype.copy.call( this, source );
this.currentPoint.copy( source.currentPoint );
return this;
},
toJSON: function () {
const data = CurvePath.prototype.toJSON.call( this );
data.currentPoint = this.currentPoint.toArray();
return data;
},
fromJSON: function ( json ) {
CurvePath.prototype.fromJSON.call( this, json );
this.currentPoint.fromArray( json.currentPoint );
return this;
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Defines a 2d shape plane using paths.
**/
// STEP 1 Create a path.
// STEP 2 Turn path into shape.
// STEP 3 ExtrudeGeometry takes in Shape/Shapes
// STEP 3a - Extract points from each shape, turn to vertices
// STEP 3b - Triangulate each shape, add faces.
function Shape( points ) {
Path.call( this, points );
this.uuid = MathUtils.generateUUID();
this.type = 'Shape';
this.holes = [];
}
Shape.prototype = Object.assign( Object.create( Path.prototype ), {
constructor: Shape,
getPointsHoles: function ( divisions ) {
const holesPts = [];
for ( let i = 0, l = this.holes.length; i < l; i ++ ) {
holesPts[ i ] = this.holes[ i ].getPoints( divisions );
}
return holesPts;
},
// get points of shape and holes (keypoints based on segments parameter)
extractPoints: function ( divisions ) {
return {
shape: this.getPoints( divisions ),
holes: this.getPointsHoles( divisions )
};
},
copy: function ( source ) {
Path.prototype.copy.call( this, source );
this.holes = [];
for ( let i = 0, l = source.holes.length; i < l; i ++ ) {
const hole = source.holes[ i ];
this.holes.push( hole.clone() );
}
return this;
},
toJSON: function () {
const data = Path.prototype.toJSON.call( this );
data.uuid = this.uuid;
data.holes = [];
for ( let i = 0, l = this.holes.length; i < l; i ++ ) {
const hole = this.holes[ i ];
data.holes.push( hole.toJSON() );
}
return data;
},
fromJSON: function ( json ) {
Path.prototype.fromJSON.call( this, json );
this.uuid = json.uuid;
this.holes = [];
for ( let i = 0, l = json.holes.length; i < l; i ++ ) {
const hole = json.holes[ i ];
this.holes.push( new Path().fromJSON( hole ) );
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Light( color, intensity ) {
Object3D.call( this );
this.type = 'Light';
this.color = new Color( color );
this.intensity = intensity !== undefined ? intensity : 1;
this.receiveShadow = undefined;
}
Light.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Light,
isLight: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.color.copy( source.color );
this.intensity = source.intensity;
return this;
},
toJSON: function ( meta ) {
const data = Object3D.prototype.toJSON.call( this, meta );
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
if ( this.distance !== undefined ) data.object.distance = this.distance;
if ( this.angle !== undefined ) data.object.angle = this.angle;
if ( this.decay !== undefined ) data.object.decay = this.decay;
if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();
return data;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function HemisphereLight( skyColor, groundColor, intensity ) {
Light.call( this, skyColor, intensity );
this.type = 'HemisphereLight';
this.castShadow = undefined;
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.groundColor = new Color( groundColor );
}
HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: HemisphereLight,
isHemisphereLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.groundColor.copy( source.groundColor );
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function LightShadow( camera ) {
this.camera = camera;
this.bias = 0;
this.normalBias = 0;
this.radius = 1;
this.mapSize = new Vector2( 512, 512 );
this.map = null;
this.mapPass = null;
this.matrix = new Matrix4();
this.autoUpdate = true;
this.needsUpdate = false;
this._frustum = new Frustum();
this._frameExtents = new Vector2( 1, 1 );
this._viewportCount = 1;
this._viewports = [
new Vector4( 0, 0, 1, 1 )
];
}
Object.assign( LightShadow.prototype, {
_projScreenMatrix: new Matrix4(),
_lightPositionWorld: new Vector3(),
_lookTarget: new Vector3(),
getViewportCount: function () {
return this._viewportCount;
},
getFrustum: function () {
return this._frustum;
},
updateMatrices: function ( light ) {
const shadowCamera = this.camera,
shadowMatrix = this.matrix,
projScreenMatrix = this._projScreenMatrix,
lookTarget = this._lookTarget,
lightPositionWorld = this._lightPositionWorld;
lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
shadowCamera.position.copy( lightPositionWorld );
lookTarget.setFromMatrixPosition( light.target.matrixWorld );
shadowCamera.lookAt( lookTarget );
shadowCamera.updateMatrixWorld();
projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
this._frustum.setFromProjectionMatrix( projScreenMatrix );
shadowMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
shadowMatrix.multiply( shadowCamera.projectionMatrix );
shadowMatrix.multiply( shadowCamera.matrixWorldInverse );
},
getViewport: function ( viewportIndex ) {
return this._viewports[ viewportIndex ];
},
getFrameExtents: function () {
return this._frameExtents;
},
copy: function ( source ) {
this.camera = source.camera.clone();
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy( source.mapSize );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
toJSON: function () {
const object = {};
if ( this.bias !== 0 ) object.bias = this.bias;
if ( this.normalBias !== 0 ) object.normalBias = this.normalBias;
if ( this.radius !== 1 ) object.radius = this.radius;
if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();
object.camera = this.camera.toJSON( false ).object;
delete object.camera.matrix;
return object;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function SpotLightShadow() {
LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );
}
SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
constructor: SpotLightShadow,
isSpotLightShadow: true,
updateMatrices: function ( light ) {
const camera = this.camera;
const fov = MathUtils.RAD2DEG * 2 * light.angle;
const aspect = this.mapSize.width / this.mapSize.height;
const far = light.distance || camera.far;
if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {
camera.fov = fov;
camera.aspect = aspect;
camera.far = far;
camera.updateProjectionMatrix();
}
LightShadow.prototype.updateMatrices.call( this, light );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function SpotLight( color, intensity, distance, angle, penumbra, decay ) {
Light.call( this, color, intensity );
this.type = 'SpotLight';
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.target = new Object3D();
Object.defineProperty( this, 'power', {
get: function () {
// intensity = power per solid angle.
// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
return this.intensity * Math.PI;
},
set: function ( power ) {
// intensity = power per solid angle.
// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
this.intensity = power / Math.PI;
}
} );
this.distance = ( distance !== undefined ) ? distance : 0;
this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.
this.shadow = new SpotLightShadow();
}
SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: SpotLight,
isSpotLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.distance = source.distance;
this.angle = source.angle;
this.penumbra = source.penumbra;
this.decay = source.decay;
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
} );
function PointLightShadow() {
LightShadow.call( this, new PerspectiveCamera( 90, 1, 0.5, 500 ) );
this._frameExtents = new Vector2( 4, 2 );
this._viewportCount = 6;
this._viewports = [
// These viewports map a cube-map onto a 2D texture with the
// following orientation:
//
// xzXZ
// y Y
//
// X - Positive x direction
// x - Negative x direction
// Y - Positive y direction
// y - Negative y direction
// Z - Positive z direction
// z - Negative z direction
// positive X
new Vector4( 2, 1, 1, 1 ),
// negative X
new Vector4( 0, 1, 1, 1 ),
// positive Z
new Vector4( 3, 1, 1, 1 ),
// negative Z
new Vector4( 1, 1, 1, 1 ),
// positive Y
new Vector4( 3, 0, 1, 1 ),
// negative Y
new Vector4( 1, 0, 1, 1 )
];
this._cubeDirections = [
new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
];
this._cubeUps = [
new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 )
];
}
PointLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
constructor: PointLightShadow,
isPointLightShadow: true,
updateMatrices: function ( light, viewportIndex ) {
if ( viewportIndex === undefined ) viewportIndex = 0;
const camera = this.camera,
shadowMatrix = this.matrix,
lightPositionWorld = this._lightPositionWorld,
lookTarget = this._lookTarget,
projScreenMatrix = this._projScreenMatrix;
lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
camera.position.copy( lightPositionWorld );
lookTarget.copy( camera.position );
lookTarget.add( this._cubeDirections[ viewportIndex ] );
camera.up.copy( this._cubeUps[ viewportIndex ] );
camera.lookAt( lookTarget );
camera.updateMatrixWorld();
shadowMatrix.makeTranslation( - lightPositionWorld.x, - lightPositionWorld.y, - lightPositionWorld.z );
projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
this._frustum.setFromProjectionMatrix( projScreenMatrix );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function PointLight( color, intensity, distance, decay ) {
Light.call( this, color, intensity );
this.type = 'PointLight';
Object.defineProperty( this, 'power', {
get: function () {
// intensity = power per solid angle.
// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
return this.intensity * 4 * Math.PI;
},
set: function ( power ) {
// intensity = power per solid angle.
// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
this.intensity = power / ( 4 * Math.PI );
}
} );
this.distance = ( distance !== undefined ) ? distance : 0;
this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.
this.shadow = new PointLightShadow();
}
PointLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: PointLight,
isPointLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.distance = source.distance;
this.decay = source.decay;
this.shadow = source.shadow.clone();
return this;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author arose / http://github.com/arose
*/
function OrthographicCamera( left, right, top, bottom, near, far ) {
Camera.call( this );
this.type = 'OrthographicCamera';
this.zoom = 1;
this.view = null;
this.left = ( left !== undefined ) ? left : - 1;
this.right = ( right !== undefined ) ? right : 1;
this.top = ( top !== undefined ) ? top : 1;
this.bottom = ( bottom !== undefined ) ? bottom : - 1;
this.near = ( near !== undefined ) ? near : 0.1;
this.far = ( far !== undefined ) ? far : 2000;
this.updateProjectionMatrix();
}
OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
constructor: OrthographicCamera,
isOrthographicCamera: true,
copy: function ( source, recursive ) {
Camera.prototype.copy.call( this, source, recursive );
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
this.view = source.view === null ? null : Object.assign( {}, source.view );
return this;
},
setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {
if ( this.view === null ) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
},
clearViewOffset: function () {
if ( this.view !== null ) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
},
updateProjectionMatrix: function () {
const dx = ( this.right - this.left ) / ( 2 * this.zoom );
const dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
const cx = ( this.right + this.left ) / 2;
const cy = ( this.top + this.bottom ) / 2;
let left = cx - dx;
let right = cx + dx;
let top = cy + dy;
let bottom = cy - dy;
if ( this.view !== null && this.view.enabled ) {
const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom;
const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom;
left += scaleW * this.view.offsetX;
right = left + scaleW * this.view.width;
top -= scaleH * this.view.offsetY;
bottom = top - scaleH * this.view.height;
}
this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );
this.projectionMatrixInverse.getInverse( this.projectionMatrix );
},
toJSON: function ( meta ) {
const data = Object3D.prototype.toJSON.call( this, meta );
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function DirectionalLightShadow() {
LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
}
DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
constructor: DirectionalLightShadow,
isDirectionalLightShadow: true,
updateMatrices: function ( light ) {
LightShadow.prototype.updateMatrices.call( this, light );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function DirectionalLight( color, intensity ) {
Light.call( this, color, intensity );
this.type = 'DirectionalLight';
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.target = new Object3D();
this.shadow = new DirectionalLightShadow();
}
DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: DirectionalLight,
isDirectionalLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function AmbientLight( color, intensity ) {
Light.call( this, color, intensity );
this.type = 'AmbientLight';
this.castShadow = undefined;
}
AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: AmbientLight,
isAmbientLight: true
} );
/**
* @author abelnation / http://github.com/abelnation
*/
function RectAreaLight( color, intensity, width, height ) {
Light.call( this, color, intensity );
this.type = 'RectAreaLight';
this.width = ( width !== undefined ) ? width : 10;
this.height = ( height !== undefined ) ? height : 10;
}
RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: RectAreaLight,
isRectAreaLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.width = source.width;
this.height = source.height;
return this;
},
toJSON: function ( meta ) {
const data = Light.prototype.toJSON.call( this, meta );
data.object.width = this.width;
data.object.height = this.height;
return data;
}
} );
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* Primary reference:
* https://graphics.stanford.edu/papers/envmap/envmap.pdf
*
* Secondary reference:
* https://www.ppsloan.org/publications/StupidSH36.pdf
*/
// 3-band SH defined by 9 coefficients
function SphericalHarmonics3() {
this.coefficients = [];
for ( let i = 0; i < 9; i ++ ) {
this.coefficients.push( new Vector3() );
}
}
Object.assign( SphericalHarmonics3.prototype, {
isSphericalHarmonics3: true,
set: function ( coefficients ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].copy( coefficients[ i ] );
}
return this;
},
zero: function () {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].set( 0, 0, 0 );
}
return this;
},
// get the radiance in the direction of the normal
// target is a Vector3
getAt: function ( normal, target ) {
// normal is assumed to be unit length
const x = normal.x, y = normal.y, z = normal.z;
const coeff = this.coefficients;
// band 0
target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 );
// band 1
target.addScaledVector( coeff[ 1 ], 0.488603 * y );
target.addScaledVector( coeff[ 2 ], 0.488603 * z );
target.addScaledVector( coeff[ 3 ], 0.488603 * x );
// band 2
target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) );
target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) );
target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) );
target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) );
target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) );
return target;
},
// get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
// target is a Vector3
// https://graphics.stanford.edu/papers/envmap/envmap.pdf
getIrradianceAt: function ( normal, target ) {
// normal is assumed to be unit length
const x = normal.x, y = normal.y, z = normal.z;
const coeff = this.coefficients;
// band 0
target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095
// band 1
target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603
target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z );
target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x );
// band 2
target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548
target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z );
target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3
target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z );
target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274
return target;
},
add: function ( sh ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].add( sh.coefficients[ i ] );
}
return this;
},
addScaledSH: function ( sh, s ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s );
}
return this;
},
scale: function ( s ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].multiplyScalar( s );
}
return this;
},
lerp: function ( sh, alpha ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha );
}
return this;
},
equals: function ( sh ) {
for ( let i = 0; i < 9; i ++ ) {
if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) {
return false;
}
}
return true;
},
copy: function ( sh ) {
return this.set( sh.coefficients );
},
clone: function () {
return new this.constructor().copy( this );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
const coefficients = this.coefficients;
for ( let i = 0; i < 9; i ++ ) {
coefficients[ i ].fromArray( array, offset + ( i * 3 ) );
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
const coefficients = this.coefficients;
for ( let i = 0; i < 9; i ++ ) {
coefficients[ i ].toArray( array, offset + ( i * 3 ) );
}
return array;
}
} );
Object.assign( SphericalHarmonics3, {
// evaluate the basis functions
// shBasis is an Array[ 9 ]
getBasisAt: function ( normal, shBasis ) {
// normal is assumed to be unit length
const x = normal.x, y = normal.y, z = normal.z;
// band 0
shBasis[ 0 ] = 0.282095;
// band 1
shBasis[ 1 ] = 0.488603 * y;
shBasis[ 2 ] = 0.488603 * z;
shBasis[ 3 ] = 0.488603 * x;
// band 2
shBasis[ 4 ] = 1.092548 * x * y;
shBasis[ 5 ] = 1.092548 * y * z;
shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 );
shBasis[ 7 ] = 1.092548 * x * z;
shBasis[ 8 ] = 0.546274 * ( x * x - y * y );
}
} );
/**
* @author WestLangley / http://github.com/WestLangley
*
* A LightProbe is a source of indirect-diffuse light
*/
function LightProbe( sh, intensity ) {
Light.call( this, undefined, intensity );
this.type = 'LightProbe';
this.sh = ( sh !== undefined ) ? sh : new SphericalHarmonics3();
}
LightProbe.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: LightProbe,
isLightProbe: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.sh.copy( source.sh );
return this;
},
fromJSON: function ( json ) {
this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
this.sh.fromArray( json.sh );
return this;
},
toJSON: function ( meta ) {
const data = Light.prototype.toJSON.call( this, meta );
data.object.sh = this.sh.toArray();
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function MaterialLoader( manager ) {
Loader.call( this, manager );
this.textures = {};
}
MaterialLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: MaterialLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
parse: function ( json ) {
const textures = this.textures;
function getTexture( name ) {
if ( textures[ name ] === undefined ) {
console.warn( 'THREE.MaterialLoader: Undefined texture', name );
}
return textures[ name ];
}
const material = new Materials[ json.type ]();
if ( json.uuid !== undefined ) material.uuid = json.uuid;
if ( json.name !== undefined ) material.name = json.name;
if ( json.color !== undefined ) material.color.setHex( json.color );
if ( json.roughness !== undefined ) material.roughness = json.roughness;
if ( json.metalness !== undefined ) material.metalness = json.metalness;
if ( json.sheen !== undefined ) material.sheen = new Color().setHex( json.sheen );
if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
if ( json.specular !== undefined ) material.specular.setHex( json.specular );
if ( json.shininess !== undefined ) material.shininess = json.shininess;
if ( json.clearcoat !== undefined ) material.clearcoat = json.clearcoat;
if ( json.clearcoatRoughness !== undefined ) material.clearcoatRoughness = json.clearcoatRoughness;
if ( json.fog !== undefined ) material.fog = json.fog;
if ( json.flatShading !== undefined ) material.flatShading = json.flatShading;
if ( json.blending !== undefined ) material.blending = json.blending;
if ( json.combine !== undefined ) material.combine = json.combine;
if ( json.side !== undefined ) material.side = json.side;
if ( json.opacity !== undefined ) material.opacity = json.opacity;
if ( json.transparent !== undefined ) material.transparent = json.transparent;
if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
if ( json.stencilWrite !== undefined ) material.stencilWrite = json.stencilWrite;
if ( json.stencilWriteMask !== undefined ) material.stencilWriteMask = json.stencilWriteMask;
if ( json.stencilFunc !== undefined ) material.stencilFunc = json.stencilFunc;
if ( json.stencilRef !== undefined ) material.stencilRef = json.stencilRef;
if ( json.stencilFuncMask !== undefined ) material.stencilFuncMask = json.stencilFuncMask;
if ( json.stencilFail !== undefined ) material.stencilFail = json.stencilFail;
if ( json.stencilZFail !== undefined ) material.stencilZFail = json.stencilZFail;
if ( json.stencilZPass !== undefined ) material.stencilZPass = json.stencilZPass;
if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;
if ( json.rotation !== undefined ) material.rotation = json.rotation;
if ( json.linewidth !== 1 ) material.linewidth = json.linewidth;
if ( json.dashSize !== undefined ) material.dashSize = json.dashSize;
if ( json.gapSize !== undefined ) material.gapSize = json.gapSize;
if ( json.scale !== undefined ) material.scale = json.scale;
if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset;
if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor;
if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits;
if ( json.skinning !== undefined ) material.skinning = json.skinning;
if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;
if ( json.morphNormals !== undefined ) material.morphNormals = json.morphNormals;
if ( json.dithering !== undefined ) material.dithering = json.dithering;
if ( json.vertexTangents !== undefined ) material.vertexTangents = json.vertexTangents;
if ( json.visible !== undefined ) material.visible = json.visible;
if ( json.toneMapped !== undefined ) material.toneMapped = json.toneMapped;
if ( json.userData !== undefined ) material.userData = json.userData;
if ( json.vertexColors !== undefined ) {
if ( typeof json.vertexColors === 'number' ) {
material.vertexColors = ( json.vertexColors > 0 ) ? true : false;
} else {
material.vertexColors = json.vertexColors;
}
}
// Shader Material
if ( json.uniforms !== undefined ) {
for ( const name in json.uniforms ) {
const uniform = json.uniforms[ name ];
material.uniforms[ name ] = {};
switch ( uniform.type ) {
case 't':
material.uniforms[ name ].value = getTexture( uniform.value );
break;
case 'c':
material.uniforms[ name ].value = new Color().setHex( uniform.value );
break;
case 'v2':
material.uniforms[ name ].value = new Vector2().fromArray( uniform.value );
break;
case 'v3':
material.uniforms[ name ].value = new Vector3().fromArray( uniform.value );
break;
case 'v4':
material.uniforms[ name ].value = new Vector4().fromArray( uniform.value );
break;
case 'm3':
material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value );
case 'm4':
material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value );
break;
default:
material.uniforms[ name ].value = uniform.value;
}
}
}
if ( json.defines !== undefined ) material.defines = json.defines;
if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
if ( json.extensions !== undefined ) {
for ( const key in json.extensions ) {
material.extensions[ key ] = json.extensions[ key ];
}
}
// Deprecated
if ( json.shading !== undefined ) material.flatShading = json.shading === 1; // THREE.FlatShading
// for PointsMaterial
if ( json.size !== undefined ) material.size = json.size;
if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
// maps
if ( json.map !== undefined ) material.map = getTexture( json.map );
if ( json.matcap !== undefined ) material.matcap = getTexture( json.matcap );
if ( json.alphaMap !== undefined ) material.alphaMap = getTexture( json.alphaMap );
if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType;
if ( json.normalScale !== undefined ) {
let normalScale = json.normalScale;
if ( Array.isArray( normalScale ) === false ) {
// Blender exporter used to export a scalar. See #7459
normalScale = [ normalScale, normalScale ];
}
material.normalScale = new Vector2().fromArray( normalScale );
}
if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );
if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );
if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );
if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity;
if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;
if ( json.refractionRatio !== undefined ) material.refractionRatio = json.refractionRatio;
if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );
if ( json.clearcoatMap !== undefined ) material.clearcoatMap = getTexture( json.clearcoatMap );
if ( json.clearcoatRoughnessMap !== undefined ) material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap );
if ( json.clearcoatNormalMap !== undefined ) material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap );
if ( json.clearcoatNormalScale !== undefined ) material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale );
return material;
},
setTextures: function ( value ) {
this.textures = value;
return this;
}
} );
/**
* @author Don McCurdy / https://www.donmccurdy.com
*/
const LoaderUtils = {
decodeText: function ( array ) {
if ( typeof TextDecoder !== 'undefined' ) {
return new TextDecoder().decode( array );
}
// Avoid the String.fromCharCode.apply(null, array) shortcut, which
// throws a "maximum call stack size exceeded" error for large arrays.
let s = '';
for ( let i = 0, il = array.length; i < il; i ++ ) {
// Implicitly assumes little-endian.
s += String.fromCharCode( array[ i ] );
}
try {
// merges multi-byte utf-8 characters.
return decodeURIComponent( escape( s ) );
} catch ( e ) { // see #16358
return s;
}
},
extractUrlBase: function ( url ) {
const index = url.lastIndexOf( '/' );
if ( index === - 1 ) return './';
return url.substr( 0, index + 1 );
}
};
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedBufferGeometry() {
BufferGeometry.call( this );
this.type = 'InstancedBufferGeometry';
this.instanceCount = Infinity;
}
InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {
constructor: InstancedBufferGeometry,
isInstancedBufferGeometry: true,
copy: function ( source ) {
BufferGeometry.prototype.copy.call( this, source );
this.instanceCount = source.instanceCount;
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
toJSON: function () {
const data = BufferGeometry.prototype.toJSON.call( this );
data.instanceCount = this.instanceCount;
data.isInstancedBufferGeometry = true;
return data;
}
} );
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedBufferAttribute( array, itemSize, normalized, meshPerAttribute ) {
if ( typeof ( normalized ) === 'number' ) {
meshPerAttribute = normalized;
normalized = false;
console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' );
}
BufferAttribute.call( this, array, itemSize, normalized );
this.meshPerAttribute = meshPerAttribute || 1;
}
InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {
constructor: InstancedBufferAttribute,
isInstancedBufferAttribute: true,
copy: function ( source ) {
BufferAttribute.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
},
toJSON: function () {
const data = BufferAttribute.prototype.toJSON.call( this );
data.meshPerAttribute = this.meshPerAttribute;
data.isInstancedBufferAttribute = true;
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function BufferGeometryLoader( manager ) {
Loader.call( this, manager );
}
BufferGeometryLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: BufferGeometryLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
parse: function ( json ) {
const interleavedBufferMap = {};
const arrayBufferMap = {};
function getInterleavedBuffer( json, uuid ) {
if ( interleavedBufferMap[ uuid ] !== undefined ) return interleavedBufferMap[ uuid ];
const interleavedBuffers = json.interleavedBuffers;
const interleavedBuffer = interleavedBuffers[ uuid ];
const buffer = getArrayBuffer( json, interleavedBuffer.buffer );
const array = new TYPED_ARRAYS[ interleavedBuffer.type ]( buffer );
const ib = new InterleavedBuffer( array, interleavedBuffer.stride );
ib.uuid = interleavedBuffer.uuid;
interleavedBufferMap[ uuid ] = ib;
return ib;
}
function getArrayBuffer( json, uuid ) {
if ( arrayBufferMap[ uuid ] !== undefined ) return arrayBufferMap[ uuid ];
const arrayBuffers = json.arrayBuffers;
const arrayBuffer = arrayBuffers[ uuid ];
const ab = new Uint32Array( arrayBuffer ).buffer;
arrayBufferMap[ uuid ] = ab;
return ab;
}
const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
const index = json.data.index;
if ( index !== undefined ) {
const typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
geometry.setIndex( new BufferAttribute( typedArray, 1 ) );
}
const attributes = json.data.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
let bufferAttribute;
if ( attribute.isInterleavedBufferAttribute ) {
const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data );
bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized );
} else {
const typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized );
}
if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name;
geometry.setAttribute( key, bufferAttribute );
}
const morphAttributes = json.data.morphAttributes;
if ( morphAttributes ) {
for ( const key in morphAttributes ) {
const attributeArray = morphAttributes[ key ];
const array = [];
for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {
const attribute = attributeArray[ i ];
let bufferAttribute;
if ( attribute.isInterleavedBufferAttribute ) {
const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data );
bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized );
} else {
const typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized );
}
if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name;
array.push( bufferAttribute );
}
geometry.morphAttributes[ key ] = array;
}
}
const morphTargetsRelative = json.data.morphTargetsRelative;
if ( morphTargetsRelative ) {
geometry.morphTargetsRelative = true;
}
const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
if ( groups !== undefined ) {
for ( let i = 0, n = groups.length; i !== n; ++ i ) {
const group = groups[ i ];
geometry.addGroup( group.start, group.count, group.materialIndex );
}
}
const boundingSphere = json.data.boundingSphere;
if ( boundingSphere !== undefined ) {
const center = new Vector3();
if ( boundingSphere.center !== undefined ) {
center.fromArray( boundingSphere.center );
}
geometry.boundingSphere = new Sphere( center, boundingSphere.radius );
}
if ( json.name ) geometry.name = json.name;
if ( json.userData ) geometry.userData = json.userData;
return geometry;
}
} );
const TYPED_ARRAYS = {
Int8Array: Int8Array,
Uint8Array: Uint8Array,
// Workaround for IE11 pre KB2929437. See #11440
Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array,
Int16Array: Int16Array,
Uint16Array: Uint16Array,
Int32Array: Int32Array,
Uint32Array: Uint32Array,
Float32Array: Float32Array,
Float64Array: Float64Array
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function ObjectLoader( manager ) {
Loader.call( this, manager );
}
ObjectLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: ObjectLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path;
this.resourcePath = this.resourcePath || path;
const loader = new FileLoader( scope.manager );
loader.setPath( this.path );
loader.load( url, function ( text ) {
let json = null;
try {
json = JSON.parse( text );
} catch ( error ) {
if ( onError !== undefined ) onError( error );
console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );
return;
}
const metadata = json.metadata;
if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {
console.error( 'THREE.ObjectLoader: Can\'t load ' + url );
return;
}
scope.parse( json, onLoad );
}, onProgress, onError );
},
parse: function ( json, onLoad ) {
const shapes = this.parseShape( json.shapes );
const geometries = this.parseGeometries( json.geometries, shapes );
const images = this.parseImages( json.images, function () {
if ( onLoad !== undefined ) onLoad( object );
} );
const textures = this.parseTextures( json.textures, images );
const materials = this.parseMaterials( json.materials, textures );
const object = this.parseObject( json.object, geometries, materials );
if ( json.animations ) {
object.animations = this.parseAnimations( json.animations );
}
if ( json.images === undefined || json.images.length === 0 ) {
if ( onLoad !== undefined ) onLoad( object );
}
return object;
},
parseShape: function ( json ) {
const shapes = {};
if ( json !== undefined ) {
for ( let i = 0, l = json.length; i < l; i ++ ) {
const shape = new Shape().fromJSON( json[ i ] );
shapes[ shape.uuid ] = shape;
}
}
return shapes;
},
parseGeometries: function ( json, shapes ) {
const geometries = {};
let geometryShapes;
if ( json !== undefined ) {
const bufferGeometryLoader = new BufferGeometryLoader();
for ( let i = 0, l = json.length; i < l; i ++ ) {
let geometry;
const data = json[ i ];
switch ( data.type ) {
case 'PlaneGeometry':
case 'PlaneBufferGeometry':
geometry = new Geometries[ data.type ](
data.width,
data.height,
data.widthSegments,
data.heightSegments
);
break;
case 'BoxGeometry':
case 'BoxBufferGeometry':
case 'CubeGeometry': // backwards compatible
geometry = new Geometries[ data.type ](
data.width,
data.height,
data.depth,
data.widthSegments,
data.heightSegments,
data.depthSegments
);
break;
case 'CircleGeometry':
case 'CircleBufferGeometry':
geometry = new Geometries[ data.type ](
data.radius,
data.segments,
data.thetaStart,
data.thetaLength
);
break;
case 'CylinderGeometry':
case 'CylinderBufferGeometry':
geometry = new Geometries[ data.type ](
data.radiusTop,
data.radiusBottom,
data.height,
data.radialSegments,
data.heightSegments,
data.openEnded,
data.thetaStart,
data.thetaLength
);
break;
case 'ConeGeometry':
case 'ConeBufferGeometry':
geometry = new Geometries[ data.type ](
data.radius,
data.height,
data.radialSegments,
data.heightSegments,
data.openEnded,
data.thetaStart,
data.thetaLength
);
break;
case 'SphereGeometry':
case 'SphereBufferGeometry':
geometry = new Geometries[ data.type ](
data.radius,
data.widthSegments,
data.heightSegments,
data.phiStart,
data.phiLength,
data.thetaStart,
data.thetaLength
);
break;
case 'DodecahedronGeometry':
case 'DodecahedronBufferGeometry':
case 'IcosahedronGeometry':
case 'IcosahedronBufferGeometry':
case 'OctahedronGeometry':
case 'OctahedronBufferGeometry':
case 'TetrahedronGeometry':
case 'TetrahedronBufferGeometry':
geometry = new Geometries[ data.type ](
data.radius,
data.detail
);
break;
case 'RingGeometry':
case 'RingBufferGeometry':
geometry = new Geometries[ data.type ](
data.innerRadius,
data.outerRadius,
data.thetaSegments,
data.phiSegments,
data.thetaStart,
data.thetaLength
);
break;
case 'TorusGeometry':
case 'TorusBufferGeometry':
geometry = new Geometries[ data.type ](
data.radius,
data.tube,
data.radialSegments,
data.tubularSegments,
data.arc
);
break;
case 'TorusKnotGeometry':
case 'TorusKnotBufferGeometry':
geometry = new Geometries[ data.type ](
data.radius,
data.tube,
data.tubularSegments,
data.radialSegments,
data.p,
data.q
);
break;
case 'TubeGeometry':
case 'TubeBufferGeometry':
// This only works for built-in curves (e.g. CatmullRomCurve3).
// User defined curves or instances of CurvePath will not be deserialized.
geometry = new Geometries[ data.type ](
new Curves[ data.path.type ]().fromJSON( data.path ),
data.tubularSegments,
data.radius,
data.radialSegments,
data.closed
);
break;
case 'LatheGeometry':
case 'LatheBufferGeometry':
geometry = new Geometries[ data.type ](
data.points,
data.segments,
data.phiStart,
data.phiLength
);
break;
case 'PolyhedronGeometry':
case 'PolyhedronBufferGeometry':
geometry = new Geometries[ data.type ](
data.vertices,
data.indices,
data.radius,
data.details
);
break;
case 'ShapeGeometry':
case 'ShapeBufferGeometry':
geometryShapes = [];
for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {
const shape = shapes[ data.shapes[ j ] ];
geometryShapes.push( shape );
}
geometry = new Geometries[ data.type ](
geometryShapes,
data.curveSegments
);
break;
case 'ExtrudeGeometry':
case 'ExtrudeBufferGeometry':
geometryShapes = [];
for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {
const shape = shapes[ data.shapes[ j ] ];
geometryShapes.push( shape );
}
const extrudePath = data.options.extrudePath;
if ( extrudePath !== undefined ) {
data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );
}
geometry = new Geometries[ data.type ](
geometryShapes,
data.options
);
break;
case 'BufferGeometry':
case 'InstancedBufferGeometry':
geometry = bufferGeometryLoader.parse( data );
break;
case 'Geometry':
console.error( 'THREE.ObjectLoader: Loading "Geometry" is not supported anymore.' );
break;
default:
console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );
continue;
}
geometry.uuid = data.uuid;
if ( data.name !== undefined ) geometry.name = data.name;
if ( geometry.isBufferGeometry === true && data.userData !== undefined ) geometry.userData = data.userData;
geometries[ data.uuid ] = geometry;
}
}
return geometries;
},
parseMaterials: function ( json, textures ) {
const cache = {}; // MultiMaterial
const materials = {};
if ( json !== undefined ) {
const loader = new MaterialLoader();
loader.setTextures( textures );
for ( let i = 0, l = json.length; i < l; i ++ ) {
const data = json[ i ];
if ( data.type === 'MultiMaterial' ) {
// Deprecated
const array = [];
for ( let j = 0; j < data.materials.length; j ++ ) {
const material = data.materials[ j ];
if ( cache[ material.uuid ] === undefined ) {
cache[ material.uuid ] = loader.parse( material );
}
array.push( cache[ material.uuid ] );
}
materials[ data.uuid ] = array;
} else {
if ( cache[ data.uuid ] === undefined ) {
cache[ data.uuid ] = loader.parse( data );
}
materials[ data.uuid ] = cache[ data.uuid ];
}
}
}
return materials;
},
parseAnimations: function ( json ) {
const animations = [];
for ( let i = 0; i < json.length; i ++ ) {
const data = json[ i ];
const clip = AnimationClip.parse( data );
if ( data.uuid !== undefined ) clip.uuid = data.uuid;
animations.push( clip );
}
return animations;
},
parseImages: function ( json, onLoad ) {
const scope = this;
const images = {};
let loader;
function loadImage( url ) {
scope.manager.itemStart( url );
return loader.load( url, function () {
scope.manager.itemEnd( url );
}, undefined, function () {
scope.manager.itemError( url );
scope.manager.itemEnd( url );
} );
}
if ( json !== undefined && json.length > 0 ) {
const manager = new LoadingManager( onLoad );
loader = new ImageLoader( manager );
loader.setCrossOrigin( this.crossOrigin );
for ( let i = 0, il = json.length; i < il; i ++ ) {
const image = json[ i ];
const url = image.url;
if ( Array.isArray( url ) ) {
// load array of images e.g CubeTexture
images[ image.uuid ] = [];
for ( let j = 0, jl = url.length; j < jl; j ++ ) {
const currentUrl = url[ j ];
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( currentUrl ) ? currentUrl : scope.resourcePath + currentUrl;
images[ image.uuid ].push( loadImage( path ) );
}
} else {
// load single image
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.resourcePath + image.url;
images[ image.uuid ] = loadImage( path );
}
}
}
return images;
},
parseTextures: function ( json, images ) {
function parseConstant( value, type ) {
if ( typeof value === 'number' ) return value;
console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );
return type[ value ];
}
const textures = {};
if ( json !== undefined ) {
for ( let i = 0, l = json.length; i < l; i ++ ) {
const data = json[ i ];
if ( data.image === undefined ) {
console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );
}
if ( images[ data.image ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined image', data.image );
}
let texture;
if ( Array.isArray( images[ data.image ] ) ) {
texture = new CubeTexture( images[ data.image ] );
} else {
texture = new Texture( images[ data.image ] );
}
texture.needsUpdate = true;
texture.uuid = data.uuid;
if ( data.name !== undefined ) texture.name = data.name;
if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );
if ( data.offset !== undefined ) texture.offset.fromArray( data.offset );
if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat );
if ( data.center !== undefined ) texture.center.fromArray( data.center );
if ( data.rotation !== undefined ) texture.rotation = data.rotation;
if ( data.wrap !== undefined ) {
texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );
}
if ( data.format !== undefined ) texture.format = data.format;
if ( data.type !== undefined ) texture.type = data.type;
if ( data.encoding !== undefined ) texture.encoding = data.encoding;
if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER );
if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER );
if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;
if ( data.flipY !== undefined ) texture.flipY = data.flipY;
if ( data.premultiplyAlpha !== undefined ) texture.premultiplyAlpha = data.premultiplyAlpha;
if ( data.unpackAlignment !== undefined ) texture.unpackAlignment = data.unpackAlignment;
textures[ data.uuid ] = texture;
}
}
return textures;
},
parseObject: function ( data, geometries, materials ) {
let object;
function getGeometry( name ) {
if ( geometries[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined geometry', name );
}
return geometries[ name ];
}
function getMaterial( name ) {
if ( name === undefined ) return undefined;
if ( Array.isArray( name ) ) {
const array = [];
for ( let i = 0, l = name.length; i < l; i ++ ) {
const uuid = name[ i ];
if ( materials[ uuid ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined material', uuid );
}
array.push( materials[ uuid ] );
}
return array;
}
if ( materials[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined material', name );
}
return materials[ name ];
}
let geometry, material;
switch ( data.type ) {
case 'Scene':
object = new Scene();
if ( data.background !== undefined ) {
if ( Number.isInteger( data.background ) ) {
object.background = new Color( data.background );
}
}
if ( data.fog !== undefined ) {
if ( data.fog.type === 'Fog' ) {
object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );
} else if ( data.fog.type === 'FogExp2' ) {
object.fog = new FogExp2( data.fog.color, data.fog.density );
}
}
break;
case 'PerspectiveCamera':
object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );
if ( data.focus !== undefined ) object.focus = data.focus;
if ( data.zoom !== undefined ) object.zoom = data.zoom;
if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
break;
case 'OrthographicCamera':
object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );
if ( data.zoom !== undefined ) object.zoom = data.zoom;
if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
break;
case 'AmbientLight':
object = new AmbientLight( data.color, data.intensity );
break;
case 'DirectionalLight':
object = new DirectionalLight( data.color, data.intensity );
break;
case 'PointLight':
object = new PointLight( data.color, data.intensity, data.distance, data.decay );
break;
case 'RectAreaLight':
object = new RectAreaLight( data.color, data.intensity, data.width, data.height );
break;
case 'SpotLight':
object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );
break;
case 'HemisphereLight':
object = new HemisphereLight( data.color, data.groundColor, data.intensity );
break;
case 'LightProbe':
object = new LightProbe().fromJSON( data );
break;
case 'SkinnedMesh':
console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );
case 'Mesh':
geometry = getGeometry( data.geometry );
material = getMaterial( data.material );
object = new Mesh( geometry, material );
break;
case 'InstancedMesh':
geometry = getGeometry( data.geometry );
material = getMaterial( data.material );
const count = data.count;
const instanceMatrix = data.instanceMatrix;
object = new InstancedMesh( geometry, material, count );
object.instanceMatrix = new BufferAttribute( new Float32Array( instanceMatrix.array ), 16 );
break;
case 'LOD':
object = new LOD();
break;
case 'Line':
object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );
break;
case 'LineLoop':
object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'LineSegments':
object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'PointCloud':
case 'Points':
object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'Sprite':
object = new Sprite( getMaterial( data.material ) );
break;
case 'Group':
object = new Group();
break;
default:
object = new Object3D();
}
object.uuid = data.uuid;
if ( data.name !== undefined ) object.name = data.name;
if ( data.matrix !== undefined ) {
object.matrix.fromArray( data.matrix );
if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate;
if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale );
} else {
if ( data.position !== undefined ) object.position.fromArray( data.position );
if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion );
if ( data.scale !== undefined ) object.scale.fromArray( data.scale );
}
if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;
if ( data.shadow ) {
if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias;
if ( data.shadow.normalBias !== undefined ) object.shadow.normalBias = data.shadow.normalBias;
if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius;
if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize );
if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );
}
if ( data.visible !== undefined ) object.visible = data.visible;
if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled;
if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder;
if ( data.userData !== undefined ) object.userData = data.userData;
if ( data.layers !== undefined ) object.layers.mask = data.layers;
if ( data.children !== undefined ) {
const children = data.children;
for ( let i = 0; i < children.length; i ++ ) {
object.add( this.parseObject( children[ i ], geometries, materials ) );
}
}
if ( data.type === 'LOD' ) {
if ( data.autoUpdate !== undefined ) object.autoUpdate = data.autoUpdate;
const levels = data.levels;
for ( let l = 0; l < levels.length; l ++ ) {
const level = levels[ l ];
const child = object.getObjectByProperty( 'uuid', level.object );
if ( child !== undefined ) {
object.addLevel( child, level.distance );
}
}
}
return object;
}
} );
const TEXTURE_MAPPING = {
UVMapping: UVMapping,
CubeReflectionMapping: CubeReflectionMapping,
CubeRefractionMapping: CubeRefractionMapping,
EquirectangularReflectionMapping: EquirectangularReflectionMapping,
EquirectangularRefractionMapping: EquirectangularRefractionMapping,
CubeUVReflectionMapping: CubeUVReflectionMapping,
CubeUVRefractionMapping: CubeUVRefractionMapping
};
const TEXTURE_WRAPPING = {
RepeatWrapping: RepeatWrapping,
ClampToEdgeWrapping: ClampToEdgeWrapping,
MirroredRepeatWrapping: MirroredRepeatWrapping
};
const TEXTURE_FILTER = {
NearestFilter: NearestFilter,
NearestMipmapNearestFilter: NearestMipmapNearestFilter,
NearestMipmapLinearFilter: NearestMipmapLinearFilter,
LinearFilter: LinearFilter,
LinearMipmapNearestFilter: LinearMipmapNearestFilter,
LinearMipmapLinearFilter: LinearMipmapLinearFilter
};
/**
* @author thespite / http://clicktorelease.com/
*/
function ImageBitmapLoader( manager ) {
if ( typeof createImageBitmap === 'undefined' ) {
console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' );
}
if ( typeof fetch === 'undefined' ) {
console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' );
}
Loader.call( this, manager );
this.options = { premultiplyAlpha: 'none' };
}
ImageBitmapLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: ImageBitmapLoader,
isImageBitmapLoader: true,
setOptions: function setOptions( options ) {
this.options = options;
return this;
},
load: function ( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
url = this.manager.resolveURL( url );
const scope = this;
const cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
fetch( url ).then( function ( res ) {
return res.blob();
} ).then( function ( blob ) {
return createImageBitmap( blob, scope.options );
} ).then( function ( imageBitmap ) {
Cache.add( url, imageBitmap );
if ( onLoad ) onLoad( imageBitmap );
scope.manager.itemEnd( url );
} ).catch( function ( e ) {
if ( onError ) onError( e );
scope.manager.itemError( url );
scope.manager.itemEnd( url );
} );
scope.manager.itemStart( url );
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* minimal class for proxing functions to Path. Replaces old "extractSubpaths()"
**/
function ShapePath() {
this.type = 'ShapePath';
this.color = new Color();
this.subPaths = [];
this.currentPath = null;
}
Object.assign( ShapePath.prototype, {
moveTo: function ( x, y ) {
this.currentPath = new Path();
this.subPaths.push( this.currentPath );
this.currentPath.moveTo( x, y );
return this;
},
lineTo: function ( x, y ) {
this.currentPath.lineTo( x, y );
return this;
},
quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {
this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );
return this;
},
bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );
return this;
},
splineThru: function ( pts ) {
this.currentPath.splineThru( pts );
return this;
},
toShapes: function ( isCCW, noHoles ) {
function toShapesNoHoles( inSubpaths ) {
const shapes = [];
for ( let i = 0, l = inSubpaths.length; i < l; i ++ ) {
const tmpPath = inSubpaths[ i ];
const tmpShape = new Shape();
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
}
return shapes;
}
function isPointInsidePolygon( inPt, inPolygon ) {
const polyLen = inPolygon.length;
// inPt on polygon contour => immediate success or
// toggling of inside/outside at every single! intersection point of an edge
// with the horizontal line through inPt, left of inPt
// not counting lowerY endpoints of edges and whole edges on that line
let inside = false;
for ( let p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {
let edgeLowPt = inPolygon[ p ];
let edgeHighPt = inPolygon[ q ];
let edgeDx = edgeHighPt.x - edgeLowPt.x;
let edgeDy = edgeHighPt.y - edgeLowPt.y;
if ( Math.abs( edgeDy ) > Number.EPSILON ) {
// not parallel
if ( edgeDy < 0 ) {
edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;
}
if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue;
if ( inPt.y === edgeLowPt.y ) {
if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ?
// continue; // no intersection or edgeLowPt => doesn't count !!!
} else {
const perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
if ( perpEdge === 0 ) return true; // inPt is on contour ?
if ( perpEdge < 0 ) continue;
inside = ! inside; // true intersection left of inPt
}
} else {
// parallel or collinear
if ( inPt.y !== edgeLowPt.y ) continue; // parallel
// edge lies on the same horizontal line as inPt
if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour !
// continue;
}
}
return inside;
}
const isClockWise = ShapeUtils.isClockWise;
const subPaths = this.subPaths;
if ( subPaths.length === 0 ) return [];
if ( noHoles === true ) return toShapesNoHoles( subPaths );
let solid, tmpPath, tmpShape, shapes = [];
if ( subPaths.length === 1 ) {
tmpPath = subPaths[ 0 ];
tmpShape = new Shape();
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
return shapes;
}
let holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
holesFirst = isCCW ? ! holesFirst : holesFirst;
// console.log("Holes first", holesFirst);
const betterShapeHoles = [];
const newShapes = [];
let newShapeHoles = [];
let mainIdx = 0;
let tmpPoints;
newShapes[ mainIdx ] = undefined;
newShapeHoles[ mainIdx ] = [];
for ( let i = 0, l = subPaths.length; i < l; i ++ ) {
tmpPath = subPaths[ i ];
tmpPoints = tmpPath.getPoints();
solid = isClockWise( tmpPoints );
solid = isCCW ? ! solid : solid;
if ( solid ) {
if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++;
newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
newShapes[ mainIdx ].s.curves = tmpPath.curves;
if ( holesFirst ) mainIdx ++;
newShapeHoles[ mainIdx ] = [];
//console.log('cw', i);
} else {
newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );
//console.log('ccw', i);
}
}
// only Holes? -> probably all Shapes with wrong orientation
if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths );
if ( newShapes.length > 1 ) {
let ambiguous = false;
const toChange = [];
for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
betterShapeHoles[ sIdx ] = [];
}
for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
const sho = newShapeHoles[ sIdx ];
for ( let hIdx = 0; hIdx < sho.length; hIdx ++ ) {
const ho = sho[ hIdx ];
let hole_unassigned = true;
for ( let s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {
if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {
if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
if ( hole_unassigned ) {
hole_unassigned = false;
betterShapeHoles[ s2Idx ].push( ho );
} else {
ambiguous = true;
}
}
}
if ( hole_unassigned ) {
betterShapeHoles[ sIdx ].push( ho );
}
}
}
// console.log("ambiguous: ", ambiguous);
if ( toChange.length > 0 ) {
// console.log("to change: ", toChange);
if ( ! ambiguous ) newShapeHoles = betterShapeHoles;
}
}
let tmpHoles;
for ( let i = 0, il = newShapes.length; i < il; i ++ ) {
tmpShape = newShapes[ i ].s;
shapes.push( tmpShape );
tmpHoles = newShapeHoles[ i ];
for ( let j = 0, jl = tmpHoles.length; j < jl; j ++ ) {
tmpShape.holes.push( tmpHoles[ j ].h );
}
}
//console.log("shape", shapes);
return shapes;
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author mrdoob / http://mrdoob.com/
*/
function Font( data ) {
this.type = 'Font';
this.data = data;
}
Object.assign( Font.prototype, {
isFont: true,
generateShapes: function ( text, size ) {
if ( size === undefined ) size = 100;
const shapes = [];
const paths = createPaths( text, size, this.data );
for ( let p = 0, pl = paths.length; p < pl; p ++ ) {
Array.prototype.push.apply( shapes, paths[ p ].toShapes() );
}
return shapes;
}
} );
function createPaths( text, size, data ) {
const chars = Array.from ? Array.from( text ) : String( text ).split( '' ); // workaround for IE11, see #13988
const scale = size / data.resolution;
const line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;
const paths = [];
let offsetX = 0, offsetY = 0;
for ( let i = 0; i < chars.length; i ++ ) {
const char = chars[ i ];
if ( char === '\n' ) {
offsetX = 0;
offsetY -= line_height;
} else {
const ret = createPath( char, scale, offsetX, offsetY, data );
offsetX += ret.offsetX;
paths.push( ret.path );
}
}
return paths;
}
function createPath( char, scale, offsetX, offsetY, data ) {
const glyph = data.glyphs[ char ] || data.glyphs[ '?' ];
if ( ! glyph ) {
console.error( 'THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.' );
return;
}
const path = new ShapePath();
let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;
if ( glyph.o ) {
const outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );
for ( let i = 0, l = outline.length; i < l; ) {
const action = outline[ i ++ ];
switch ( action ) {
case 'm': // moveTo
x = outline[ i ++ ] * scale + offsetX;
y = outline[ i ++ ] * scale + offsetY;
path.moveTo( x, y );
break;
case 'l': // lineTo
x = outline[ i ++ ] * scale + offsetX;
y = outline[ i ++ ] * scale + offsetY;
path.lineTo( x, y );
break;
case 'q': // quadraticCurveTo
cpx = outline[ i ++ ] * scale + offsetX;
cpy = outline[ i ++ ] * scale + offsetY;
cpx1 = outline[ i ++ ] * scale + offsetX;
cpy1 = outline[ i ++ ] * scale + offsetY;
path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );
break;
case 'b': // bezierCurveTo
cpx = outline[ i ++ ] * scale + offsetX;
cpy = outline[ i ++ ] * scale + offsetY;
cpx1 = outline[ i ++ ] * scale + offsetX;
cpy1 = outline[ i ++ ] * scale + offsetY;
cpx2 = outline[ i ++ ] * scale + offsetX;
cpy2 = outline[ i ++ ] * scale + offsetY;
path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );
break;
}
}
}
return { offsetX: glyph.ha * scale, path: path };
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function FontLoader( manager ) {
Loader.call( this, manager );
}
FontLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: FontLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.load( url, function ( text ) {
let json;
try {
json = JSON.parse( text );
} catch ( e ) {
console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' );
json = JSON.parse( text.substring( 65, text.length - 2 ) );
}
const font = scope.parse( json );
if ( onLoad ) onLoad( font );
}, onProgress, onError );
},
parse: function ( json ) {
return new Font( json );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
let _context;
const AudioContext = {
getContext: function () {
if ( _context === undefined ) {
_context = new ( window.AudioContext || window.webkitAudioContext )();
}
return _context;
},
setContext: function ( value ) {
_context = value;
}
};
/**
* @author Reece Aaron Lecrivain / http://reecenotes.com/
*/
function AudioLoader( manager ) {
Loader.call( this, manager );
}
AudioLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: AudioLoader,
load: function ( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setResponseType( 'arraybuffer' );
loader.setPath( scope.path );
loader.load( url, function ( buffer ) {
try {
// Create a copy of the buffer. The `decodeAudioData` method
// detaches the buffer when complete, preventing reuse.
const bufferCopy = buffer.slice( 0 );
const context = AudioContext.getContext();
context.decodeAudioData( bufferCopy, function ( audioBuffer ) {
onLoad( audioBuffer );
} );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
} );
/**
* @author WestLangley / http://github.com/WestLangley
*/
function HemisphereLightProbe( skyColor, groundColor, intensity ) {
LightProbe.call( this, undefined, intensity );
const color1 = new Color().set( skyColor );
const color2 = new Color().set( groundColor );
const sky = new Vector3( color1.r, color1.g, color1.b );
const ground = new Vector3( color2.r, color2.g, color2.b );
// without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
const c0 = Math.sqrt( Math.PI );
const c1 = c0 * Math.sqrt( 0.75 );
this.sh.coefficients[ 0 ].copy( sky ).add( ground ).multiplyScalar( c0 );
this.sh.coefficients[ 1 ].copy( sky ).sub( ground ).multiplyScalar( c1 );
}
HemisphereLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), {
constructor: HemisphereLightProbe,
isHemisphereLightProbe: true,
copy: function ( source ) { // modifying colors not currently supported
LightProbe.prototype.copy.call( this, source );
return this;
},
toJSON: function ( meta ) {
const data = LightProbe.prototype.toJSON.call( this, meta );
// data.sh = this.sh.toArray(); // todo
return data;
}
} );
/**
* @author WestLangley / http://github.com/WestLangley
*/
function AmbientLightProbe( color, intensity ) {
LightProbe.call( this, undefined, intensity );
const color1 = new Color().set( color );
// without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
this.sh.coefficients[ 0 ].set( color1.r, color1.g, color1.b ).multiplyScalar( 2 * Math.sqrt( Math.PI ) );
}
AmbientLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), {
constructor: AmbientLightProbe,
isAmbientLightProbe: true,
copy: function ( source ) { // modifying color not currently supported
LightProbe.prototype.copy.call( this, source );
return this;
},
toJSON: function ( meta ) {
const data = LightProbe.prototype.toJSON.call( this, meta );
// data.sh = this.sh.toArray(); // todo
return data;
}
} );
const _eyeRight = new Matrix4();
const _eyeLeft = new Matrix4();
/**
* @author mrdoob / http://mrdoob.com/
*/
function StereoCamera() {
this.type = 'StereoCamera';
this.aspect = 1;
this.eyeSep = 0.064;
this.cameraL = new PerspectiveCamera();
this.cameraL.layers.enable( 1 );
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new PerspectiveCamera();
this.cameraR.layers.enable( 2 );
this.cameraR.matrixAutoUpdate = false;
this._cache = {
focus: null,
fov: null,
aspect: null,
near: null,
far: null,
zoom: null,
eyeSep: null
};
}
Object.assign( StereoCamera.prototype, {
update: function ( camera ) {
const cache = this._cache;
const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov ||
cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near ||
cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
if ( needsUpdate ) {
cache.focus = camera.focus;
cache.fov = camera.fov;
cache.aspect = camera.aspect * this.aspect;
cache.near = camera.near;
cache.far = camera.far;
cache.zoom = camera.zoom;
cache.eyeSep = this.eyeSep;
// Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
const projectionMatrix = camera.projectionMatrix.clone();
const eyeSepHalf = cache.eyeSep / 2;
const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
const ymax = ( cache.near * Math.tan( MathUtils.DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom;
let xmin, xmax;
// translate xOffset
_eyeLeft.elements[ 12 ] = - eyeSepHalf;
_eyeRight.elements[ 12 ] = eyeSepHalf;
// for left eye
xmin = - ymax * cache.aspect + eyeSepOnProjection;
xmax = ymax * cache.aspect + eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraL.projectionMatrix.copy( projectionMatrix );
// for right eye
xmin = - ymax * cache.aspect - eyeSepOnProjection;
xmax = ymax * cache.aspect - eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraR.projectionMatrix.copy( projectionMatrix );
}
this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft );
this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function Clock( autoStart ) {
this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
}
Object.assign( Clock.prototype, {
start: function () {
this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732
this.oldTime = this.startTime;
this.elapsedTime = 0;
this.running = true;
},
stop: function () {
this.getElapsedTime();
this.running = false;
this.autoStart = false;
},
getElapsedTime: function () {
this.getDelta();
return this.elapsedTime;
},
getDelta: function () {
let diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
return 0;
}
if ( this.running ) {
const newTime = ( typeof performance === 'undefined' ? Date : performance ).now();
diff = ( newTime - this.oldTime ) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const _position$2 = new Vector3();
const _quaternion$3 = new Quaternion();
const _scale$1 = new Vector3();
const _orientation = new Vector3();
function AudioListener() {
Object3D.call( this );
this.type = 'AudioListener';
this.context = AudioContext.getContext();
this.gain = this.context.createGain();
this.gain.connect( this.context.destination );
this.filter = null;
this.timeDelta = 0;
// private
this._clock = new Clock();
}
AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: AudioListener,
getInput: function () {
return this.gain;
},
removeFilter: function ( ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
this.gain.connect( this.context.destination );
this.filter = null;
}
return this;
},
getFilter: function () {
return this.filter;
},
setFilter: function ( value ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
} else {
this.gain.disconnect( this.context.destination );
}
this.filter = value;
this.gain.connect( this.filter );
this.filter.connect( this.context.destination );
return this;
},
getMasterVolume: function () {
return this.gain.gain.value;
},
setMasterVolume: function ( value ) {
this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );
return this;
},
updateMatrixWorld: function ( force ) {
Object3D.prototype.updateMatrixWorld.call( this, force );
const listener = this.context.listener;
const up = this.up;
this.timeDelta = this._clock.getDelta();
this.matrixWorld.decompose( _position$2, _quaternion$3, _scale$1 );
_orientation.set( 0, 0, - 1 ).applyQuaternion( _quaternion$3 );
if ( listener.positionX ) {
// code path for Chrome (see #14393)
const endTime = this.context.currentTime + this.timeDelta;
listener.positionX.linearRampToValueAtTime( _position$2.x, endTime );
listener.positionY.linearRampToValueAtTime( _position$2.y, endTime );
listener.positionZ.linearRampToValueAtTime( _position$2.z, endTime );
listener.forwardX.linearRampToValueAtTime( _orientation.x, endTime );
listener.forwardY.linearRampToValueAtTime( _orientation.y, endTime );
listener.forwardZ.linearRampToValueAtTime( _orientation.z, endTime );
listener.upX.linearRampToValueAtTime( up.x, endTime );
listener.upY.linearRampToValueAtTime( up.y, endTime );
listener.upZ.linearRampToValueAtTime( up.z, endTime );
} else {
listener.setPosition( _position$2.x, _position$2.y, _position$2.z );
listener.setOrientation( _orientation.x, _orientation.y, _orientation.z, up.x, up.y, up.z );
}
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author Reece Aaron Lecrivain / http://reecenotes.com/
*/
function Audio( listener ) {
Object3D.call( this );
this.type = 'Audio';
this.listener = listener;
this.context = listener.context;
this.gain = this.context.createGain();
this.gain.connect( listener.getInput() );
this.autoplay = false;
this.buffer = null;
this.detune = 0;
this.loop = false;
this.loopStart = 0;
this.loopEnd = 0;
this.offset = 0;
this.duration = undefined;
this.playbackRate = 1;
this.isPlaying = false;
this.hasPlaybackControl = true;
this.sourceType = 'empty';
this._startedAt = 0;
this._progress = 0;
this.filters = [];
}
Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Audio,
getOutput: function () {
return this.gain;
},
setNodeSource: function ( audioNode ) {
this.hasPlaybackControl = false;
this.sourceType = 'audioNode';
this.source = audioNode;
this.connect();
return this;
},
setMediaElementSource: function ( mediaElement ) {
this.hasPlaybackControl = false;
this.sourceType = 'mediaNode';
this.source = this.context.createMediaElementSource( mediaElement );
this.connect();
return this;
},
setMediaStreamSource: function ( mediaStream ) {
this.hasPlaybackControl = false;
this.sourceType = 'mediaStreamNode';
this.source = this.context.createMediaStreamSource( mediaStream );
this.connect();
return this;
},
setBuffer: function ( audioBuffer ) {
this.buffer = audioBuffer;
this.sourceType = 'buffer';
if ( this.autoplay ) this.play();
return this;
},
play: function ( delay ) {
if ( delay === undefined ) delay = 0;
if ( this.isPlaying === true ) {
console.warn( 'THREE.Audio: Audio is already playing.' );
return;
}
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this._startedAt = this.context.currentTime + delay;
const source = this.context.createBufferSource();
source.buffer = this.buffer;
source.loop = this.loop;
source.loopStart = this.loopStart;
source.loopEnd = this.loopEnd;
source.onended = this.onEnded.bind( this );
source.start( this._startedAt, this._progress + this.offset, this.duration );
this.isPlaying = true;
this.source = source;
this.setDetune( this.detune );
this.setPlaybackRate( this.playbackRate );
return this.connect();
},
pause: function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
if ( this.isPlaying === true ) {
// update current progress
this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate;
if ( this.loop === true ) {
// ensure _progress does not exceed duration with looped audios
this._progress = this._progress % ( this.duration || this.buffer.duration );
}
this.source.stop();
this.source.onended = null;
this.isPlaying = false;
}
return this;
},
stop: function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this._progress = 0;
this.source.stop();
this.source.onended = null;
this.isPlaying = false;
return this;
},
connect: function () {
if ( this.filters.length > 0 ) {
this.source.connect( this.filters[ 0 ] );
for ( let i = 1, l = this.filters.length; i < l; i ++ ) {
this.filters[ i - 1 ].connect( this.filters[ i ] );
}
this.filters[ this.filters.length - 1 ].connect( this.getOutput() );
} else {
this.source.connect( this.getOutput() );
}
return this;
},
disconnect: function () {
if ( this.filters.length > 0 ) {
this.source.disconnect( this.filters[ 0 ] );
for ( let i = 1, l = this.filters.length; i < l; i ++ ) {
this.filters[ i - 1 ].disconnect( this.filters[ i ] );
}
this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );
} else {
this.source.disconnect( this.getOutput() );
}
return this;
},
getFilters: function () {
return this.filters;
},
setFilters: function ( value ) {
if ( ! value ) value = [];
if ( this.isPlaying === true ) {
this.disconnect();
this.filters = value;
this.connect();
} else {
this.filters = value;
}
return this;
},
setDetune: function ( value ) {
this.detune = value;
if ( this.source.detune === undefined ) return; // only set detune when available
if ( this.isPlaying === true ) {
this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 );
}
return this;
},
getDetune: function () {
return this.detune;
},
getFilter: function () {
return this.getFilters()[ 0 ];
},
setFilter: function ( filter ) {
return this.setFilters( filter ? [ filter ] : [] );
},
setPlaybackRate: function ( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.playbackRate = value;
if ( this.isPlaying === true ) {
this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 );
}
return this;
},
getPlaybackRate: function () {
return this.playbackRate;
},
onEnded: function () {
this.isPlaying = false;
},
getLoop: function () {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return false;
}
return this.loop;
},
setLoop: function ( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.loop = value;
if ( this.isPlaying === true ) {
this.source.loop = this.loop;
}
return this;
},
setLoopStart: function ( value ) {
this.loopStart = value;
return this;
},
setLoopEnd: function ( value ) {
this.loopEnd = value;
return this;
},
getVolume: function () {
return this.gain.gain.value;
},
setVolume: function ( value ) {
this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
const _position$3 = new Vector3();
const _quaternion$4 = new Quaternion();
const _scale$2 = new Vector3();
const _orientation$1 = new Vector3();
function PositionalAudio( listener ) {
Audio.call( this, listener );
this.panner = this.context.createPanner();
this.panner.panningModel = 'HRTF';
this.panner.connect( this.gain );
}
PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {
constructor: PositionalAudio,
getOutput: function () {
return this.panner;
},
getRefDistance: function () {
return this.panner.refDistance;
},
setRefDistance: function ( value ) {
this.panner.refDistance = value;
return this;
},
getRolloffFactor: function () {
return this.panner.rolloffFactor;
},
setRolloffFactor: function ( value ) {
this.panner.rolloffFactor = value;
return this;
},
getDistanceModel: function () {
return this.panner.distanceModel;
},
setDistanceModel: function ( value ) {
this.panner.distanceModel = value;
return this;
},
getMaxDistance: function () {
return this.panner.maxDistance;
},
setMaxDistance: function ( value ) {
this.panner.maxDistance = value;
return this;
},
setDirectionalCone: function ( coneInnerAngle, coneOuterAngle, coneOuterGain ) {
this.panner.coneInnerAngle = coneInnerAngle;
this.panner.coneOuterAngle = coneOuterAngle;
this.panner.coneOuterGain = coneOuterGain;
return this;
},
updateMatrixWorld: function ( force ) {
Object3D.prototype.updateMatrixWorld.call( this, force );
if ( this.hasPlaybackControl === true && this.isPlaying === false ) return;
this.matrixWorld.decompose( _position$3, _quaternion$4, _scale$2 );
_orientation$1.set( 0, 0, 1 ).applyQuaternion( _quaternion$4 );
const panner = this.panner;
if ( panner.positionX ) {
// code path for Chrome and Firefox (see #14393)
const endTime = this.context.currentTime + this.listener.timeDelta;
panner.positionX.linearRampToValueAtTime( _position$3.x, endTime );
panner.positionY.linearRampToValueAtTime( _position$3.y, endTime );
panner.positionZ.linearRampToValueAtTime( _position$3.z, endTime );
panner.orientationX.linearRampToValueAtTime( _orientation$1.x, endTime );
panner.orientationY.linearRampToValueAtTime( _orientation$1.y, endTime );
panner.orientationZ.linearRampToValueAtTime( _orientation$1.z, endTime );
} else {
panner.setPosition( _position$3.x, _position$3.y, _position$3.z );
panner.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z );
}
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function AudioAnalyser( audio, fftSize ) {
this.analyser = audio.context.createAnalyser();
this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;
this.data = new Uint8Array( this.analyser.frequencyBinCount );
audio.getOutput().connect( this.analyser );
}
Object.assign( AudioAnalyser.prototype, {
getFrequencyData: function () {
this.analyser.getByteFrequencyData( this.data );
return this.data;
},
getAverageFrequency: function () {
let value = 0;
const data = this.getFrequencyData();
for ( let i = 0; i < data.length; i ++ ) {
value += data[ i ];
}
return value / data.length;
}
} );
/**
*
* Buffered scene graph property that allows weighted accumulation.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function PropertyMixer( binding, typeName, valueSize ) {
this.binding = binding;
this.valueSize = valueSize;
let mixFunction,
mixFunctionAdditive,
setIdentity;
// buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
//
// interpolators can use .buffer as their .result
// the data then goes to 'incoming'
//
// 'accu0' and 'accu1' are used frame-interleaved for
// the cumulative result and are compared to detect
// changes
//
// 'orig' stores the original state of the property
//
// 'add' is used for additive cumulative results
//
// 'work' is optional and is only present for quaternion types. It is used
// to store intermediate quaternion multiplication results
switch ( typeName ) {
case 'quaternion':
mixFunction = this._slerp;
mixFunctionAdditive = this._slerpAdditive;
setIdentity = this._setAdditiveIdentityQuaternion;
this.buffer = new Float64Array( valueSize * 6 );
this._workIndex = 5;
break;
case 'string':
case 'bool':
mixFunction = this._select;
// Use the regular mix function and for additive on these types,
// additive is not relevant for non-numeric types
mixFunctionAdditive = this._select;
setIdentity = this._setAdditiveIdentityOther;
this.buffer = new Array( valueSize * 5 );
break;
default:
mixFunction = this._lerp;
mixFunctionAdditive = this._lerpAdditive;
setIdentity = this._setAdditiveIdentityNumeric;
this.buffer = new Float64Array( valueSize * 5 );
}
this._mixBufferRegion = mixFunction;
this._mixBufferRegionAdditive = mixFunctionAdditive;
this._setIdentity = setIdentity;
this._origIndex = 3;
this._addIndex = 4;
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
this.useCount = 0;
this.referenceCount = 0;
}
Object.assign( PropertyMixer.prototype, {
// accumulate data in the 'incoming' region into 'accu<i>'
accumulate: function ( accuIndex, weight ) {
// note: happily accumulating nothing when weight = 0, the caller knows
// the weight and shouldn't have made the call in the first place
const buffer = this.buffer,
stride = this.valueSize,
offset = accuIndex * stride + stride;
let currentWeight = this.cumulativeWeight;
if ( currentWeight === 0 ) {
// accuN := incoming * weight
for ( let i = 0; i !== stride; ++ i ) {
buffer[ offset + i ] = buffer[ i ];
}
currentWeight = weight;
} else {
// accuN := accuN + incoming * weight
currentWeight += weight;
const mix = weight / currentWeight;
this._mixBufferRegion( buffer, offset, 0, mix, stride );
}
this.cumulativeWeight = currentWeight;
},
// accumulate data in the 'incoming' region into 'add'
accumulateAdditive: function ( weight ) {
const buffer = this.buffer,
stride = this.valueSize,
offset = stride * this._addIndex;
if ( this.cumulativeWeightAdditive === 0 ) {
// add = identity
this._setIdentity();
}
// add := add + incoming * weight
this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride );
this.cumulativeWeightAdditive += weight;
},
// apply the state of 'accu<i>' to the binding when accus differ
apply: function ( accuIndex ) {
const stride = this.valueSize,
buffer = this.buffer,
offset = accuIndex * stride + stride,
weight = this.cumulativeWeight,
weightAdditive = this.cumulativeWeightAdditive,
binding = this.binding;
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
if ( weight < 1 ) {
// accuN := accuN + original * ( 1 - cumulativeWeight )
const originalValueOffset = stride * this._origIndex;
this._mixBufferRegion(
buffer, offset, originalValueOffset, 1 - weight, stride );
}
if ( weightAdditive > 0 ) {
// accuN := accuN + additive accuN
this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride );
}
for ( let i = stride, e = stride + stride; i !== e; ++ i ) {
if ( buffer[ i ] !== buffer[ i + stride ] ) {
// value has changed -> update scene graph
binding.setValue( buffer, offset );
break;
}
}
},
// remember the state of the bound property and copy it to both accus
saveOriginalState: function () {
const binding = this.binding;
const buffer = this.buffer,
stride = this.valueSize,
originalValueOffset = stride * this._origIndex;
binding.getValue( buffer, originalValueOffset );
// accu[0..1] := orig -- initially detect changes against the original
for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) {
buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];
}
// Add to identity for additive
this._setIdentity();
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
},
// apply the state previously taken via 'saveOriginalState' to the binding
restoreOriginalState: function () {
const originalValueOffset = this.valueSize * 3;
this.binding.setValue( this.buffer, originalValueOffset );
},
_setAdditiveIdentityNumeric: function () {
const startIndex = this._addIndex * this.valueSize;
const endIndex = startIndex + this.valueSize;
for ( let i = startIndex; i < endIndex; i ++ ) {
this.buffer[ i ] = 0;
}
},
_setAdditiveIdentityQuaternion: function () {
this._setAdditiveIdentityNumeric();
this.buffer[ this._addIndex * 4 + 3 ] = 1;
},
_setAdditiveIdentityOther: function () {
const startIndex = this._origIndex * this.valueSize;
const targetIndex = this._addIndex * this.valueSize;
for ( let i = 0; i < this.valueSize; i ++ ) {
this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ];
}
},
// mix functions
_select: function ( buffer, dstOffset, srcOffset, t, stride ) {
if ( t >= 0.5 ) {
for ( let i = 0; i !== stride; ++ i ) {
buffer[ dstOffset + i ] = buffer[ srcOffset + i ];
}
}
},
_slerp: function ( buffer, dstOffset, srcOffset, t ) {
Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );
},
_slerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) {
const workOffset = this._workIndex * stride;
// Store result in intermediate buffer offset
Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset );
// Slerp to the intermediate result
Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t );
},
_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {
const s = 1 - t;
for ( let i = 0; i !== stride; ++ i ) {
const j = dstOffset + i;
buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;
}
},
_lerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) {
for ( let i = 0; i !== stride; ++ i ) {
const j = dstOffset + i;
buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t;
}
}
} );
/**
*
* A reference to a real property in the scene graph.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
// Characters [].:/ are reserved for track binding syntax.
const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' );
// Attempts to allow node names from any language. ES5's `\w` regexp matches
// only latin characters, and the unicode \p{L} is not yet supported. So
// instead, we exclude reserved characters and match everything else.
const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']';
// Parent directories, delimited by '/' or ':'. Currently unused, but must
// be matched to parse the rest of the track name.
const _directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar );
// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
const _nodeRe = /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot );
// Object on target node, and accessor. May not contain reserved
// characters. Accessor may contain any character except closing bracket.
const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar );
// Property and accessor. May not contain reserved characters. Accessor may
// contain any non-bracket characters.
const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar );
const _trackRe = new RegExp( ''
+ '^'
+ _directoryRe
+ _nodeRe
+ _objectRe
+ _propertyRe
+ '$'
);
const _supportedObjectNames = [ 'material', 'materials', 'bones' ];
function Composite( targetGroup, path, optionalParsedPath ) {
const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );
this._targetGroup = targetGroup;
this._bindings = targetGroup.subscribe_( path, parsedPath );
}
Object.assign( Composite.prototype, {
getValue: function ( array, offset ) {
this.bind(); // bind all binding
const firstValidIndex = this._targetGroup.nCachedObjects_,
binding = this._bindings[ firstValidIndex ];
// and only call .getValue on the first
if ( binding !== undefined ) binding.getValue( array, offset );
},
setValue: function ( array, offset ) {
const bindings = this._bindings;
for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {
bindings[ i ].setValue( array, offset );
}
},
bind: function () {
const bindings = this._bindings;
for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {
bindings[ i ].bind();
}
},
unbind: function () {
const bindings = this._bindings;
for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {
bindings[ i ].unbind();
}
}
} );
function PropertyBinding( rootNode, path, parsedPath ) {
this.path = path;
this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );
this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;
this.rootNode = rootNode;
}
Object.assign( PropertyBinding, {
Composite: Composite,
create: function ( root, path, parsedPath ) {
if ( ! ( root && root.isAnimationObjectGroup ) ) {
return new PropertyBinding( root, path, parsedPath );
} else {
return new PropertyBinding.Composite( root, path, parsedPath );
}
},
/**
* Replaces spaces with underscores and removes unsupported characters from
* node names, to ensure compatibility with parseTrackName().
*
* @param {string} name Node name to be sanitized.
* @return {string}
*/
sanitizeNodeName: function ( name ) {
return name.replace( /\s/g, '_' ).replace( _reservedRe, '' );
},
parseTrackName: function ( trackName ) {
const matches = _trackRe.exec( trackName );
if ( ! matches ) {
throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );
}
const results = {
// directoryName: matches[ 1 ], // (tschw) currently unused
nodeName: matches[ 2 ],
objectName: matches[ 3 ],
objectIndex: matches[ 4 ],
propertyName: matches[ 5 ], // required
propertyIndex: matches[ 6 ]
};
const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );
if ( lastDot !== undefined && lastDot !== - 1 ) {
const objectName = results.nodeName.substring( lastDot + 1 );
// Object names must be checked against an allowlist. Otherwise, there
// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
// 'bar' could be the objectName, or part of a nodeName (which can
// include '.' characters).
if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) {
results.nodeName = results.nodeName.substring( 0, lastDot );
results.objectName = objectName;
}
}
if ( results.propertyName === null || results.propertyName.length === 0 ) {
throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );
}
return results;
},
findNode: function ( root, nodeName ) {
if ( ! nodeName || nodeName === "" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {
return root;
}
// search into skeleton bones.
if ( root.skeleton ) {
const bone = root.skeleton.getBoneByName( nodeName );
if ( bone !== undefined ) {
return bone;
}
}
// search into node subtree.
if ( root.children ) {
const searchNodeSubtree = function ( children ) {
for ( let i = 0; i < children.length; i ++ ) {
const childNode = children[ i ];
if ( childNode.name === nodeName || childNode.uuid === nodeName ) {
return childNode;
}
const result = searchNodeSubtree( childNode.children );
if ( result ) return result;
}
return null;
};
const subTreeNode = searchNodeSubtree( root.children );
if ( subTreeNode ) {
return subTreeNode;
}
}
return null;
}
} );
Object.assign( PropertyBinding.prototype, { // prototype, continued
// these are used to "bind" a nonexistent property
_getValue_unavailable: function () {},
_setValue_unavailable: function () {},
BindingType: {
Direct: 0,
EntireArray: 1,
ArrayElement: 2,
HasFromToArray: 3
},
Versioning: {
None: 0,
NeedsUpdate: 1,
MatrixWorldNeedsUpdate: 2
},
GetterByBindingType: [
function getValue_direct( buffer, offset ) {
buffer[ offset ] = this.node[ this.propertyName ];
},
function getValue_array( buffer, offset ) {
const source = this.resolvedProperty;
for ( let i = 0, n = source.length; i !== n; ++ i ) {
buffer[ offset ++ ] = source[ i ];
}
},
function getValue_arrayElement( buffer, offset ) {
buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];
},
function getValue_toArray( buffer, offset ) {
this.resolvedProperty.toArray( buffer, offset );
}
],
SetterByBindingTypeAndVersioning: [
[
// Direct
function setValue_direct( buffer, offset ) {
this.targetObject[ this.propertyName ] = buffer[ offset ];
},
function setValue_direct_setNeedsUpdate( buffer, offset ) {
this.targetObject[ this.propertyName ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
},
function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.targetObject[ this.propertyName ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// EntireArray
function setValue_array( buffer, offset ) {
const dest = this.resolvedProperty;
for ( let i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
},
function setValue_array_setNeedsUpdate( buffer, offset ) {
const dest = this.resolvedProperty;
for ( let i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.needsUpdate = true;
},
function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {
const dest = this.resolvedProperty;
for ( let i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// ArrayElement
function setValue_arrayElement( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
},
function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
},
function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
], [
// HasToFromArray
function setValue_fromArray( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
},
function setValue_fromArray_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.needsUpdate = true;
},
function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.matrixWorldNeedsUpdate = true;
}
]
],
getValue: function getValue_unbound( targetArray, offset ) {
this.bind();
this.getValue( targetArray, offset );
// Note: This class uses a State pattern on a per-method basis:
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
// prototype version of these methods with one that represents
// the bound state. When the property is not found, the methods
// become no-ops.
},
setValue: function getValue_unbound( sourceArray, offset ) {
this.bind();
this.setValue( sourceArray, offset );
},
// create getter / setter pair for a property in the scene graph
bind: function () {
let targetObject = this.node,
parsedPath = this.parsedPath,
objectName = parsedPath.objectName,
propertyName = parsedPath.propertyName,
propertyIndex = parsedPath.propertyIndex;
if ( ! targetObject ) {
targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode;
this.node = targetObject;
}
// set fail state so we can just 'return' on error
this.getValue = this._getValue_unavailable;
this.setValue = this._setValue_unavailable;
// ensure there is a value node
if ( ! targetObject ) {
console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' );
return;
}
if ( objectName ) {
let objectIndex = parsedPath.objectIndex;
// special cases were we need to reach deeper into the hierarchy to get the face materials....
switch ( objectName ) {
case 'materials':
if ( ! targetObject.material ) {
console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
return;
}
if ( ! targetObject.material.materials ) {
console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this );
return;
}
targetObject = targetObject.material.materials;
break;
case 'bones':
if ( ! targetObject.skeleton ) {
console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this );
return;
}
// potential future optimization: skip this if propertyIndex is already an integer
// and convert the integer string to a true integer.
targetObject = targetObject.skeleton.bones;
// support resolving morphTarget names into indices.
for ( let i = 0; i < targetObject.length; i ++ ) {
if ( targetObject[ i ].name === objectIndex ) {
objectIndex = i;
break;
}
}
break;
default:
if ( targetObject[ objectName ] === undefined ) {
console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this );
return;
}
targetObject = targetObject[ objectName ];
}
if ( objectIndex !== undefined ) {
if ( targetObject[ objectIndex ] === undefined ) {
console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject );
return;
}
targetObject = targetObject[ objectIndex ];
}
}
// resolve property
const nodeProperty = targetObject[ propertyName ];
if ( nodeProperty === undefined ) {
const nodeName = parsedPath.nodeName;
console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName +
'.' + propertyName + ' but it wasn\'t found.', targetObject );
return;
}
// determine versioning scheme
let versioning = this.Versioning.None;
this.targetObject = targetObject;
if ( targetObject.needsUpdate !== undefined ) { // material
versioning = this.Versioning.NeedsUpdate;
} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform
versioning = this.Versioning.MatrixWorldNeedsUpdate;
}
// determine how the property gets bound
let bindingType = this.BindingType.Direct;
if ( propertyIndex !== undefined ) {
// access a sub element of the property array (only primitives are supported right now)
if ( propertyName === "morphTargetInfluences" ) {
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
// support resolving morphTarget names into indices.
if ( ! targetObject.geometry ) {
console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this );
return;
}
if ( targetObject.geometry.isBufferGeometry ) {
if ( ! targetObject.geometry.morphAttributes ) {
console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this );
return;
}
if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) {
propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ];
}
} else {
console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this );
return;
}
}
bindingType = this.BindingType.ArrayElement;
this.resolvedProperty = nodeProperty;
this.propertyIndex = propertyIndex;
} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {
// must use copy for Object3D.Euler/Quaternion
bindingType = this.BindingType.HasFromToArray;
this.resolvedProperty = nodeProperty;
} else if ( Array.isArray( nodeProperty ) ) {
bindingType = this.BindingType.EntireArray;
this.resolvedProperty = nodeProperty;
} else {
this.propertyName = propertyName;
}
// select getter / setter
this.getValue = this.GetterByBindingType[ bindingType ];
this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];
},
unbind: function () {
this.node = null;
// back to the prototype version of getValue / setValue
// note: avoiding to mutate the shape of 'this' via 'delete'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
} );
// DECLARE ALIAS AFTER assign prototype
Object.assign( PropertyBinding.prototype, {
// initial state of these methods that calls 'bind'
_getValue_unbound: PropertyBinding.prototype.getValue,
_setValue_unbound: PropertyBinding.prototype.setValue,
} );
/**
*
* A group of objects that receives a shared animation state.
*
* Usage:
*
* - Add objects you would otherwise pass as 'root' to the
* constructor or the .clipAction method of AnimationMixer.
*
* - Instead pass this object as 'root'.
*
* - You can also add and remove objects later when the mixer
* is running.
*
* Note:
*
* Objects of this class appear as one object to the mixer,
* so cache control of the individual objects must be done
* on the group.
*
* Limitation:
*
* - The animated properties must be compatible among the
* all objects in the group.
*
* - A single property can either be controlled through a
* target group or directly, but not both.
*
* @author tschw
*/
function AnimationObjectGroup() {
this.uuid = MathUtils.generateUUID();
// cached objects followed by the active ones
this._objects = Array.prototype.slice.call( arguments );
this.nCachedObjects_ = 0; // threshold
// note: read by PropertyBinding.Composite
const indices = {};
this._indicesByUUID = indices; // for bookkeeping
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
indices[ arguments[ i ].uuid ] = i;
}
this._paths = []; // inside: string
this._parsedPaths = []; // inside: { we don't care, here }
this._bindings = []; // inside: Array< PropertyBinding >
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
const scope = this;
this.stats = {
objects: {
get total() {
return scope._objects.length;
},
get inUse() {
return this.total - scope.nCachedObjects_;
}
},
get bindingsPerObject() {
return scope._bindings.length;
}
};
}
Object.assign( AnimationObjectGroup.prototype, {
isAnimationObjectGroup: true,
add: function () {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
nBindings = bindings.length;
let knownObject = undefined,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_;
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
const object = arguments[ i ],
uuid = object.uuid;
let index = indicesByUUID[ uuid ];
if ( index === undefined ) {
// unknown object -> add it to the ACTIVE region
index = nObjects ++;
indicesByUUID[ uuid ] = index;
objects.push( object );
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) );
}
} else if ( index < nCachedObjects ) {
knownObject = objects[ index ];
// move existing object to the ACTIVE region
const firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ];
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
indicesByUUID[ uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = object;
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ];
let binding = bindingsForPath[ index ];
bindingsForPath[ index ] = lastCached;
if ( binding === undefined ) {
// since we do not bother to create new bindings
// for objects that are cached, the binding may
// or may not exist
binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] );
}
bindingsForPath[ firstActiveIndex ] = binding;
}
} else if ( objects[ index ] !== knownObject ) {
console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' +
'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );
} // else the object is already where we want it to be
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
remove: function () {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
let nCachedObjects = this.nCachedObjects_;
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
const object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined && index >= nCachedObjects ) {
// move existing object into the CACHED region
const lastCachedIndex = nCachedObjects ++,
firstActiveObject = objects[ lastCachedIndex ];
indicesByUUID[ firstActiveObject.uuid ] = index;
objects[ index ] = firstActiveObject;
indicesByUUID[ uuid ] = lastCachedIndex;
objects[ lastCachedIndex ] = object;
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ],
firstActive = bindingsForPath[ lastCachedIndex ],
binding = bindingsForPath[ index ];
bindingsForPath[ index ] = firstActive;
bindingsForPath[ lastCachedIndex ] = binding;
}
}
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
// remove & forget
uncache: function () {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
let nCachedObjects = this.nCachedObjects_,
nObjects = objects.length;
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
const object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined ) {
delete indicesByUUID[ uuid ];
if ( index < nCachedObjects ) {
// object is cached, shrink the CACHED region
const firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ],
lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
// last cached object takes this object's place
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
// last object goes to the activated slot and pop
indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ],
last = bindingsForPath[ lastIndex ];
bindingsForPath[ index ] = lastCached;
bindingsForPath[ firstActiveIndex ] = last;
bindingsForPath.pop();
}
} else {
// object is active, just swap with the last and pop
const lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
indicesByUUID[ lastObject.uuid ] = index;
objects[ index ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ];
bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
bindingsForPath.pop();
}
} // cached or active
} // if object is known
} // for arguments
this.nCachedObjects_ = nCachedObjects;
},
// Internal interface used by befriended PropertyBinding.Composite:
subscribe_: function ( path, parsedPath ) {
// returns an array of bindings for the given path that is changed
// according to the contained objects in the group
let indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ],
bindings = this._bindings;
if ( index !== undefined ) return bindings[ index ];
const paths = this._paths,
parsedPaths = this._parsedPaths,
objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
bindingsForPath = new Array( nObjects );
index = bindings.length;
indicesByPath[ path ] = index;
paths.push( path );
parsedPaths.push( parsedPath );
bindings.push( bindingsForPath );
for ( let i = nCachedObjects, n = objects.length; i !== n; ++ i ) {
const object = objects[ i ];
bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );
}
return bindingsForPath;
},
unsubscribe_: function ( path ) {
// tells the group to forget about a property path and no longer
// update the array previously obtained with 'subscribe_'
const indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ];
if ( index !== undefined ) {
const paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
lastBindingsIndex = bindings.length - 1,
lastBindings = bindings[ lastBindingsIndex ],
lastBindingsPath = path[ lastBindingsIndex ];
indicesByPath[ lastBindingsPath ] = index;
bindings[ index ] = lastBindings;
bindings.pop();
parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
parsedPaths.pop();
paths[ index ] = paths[ lastBindingsIndex ];
paths.pop();
}
}
} );
/**
*
* Action provided by AnimationMixer for scheduling clip playback on specific
* objects.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*
*/
function AnimationAction( mixer, clip, localRoot, blendMode ) {
this._mixer = mixer;
this._clip = clip;
this._localRoot = localRoot || null;
this.blendMode = blendMode || clip.blendMode;
const tracks = clip.tracks,
nTracks = tracks.length,
interpolants = new Array( nTracks );
const interpolantSettings = {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
};
for ( let i = 0; i !== nTracks; ++ i ) {
const interpolant = tracks[ i ].createInterpolant( null );
interpolants[ i ] = interpolant;
interpolant.settings = interpolantSettings;
}
this._interpolantSettings = interpolantSettings;
this._interpolants = interpolants; // bound by the mixer
// inside: PropertyMixer (managed by the mixer)
this._propertyBindings = new Array( nTracks );
this._cacheIndex = null; // for the memory manager
this._byClipCacheIndex = null; // for the memory manager
this._timeScaleInterpolant = null;
this._weightInterpolant = null;
this.loop = LoopRepeat;
this._loopCount = - 1;
// global mixer time when the action is to be started
// it's set back to 'null' upon start of the action
this._startTime = null;
// scaled local time of the action
// gets clamped or wrapped to 0..clip.duration according to loop
this.time = 0;
this.timeScale = 1;
this._effectiveTimeScale = 1;
this.weight = 1;
this._effectiveWeight = 1;
this.repetitions = Infinity; // no. of repetitions when looping
this.paused = false; // true -> zero effective time scale
this.enabled = true; // false -> zero effective weight
this.clampWhenFinished = false;// keep feeding the last frame?
this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate
this.zeroSlopeAtEnd = true;// clips for start, loop and end
}
Object.assign( AnimationAction.prototype, {
// State & Scheduling
play: function () {
this._mixer._activateAction( this );
return this;
},
stop: function () {
this._mixer._deactivateAction( this );
return this.reset();
},
reset: function () {
this.paused = false;
this.enabled = true;
this.time = 0; // restart clip
this._loopCount = - 1;// forget previous loops
this._startTime = null;// forget scheduling
return this.stopFading().stopWarping();
},
isRunning: function () {
return this.enabled && ! this.paused && this.timeScale !== 0 &&
this._startTime === null && this._mixer._isActiveAction( this );
},
// return true when play has been called
isScheduled: function () {
return this._mixer._isActiveAction( this );
},
startAt: function ( time ) {
this._startTime = time;
return this;
},
setLoop: function ( mode, repetitions ) {
this.loop = mode;
this.repetitions = repetitions;
return this;
},
// Weight
// set the weight stopping any scheduled fading
// although .enabled = false yields an effective weight of zero, this
// method does *not* change .enabled, because it would be confusing
setEffectiveWeight: function ( weight ) {
this.weight = weight;
// note: same logic as when updated at runtime
this._effectiveWeight = this.enabled ? weight : 0;
return this.stopFading();
},
// return the weight considering fading and .enabled
getEffectiveWeight: function () {
return this._effectiveWeight;
},
fadeIn: function ( duration ) {
return this._scheduleFading( duration, 0, 1 );
},
fadeOut: function ( duration ) {
return this._scheduleFading( duration, 1, 0 );
},
crossFadeFrom: function ( fadeOutAction, duration, warp ) {
fadeOutAction.fadeOut( duration );
this.fadeIn( duration );
if ( warp ) {
const fadeInDuration = this._clip.duration,
fadeOutDuration = fadeOutAction._clip.duration,
startEndRatio = fadeOutDuration / fadeInDuration,
endStartRatio = fadeInDuration / fadeOutDuration;
fadeOutAction.warp( 1.0, startEndRatio, duration );
this.warp( endStartRatio, 1.0, duration );
}
return this;
},
crossFadeTo: function ( fadeInAction, duration, warp ) {
return fadeInAction.crossFadeFrom( this, duration, warp );
},
stopFading: function () {
let weightInterpolant = this._weightInterpolant;
if ( weightInterpolant !== null ) {
this._weightInterpolant = null;
this._mixer._takeBackControlInterpolant( weightInterpolant );
}
return this;
},
// Time Scale Control
// set the time scale stopping any scheduled warping
// although .paused = true yields an effective time scale of zero, this
// method does *not* change .paused, because it would be confusing
setEffectiveTimeScale: function ( timeScale ) {
this.timeScale = timeScale;
this._effectiveTimeScale = this.paused ? 0 : timeScale;
return this.stopWarping();
},
// return the time scale considering warping and .paused
getEffectiveTimeScale: function () {
return this._effectiveTimeScale;
},
setDuration: function ( duration ) {
this.timeScale = this._clip.duration / duration;
return this.stopWarping();
},
syncWith: function ( action ) {
this.time = action.time;
this.timeScale = action.timeScale;
return this.stopWarping();
},
halt: function ( duration ) {
return this.warp( this._effectiveTimeScale, 0, duration );
},
warp: function ( startTimeScale, endTimeScale, duration ) {
const mixer = this._mixer,
now = mixer.time,
timeScale = this.timeScale;
let interpolant = this._timeScaleInterpolant;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant();
this._timeScaleInterpolant = interpolant;
}
const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now;
times[ 1 ] = now + duration;
values[ 0 ] = startTimeScale / timeScale;
values[ 1 ] = endTimeScale / timeScale;
return this;
},
stopWarping: function () {
let timeScaleInterpolant = this._timeScaleInterpolant;
if ( timeScaleInterpolant !== null ) {
this._timeScaleInterpolant = null;
this._mixer._takeBackControlInterpolant( timeScaleInterpolant );
}
return this;
},
// Object Accessors
getMixer: function () {
return this._mixer;
},
getClip: function () {
return this._clip;
},
getRoot: function () {
return this._localRoot || this._mixer._root;
},
// Interna
_update: function ( time, deltaTime, timeDirection, accuIndex ) {
// called by the mixer
if ( ! this.enabled ) {
// call ._updateWeight() to update ._effectiveWeight
this._updateWeight( time );
return;
}
const startTime = this._startTime;
if ( startTime !== null ) {
// check for scheduled start of action
const timeRunning = ( time - startTime ) * timeDirection;
if ( timeRunning < 0 || timeDirection === 0 ) {
return; // yet to come / don't decide when delta = 0
}
// start
this._startTime = null; // unschedule
deltaTime = timeDirection * timeRunning;
}
// apply time scale and advance time
deltaTime *= this._updateTimeScale( time );
const clipTime = this._updateTime( deltaTime );
// note: _updateTime may disable the action resulting in
// an effective weight of 0
const weight = this._updateWeight( time );
if ( weight > 0 ) {
const interpolants = this._interpolants;
const propertyMixers = this._propertyBindings;
switch ( this.blendMode ) {
case AdditiveAnimationBlendMode:
for ( let j = 0, m = interpolants.length; j !== m; ++ j ) {
interpolants[ j ].evaluate( clipTime );
propertyMixers[ j ].accumulateAdditive( weight );
}
break;
case NormalAnimationBlendMode:
default:
for ( let j = 0, m = interpolants.length; j !== m; ++ j ) {
interpolants[ j ].evaluate( clipTime );
propertyMixers[ j ].accumulate( accuIndex, weight );
}
}
}
},
_updateWeight: function ( time ) {
let weight = 0;
if ( this.enabled ) {
weight = this.weight;
const interpolant = this._weightInterpolant;
if ( interpolant !== null ) {
const interpolantValue = interpolant.evaluate( time )[ 0 ];
weight *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopFading();
if ( interpolantValue === 0 ) {
// faded out, disable
this.enabled = false;
}
}
}
}
this._effectiveWeight = weight;
return weight;
},
_updateTimeScale: function ( time ) {
let timeScale = 0;
if ( ! this.paused ) {
timeScale = this.timeScale;
const interpolant = this._timeScaleInterpolant;
if ( interpolant !== null ) {
const interpolantValue = interpolant.evaluate( time )[ 0 ];
timeScale *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopWarping();
if ( timeScale === 0 ) {
// motion has halted, pause
this.paused = true;
} else {
// warp done - apply final time scale
this.timeScale = timeScale;
}
}
}
}
this._effectiveTimeScale = timeScale;
return timeScale;
},
_updateTime: function ( deltaTime ) {
const duration = this._clip.duration;
const loop = this.loop;
let time = this.time + deltaTime;
let loopCount = this._loopCount;
const pingPong = ( loop === LoopPingPong );
if ( deltaTime === 0 ) {
if ( loopCount === - 1 ) return time;
return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time;
}
if ( loop === LoopOnce ) {
if ( loopCount === - 1 ) {
// just started
this._loopCount = 0;
this._setEndings( true, true, false );
}
handle_stop: {
if ( time >= duration ) {
time = duration;
} else if ( time < 0 ) {
time = 0;
} else {
this.time = time;
break handle_stop;
}
if ( this.clampWhenFinished ) this.paused = true;
else this.enabled = false;
this.time = time;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime < 0 ? - 1 : 1
} );
}
} else { // repetitive Repeat or PingPong
if ( loopCount === - 1 ) {
// just started
if ( deltaTime >= 0 ) {
loopCount = 0;
this._setEndings( true, this.repetitions === 0, pingPong );
} else {
// when looping in reverse direction, the initial
// transition through zero counts as a repetition,
// so leave loopCount at -1
this._setEndings( this.repetitions === 0, true, pingPong );
}
}
if ( time >= duration || time < 0 ) {
// wrap around
const loopDelta = Math.floor( time / duration ); // signed
time -= duration * loopDelta;
loopCount += Math.abs( loopDelta );
const pending = this.repetitions - loopCount;
if ( pending <= 0 ) {
// have to stop (switch state, clamp time, fire event)
if ( this.clampWhenFinished ) this.paused = true;
else this.enabled = false;
time = deltaTime > 0 ? duration : 0;
this.time = time;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime > 0 ? 1 : - 1
} );
} else {
// keep running
if ( pending === 1 ) {
// entering the last round
const atStart = deltaTime < 0;
this._setEndings( atStart, ! atStart, pingPong );
} else {
this._setEndings( false, false, pingPong );
}
this._loopCount = loopCount;
this.time = time;
this._mixer.dispatchEvent( {
type: 'loop', action: this, loopDelta: loopDelta
} );
}
} else {
this.time = time;
}
if ( pingPong && ( loopCount & 1 ) === 1 ) {
// invert time for the "pong round"
return duration - time;
}
}
return time;
},
_setEndings: function ( atStart, atEnd, pingPong ) {
const settings = this._interpolantSettings;
if ( pingPong ) {
settings.endingStart = ZeroSlopeEnding;
settings.endingEnd = ZeroSlopeEnding;
} else {
// assuming for LoopOnce atStart == atEnd == true
if ( atStart ) {
settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
} else {
settings.endingStart = WrapAroundEnding;
}
if ( atEnd ) {
settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
} else {
settings.endingEnd = WrapAroundEnding;
}
}
},
_scheduleFading: function ( duration, weightNow, weightThen ) {
const mixer = this._mixer, now = mixer.time;
let interpolant = this._weightInterpolant;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant();
this._weightInterpolant = interpolant;
}
const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now;
values[ 0 ] = weightNow;
times[ 1 ] = now + duration;
values[ 1 ] = weightThen;
return this;
}
} );
/**
*
* Player for AnimationClips.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function AnimationMixer( root ) {
this._root = root;
this._initMemoryManager();
this._accuIndex = 0;
this.time = 0;
this.timeScale = 1.0;
}
AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
constructor: AnimationMixer,
_bindAction: function ( action, prototypeAction ) {
const root = action._localRoot || this._root,
tracks = action._clip.tracks,
nTracks = tracks.length,
bindings = action._propertyBindings,
interpolants = action._interpolants,
rootUuid = root.uuid,
bindingsByRoot = this._bindingsByRootAndName;
let bindingsByName = bindingsByRoot[ rootUuid ];
if ( bindingsByName === undefined ) {
bindingsByName = {};
bindingsByRoot[ rootUuid ] = bindingsByName;
}
for ( let i = 0; i !== nTracks; ++ i ) {
const track = tracks[ i ],
trackName = track.name;
let binding = bindingsByName[ trackName ];
if ( binding !== undefined ) {
bindings[ i ] = binding;
} else {
binding = bindings[ i ];
if ( binding !== undefined ) {
// existing binding, make sure the cache knows
if ( binding._cacheIndex === null ) {
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
}
continue;
}
const path = prototypeAction && prototypeAction.
_propertyBindings[ i ].binding.parsedPath;
binding = new PropertyMixer(
PropertyBinding.create( root, trackName, path ),
track.ValueTypeName, track.getValueSize() );
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
bindings[ i ] = binding;
}
interpolants[ i ].resultBuffer = binding.buffer;
}
},
_activateAction: function ( action ) {
if ( ! this._isActiveAction( action ) ) {
if ( action._cacheIndex === null ) {
// this action has been forgotten by the cache, but the user
// appears to be still using it -> rebind
const rootUuid = ( action._localRoot || this._root ).uuid,
clipUuid = action._clip.uuid,
actionsForClip = this._actionsByClip[ clipUuid ];
this._bindAction( action,
actionsForClip && actionsForClip.knownActions[ 0 ] );
this._addInactiveAction( action, clipUuid, rootUuid );
}
const bindings = action._propertyBindings;
// increment reference counts / sort out state
for ( let i = 0, n = bindings.length; i !== n; ++ i ) {
const binding = bindings[ i ];
if ( binding.useCount ++ === 0 ) {
this._lendBinding( binding );
binding.saveOriginalState();
}
}
this._lendAction( action );
}
},
_deactivateAction: function ( action ) {
if ( this._isActiveAction( action ) ) {
const bindings = action._propertyBindings;
// decrement reference counts / sort out state
for ( let i = 0, n = bindings.length; i !== n; ++ i ) {
const binding = bindings[ i ];
if ( -- binding.useCount === 0 ) {
binding.restoreOriginalState();
this._takeBackBinding( binding );
}
}
this._takeBackAction( action );
}
},
// Memory manager
_initMemoryManager: function () {
this._actions = []; // 'nActiveActions' followed by inactive ones
this._nActiveActions = 0;
this._actionsByClip = {};
// inside:
// {
// knownActions: Array< AnimationAction > - used as prototypes
// actionByRoot: AnimationAction - lookup
// }
this._bindings = []; // 'nActiveBindings' followed by inactive ones
this._nActiveBindings = 0;
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
this._controlInterpolants = []; // same game as above
this._nActiveControlInterpolants = 0;
const scope = this;
this.stats = {
actions: {
get total() {
return scope._actions.length;
},
get inUse() {
return scope._nActiveActions;
}
},
bindings: {
get total() {
return scope._bindings.length;
},
get inUse() {
return scope._nActiveBindings;
}
},
controlInterpolants: {
get total() {
return scope._controlInterpolants.length;
},
get inUse() {
return scope._nActiveControlInterpolants;
}
}
};
},
// Memory management for AnimationAction objects
_isActiveAction: function ( action ) {
const index = action._cacheIndex;
return index !== null && index < this._nActiveActions;
},
_addInactiveAction: function ( action, clipUuid, rootUuid ) {
const actions = this._actions,
actionsByClip = this._actionsByClip;
let actionsForClip = actionsByClip[ clipUuid ];
if ( actionsForClip === undefined ) {
actionsForClip = {
knownActions: [ action ],
actionByRoot: {}
};
action._byClipCacheIndex = 0;
actionsByClip[ clipUuid ] = actionsForClip;
} else {
const knownActions = actionsForClip.knownActions;
action._byClipCacheIndex = knownActions.length;
knownActions.push( action );
}
action._cacheIndex = actions.length;
actions.push( action );
actionsForClip.actionByRoot[ rootUuid ] = action;
},
_removeInactiveAction: function ( action ) {
const actions = this._actions,
lastInactiveAction = actions[ actions.length - 1 ],
cacheIndex = action._cacheIndex;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
action._cacheIndex = null;
const clipUuid = action._clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipUuid ],
knownActionsForClip = actionsForClip.knownActions,
lastKnownAction =
knownActionsForClip[ knownActionsForClip.length - 1 ],
byClipCacheIndex = action._byClipCacheIndex;
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
knownActionsForClip.pop();
action._byClipCacheIndex = null;
const actionByRoot = actionsForClip.actionByRoot,
rootUuid = ( action._localRoot || this._root ).uuid;
delete actionByRoot[ rootUuid ];
if ( knownActionsForClip.length === 0 ) {
delete actionsByClip[ clipUuid ];
}
this._removeInactiveBindingsForAction( action );
},
_removeInactiveBindingsForAction: function ( action ) {
const bindings = action._propertyBindings;
for ( let i = 0, n = bindings.length; i !== n; ++ i ) {
const binding = bindings[ i ];
if ( -- binding.referenceCount === 0 ) {
this._removeInactiveBinding( binding );
}
}
},
_lendAction: function ( action ) {
// [ active actions | inactive actions ]
// [ active actions >| inactive actions ]
// s a
// <-swap->
// a s
const actions = this._actions,
prevIndex = action._cacheIndex,
lastActiveIndex = this._nActiveActions ++,
firstInactiveAction = actions[ lastActiveIndex ];
action._cacheIndex = lastActiveIndex;
actions[ lastActiveIndex ] = action;
firstInactiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = firstInactiveAction;
},
_takeBackAction: function ( action ) {
// [ active actions | inactive actions ]
// [ active actions |< inactive actions ]
// a s
// <-swap->
// s a
const actions = this._actions,
prevIndex = action._cacheIndex,
firstInactiveIndex = -- this._nActiveActions,
lastActiveAction = actions[ firstInactiveIndex ];
action._cacheIndex = firstInactiveIndex;
actions[ firstInactiveIndex ] = action;
lastActiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = lastActiveAction;
},
// Memory management for PropertyMixer objects
_addInactiveBinding: function ( binding, rootUuid, trackName ) {
const bindingsByRoot = this._bindingsByRootAndName,
bindings = this._bindings;
let bindingByName = bindingsByRoot[ rootUuid ];
if ( bindingByName === undefined ) {
bindingByName = {};
bindingsByRoot[ rootUuid ] = bindingByName;
}
bindingByName[ trackName ] = binding;
binding._cacheIndex = bindings.length;
bindings.push( binding );
},
_removeInactiveBinding: function ( binding ) {
const bindings = this._bindings,
propBinding = binding.binding,
rootUuid = propBinding.rootNode.uuid,
trackName = propBinding.path,
bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ],
lastInactiveBinding = bindings[ bindings.length - 1 ],
cacheIndex = binding._cacheIndex;
lastInactiveBinding._cacheIndex = cacheIndex;
bindings[ cacheIndex ] = lastInactiveBinding;
bindings.pop();
delete bindingByName[ trackName ];
if ( Object.keys( bindingByName ).length === 0 ) {
delete bindingsByRoot[ rootUuid ];
}
},
_lendBinding: function ( binding ) {
const bindings = this._bindings,
prevIndex = binding._cacheIndex,
lastActiveIndex = this._nActiveBindings ++,
firstInactiveBinding = bindings[ lastActiveIndex ];
binding._cacheIndex = lastActiveIndex;
bindings[ lastActiveIndex ] = binding;
firstInactiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = firstInactiveBinding;
},
_takeBackBinding: function ( binding ) {
const bindings = this._bindings,
prevIndex = binding._cacheIndex,
firstInactiveIndex = -- this._nActiveBindings,
lastActiveBinding = bindings[ firstInactiveIndex ];
binding._cacheIndex = firstInactiveIndex;
bindings[ firstInactiveIndex ] = binding;
lastActiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = lastActiveBinding;
},
// Memory management of Interpolants for weight and time scale
_lendControlInterpolant: function () {
const interpolants = this._controlInterpolants,
lastActiveIndex = this._nActiveControlInterpolants ++;
let interpolant = interpolants[ lastActiveIndex ];
if ( interpolant === undefined ) {
interpolant = new LinearInterpolant(
new Float32Array( 2 ), new Float32Array( 2 ),
1, this._controlInterpolantsResultBuffer );
interpolant.__cacheIndex = lastActiveIndex;
interpolants[ lastActiveIndex ] = interpolant;
}
return interpolant;
},
_takeBackControlInterpolant: function ( interpolant ) {
const interpolants = this._controlInterpolants,
prevIndex = interpolant.__cacheIndex,
firstInactiveIndex = -- this._nActiveControlInterpolants,
lastActiveInterpolant = interpolants[ firstInactiveIndex ];
interpolant.__cacheIndex = firstInactiveIndex;
interpolants[ firstInactiveIndex ] = interpolant;
lastActiveInterpolant.__cacheIndex = prevIndex;
interpolants[ prevIndex ] = lastActiveInterpolant;
},
_controlInterpolantsResultBuffer: new Float32Array( 1 ),
// return an action for a clip optionally using a custom root target
// object (this method allocates a lot of dynamic memory in case a
// previously unknown clip/root combination is specified)
clipAction: function ( clip, optionalRoot, blendMode ) {
const root = optionalRoot || this._root,
rootUuid = root.uuid;
let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip;
const clipUuid = clipObject !== null ? clipObject.uuid : clip;
let actionsForClip = this._actionsByClip[ clipUuid ],
prototypeAction = null;
if ( blendMode === undefined ) {
if ( clipObject !== null ) {
blendMode = clipObject.blendMode;
} else {
blendMode = NormalAnimationBlendMode;
}
}
if ( actionsForClip !== undefined ) {
const existingAction = actionsForClip.actionByRoot[ rootUuid ];
if ( existingAction !== undefined && existingAction.blendMode === blendMode ) {
return existingAction;
}
// we know the clip, so we don't have to parse all
// the bindings again but can just copy
prototypeAction = actionsForClip.knownActions[ 0 ];
// also, take the clip from the prototype action
if ( clipObject === null )
clipObject = prototypeAction._clip;
}
// clip must be known when specified via string
if ( clipObject === null ) return null;
// allocate all resources required to run it
const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode );
this._bindAction( newAction, prototypeAction );
// and make the action known to the memory manager
this._addInactiveAction( newAction, clipUuid, rootUuid );
return newAction;
},
// get an existing action
existingAction: function ( clip, optionalRoot ) {
const root = optionalRoot || this._root,
rootUuid = root.uuid,
clipObject = typeof clip === 'string' ?
AnimationClip.findByName( root, clip ) : clip,
clipUuid = clipObject ? clipObject.uuid : clip,
actionsForClip = this._actionsByClip[ clipUuid ];
if ( actionsForClip !== undefined ) {
return actionsForClip.actionByRoot[ rootUuid ] || null;
}
return null;
},
// deactivates all previously scheduled actions
stopAllAction: function () {
const actions = this._actions,
nActions = this._nActiveActions;
for ( let i = nActions - 1; i >= 0; -- i ) {
actions[ i ].stop();
}
return this;
},
// advance the time and update apply the animation
update: function ( deltaTime ) {
deltaTime *= this.timeScale;
const actions = this._actions,
nActions = this._nActiveActions,
time = this.time += deltaTime,
timeDirection = Math.sign( deltaTime ),
accuIndex = this._accuIndex ^= 1;
// run active actions
for ( let i = 0; i !== nActions; ++ i ) {
const action = actions[ i ];
action._update( time, deltaTime, timeDirection, accuIndex );
}
// update scene graph
const bindings = this._bindings,
nBindings = this._nActiveBindings;
for ( let i = 0; i !== nBindings; ++ i ) {
bindings[ i ].apply( accuIndex );
}
return this;
},
// Allows you to seek to a specific time in an animation.
setTime: function ( timeInSeconds ) {
this.time = 0; // Zero out time attribute for AnimationMixer object;
for ( let i = 0; i < this._actions.length; i ++ ) {
this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects.
}
return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object.
},
// return this mixer's root target object
getRoot: function () {
return this._root;
},
// free all resources specific to a particular clip
uncacheClip: function ( clip ) {
const actions = this._actions,
clipUuid = clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipUuid ];
if ( actionsForClip !== undefined ) {
// note: just calling _removeInactiveAction would mess up the
// iteration state and also require updating the state we can
// just throw away
const actionsToRemove = actionsForClip.knownActions;
for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) {
const action = actionsToRemove[ i ];
this._deactivateAction( action );
const cacheIndex = action._cacheIndex,
lastInactiveAction = actions[ actions.length - 1 ];
action._cacheIndex = null;
action._byClipCacheIndex = null;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
this._removeInactiveBindingsForAction( action );
}
delete actionsByClip[ clipUuid ];
}
},
// free all resources specific to a particular root target object
uncacheRoot: function ( root ) {
const rootUuid = root.uuid,
actionsByClip = this._actionsByClip;
for ( const clipUuid in actionsByClip ) {
const actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
action = actionByRoot[ rootUuid ];
if ( action !== undefined ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
const bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ];
if ( bindingByName !== undefined ) {
for ( const trackName in bindingByName ) {
const binding = bindingByName[ trackName ];
binding.restoreOriginalState();
this._removeInactiveBinding( binding );
}
}
},
// remove a targeted clip from the cache
uncacheAction: function ( clip, optionalRoot ) {
const action = this.existingAction( clip, optionalRoot );
if ( action !== null ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Uniform( value ) {
if ( typeof value === 'string' ) {
console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
value = arguments[ 1 ];
}
this.value = value;
}
Uniform.prototype.clone = function () {
return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );
};
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {
InterleavedBuffer.call( this, array, stride );
this.meshPerAttribute = meshPerAttribute || 1;
}
InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {
constructor: InstancedInterleavedBuffer,
isInstancedInterleavedBuffer: true,
copy: function ( source ) {
InterleavedBuffer.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
},
clone: function ( data ) {
const ib = InterleavedBuffer.prototype.clone.call( this, data );
ib.meshPerAttribute = this.meshPerAttribute;
return ib;
},
toJSON: function ( data ) {
const json = InterleavedBuffer.prototype.toJSON.call( this, data );
json.isInstancedInterleavedBuffer = true;
json.meshPerAttribute = this.meshPerAttribute;
return json;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author bhouston / http://clara.io/
* @author stephomi / http://stephaneginier.com/
*/
function Raycaster( origin, direction, near, far ) {
this.ray = new Ray( origin, direction );
// direction is assumed to be normalized (for accurate distance calculations)
this.near = near || 0;
this.far = far || Infinity;
this.camera = null;
this.layers = new Layers();
this.params = {
Mesh: {},
Line: { threshold: 1 },
LOD: {},
Points: { threshold: 1 },
Sprite: {}
};
Object.defineProperties( this.params, {
PointCloud: {
get: function () {
console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
return this.Points;
}
}
} );
}
function ascSort( a, b ) {
return a.distance - b.distance;
}
function intersectObject( object, raycaster, intersects, recursive ) {
if ( object.layers.test( raycaster.layers ) ) {
object.raycast( raycaster, intersects );
}
if ( recursive === true ) {
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
intersectObject( children[ i ], raycaster, intersects, true );
}
}
}
Object.assign( Raycaster.prototype, {
set: function ( origin, direction ) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set( origin, direction );
},
setFromCamera: function ( coords, camera ) {
if ( ( camera && camera.isPerspectiveCamera ) ) {
this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
this.camera = camera;
} else if ( ( camera && camera.isOrthographicCamera ) ) {
this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
this.camera = camera;
} else {
console.error( 'THREE.Raycaster: Unsupported camera type.' );
}
},
intersectObject: function ( object, recursive, optionalTarget ) {
const intersects = optionalTarget || [];
intersectObject( object, this, intersects, recursive );
intersects.sort( ascSort );
return intersects;
},
intersectObjects: function ( objects, recursive, optionalTarget ) {
const intersects = optionalTarget || [];
if ( Array.isArray( objects ) === false ) {
console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
return intersects;
}
for ( let i = 0, l = objects.length; i < l; i ++ ) {
intersectObject( objects[ i ], this, intersects, recursive );
}
intersects.sort( ascSort );
return intersects;
}
} );
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
* The azimuthal angle (theta) is measured from the positive z-axis.
*/
function Spherical( radius, phi, theta ) {
this.radius = ( radius !== undefined ) ? radius : 1.0;
this.phi = ( phi !== undefined ) ? phi : 0; // polar angle
this.theta = ( theta !== undefined ) ? theta : 0; // azimuthal angle
return this;
}
Object.assign( Spherical.prototype, {
set: function ( radius, phi, theta ) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( other ) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this;
},
// restrict phi to be betwee EPS and PI-EPS
makeSafe: function () {
const EPS = 0.000001;
this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
return this;
},
setFromVector3: function ( v ) {
return this.setFromCartesianCoords( v.x, v.y, v.z );
},
setFromCartesianCoords: function ( x, y, z ) {
this.radius = Math.sqrt( x * x + y * y + z * z );
if ( this.radius === 0 ) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2( x, z );
this.phi = Math.acos( MathUtils.clamp( y / this.radius, - 1, 1 ) );
}
return this;
}
} );
/**
* @author Mugen87 / https://github.com/Mugen87
*
* Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
*
*/
function Cylindrical( radius, theta, y ) {
this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane
this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane
return this;
}
Object.assign( Cylindrical.prototype, {
set: function ( radius, theta, y ) {
this.radius = radius;
this.theta = theta;
this.y = y;
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( other ) {
this.radius = other.radius;
this.theta = other.theta;
this.y = other.y;
return this;
},
setFromVector3: function ( v ) {
return this.setFromCartesianCoords( v.x, v.y, v.z );
},
setFromCartesianCoords: function ( x, y, z ) {
this.radius = Math.sqrt( x * x + z * z );
this.theta = Math.atan2( x, z );
this.y = y;
return this;
}
} );
/**
* @author bhouston / http://clara.io
*/
const _vector$7 = new Vector2();
function Box2( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );
}
Object.assign( Box2.prototype, {
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( let i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function ( center, size ) {
const halfSize = _vector$7.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = + Infinity;
this.max.x = this.max.y = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
},
getCenter: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box2: .getCenter() target is now required' );
target = new Vector2();
}
return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box2: .getSize() target is now required' );
target = new Vector2();
}
return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y;
},
getParameter: function ( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
if ( target === undefined ) {
console.warn( 'THREE.Box2: .getParameter() target is now required' );
target = new Vector2();
}
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y )
);
},
intersectsBox: function ( box ) {
// using 4 splitting planes to rule out intersections
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
},
clampPoint: function ( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box2: .clampPoint() target is now required' );
target = new Vector2();
}
return target.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function ( point ) {
const clampedPoint = _vector$7.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
},
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
/**
* @author bhouston / http://clara.io
*/
const _startP = new Vector3();
const _startEnd = new Vector3();
function Line3( start, end ) {
this.start = ( start !== undefined ) ? start : new Vector3();
this.end = ( end !== undefined ) ? end : new Vector3();
}
Object.assign( Line3.prototype, {
set: function ( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
},
getCenter: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Line3: .getCenter() target is now required' );
target = new Vector3();
}
return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
},
delta: function ( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Line3: .delta() target is now required' );
target = new Vector3();
}
return target.subVectors( this.end, this.start );
},
distanceSq: function () {
return this.start.distanceToSquared( this.end );
},
distance: function () {
return this.start.distanceTo( this.end );
},
at: function ( t, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Line3: .at() target is now required' );
target = new Vector3();
}
return this.delta( target ).multiplyScalar( t ).add( this.start );
},
closestPointToPointParameter: function ( point, clampToLine ) {
_startP.subVectors( point, this.start );
_startEnd.subVectors( this.end, this.start );
const startEnd2 = _startEnd.dot( _startEnd );
const startEnd_startP = _startEnd.dot( _startP );
let t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = MathUtils.clamp( t, 0, 1 );
}
return t;
},
closestPointToPoint: function ( point, clampToLine, target ) {
const t = this.closestPointToPointParameter( point, clampToLine );
if ( target === undefined ) {
console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' );
target = new Vector3();
}
return this.delta( target ).multiplyScalar( t ).add( this.start );
},
applyMatrix4: function ( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
},
equals: function ( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function ImmediateRenderObject( material ) {
Object3D.call( this );
this.material = material;
this.render = function ( /* renderCallback */ ) {};
this.hasPositions = false;
this.hasNormals = false;
this.hasColors = false;
this.hasUvs = false;
this.positionArray = null;
this.normalArray = null;
this.colorArray = null;
this.uvArray = null;
this.count = 0;
}
ImmediateRenderObject.prototype = Object.create( Object3D.prototype );
ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;
ImmediateRenderObject.prototype.isImmediateRenderObject = true;
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
const _vector$8 = new Vector3();
function SpotLightHelper( light, color ) {
Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
const geometry = new BufferGeometry();
const positions = [
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, - 1, 0, 1,
0, 0, 0, 0, 1, 1,
0, 0, 0, 0, - 1, 1
];
for ( let i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {
const p1 = ( i / l ) * Math.PI * 2;
const p2 = ( j / l ) * Math.PI * 2;
positions.push(
Math.cos( p1 ), Math.sin( p1 ), 1,
Math.cos( p2 ), Math.sin( p2 ), 1
);
}
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
const material = new LineBasicMaterial( { fog: false, toneMapped: false } );
this.cone = new LineSegments( geometry, material );
this.add( this.cone );
this.update();
}
SpotLightHelper.prototype = Object.create( Object3D.prototype );
SpotLightHelper.prototype.constructor = SpotLightHelper;
SpotLightHelper.prototype.dispose = function () {
this.cone.geometry.dispose();
this.cone.material.dispose();
};
SpotLightHelper.prototype.update = function () {
this.light.updateMatrixWorld();
const coneLength = this.light.distance ? this.light.distance : 1000;
const coneWidth = coneLength * Math.tan( this.light.angle );
this.cone.scale.set( coneWidth, coneWidth, coneLength );
_vector$8.setFromMatrixPosition( this.light.target.matrixWorld );
this.cone.lookAt( _vector$8 );
if ( this.color !== undefined ) {
this.cone.material.color.set( this.color );
} else {
this.cone.material.color.copy( this.light.color );
}
};
/**
* @author Sean Griffin / http://twitter.com/sgrif
* @author Michael Guerrero / http://realitymeltdown.com
* @author mrdoob / http://mrdoob.com/
* @author ikerr / http://verold.com
* @author Mugen87 / https://github.com/Mugen87
*/
const _vector$9 = new Vector3();
const _boneMatrix = new Matrix4();
const _matrixWorldInv = new Matrix4();
function getBoneList( object ) {
const boneList = [];
if ( object && object.isBone ) {
boneList.push( object );
}
for ( let i = 0; i < object.children.length; i ++ ) {
boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );
}
return boneList;
}
function SkeletonHelper( object ) {
const bones = getBoneList( object );
const geometry = new BufferGeometry();
const vertices = [];
const colors = [];
const color1 = new Color( 0, 0, 1 );
const color2 = new Color( 0, 1, 0 );
for ( let i = 0; i < bones.length; i ++ ) {
const bone = bones[ i ];
if ( bone.parent && bone.parent.isBone ) {
vertices.push( 0, 0, 0 );
vertices.push( 0, 0, 0 );
colors.push( color1.r, color1.g, color1.b );
colors.push( color2.r, color2.g, color2.b );
}
}
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } );
LineSegments.call( this, geometry, material );
this.type = 'SkeletonHelper';
this.root = object;
this.bones = bones;
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
}
SkeletonHelper.prototype = Object.create( LineSegments.prototype );
SkeletonHelper.prototype.constructor = SkeletonHelper;
SkeletonHelper.prototype.isSkeletonHelper = true;
SkeletonHelper.prototype.updateMatrixWorld = function ( force ) {
const bones = this.bones;
const geometry = this.geometry;
const position = geometry.getAttribute( 'position' );
_matrixWorldInv.getInverse( this.root.matrixWorld );
for ( let i = 0, j = 0; i < bones.length; i ++ ) {
const bone = bones[ i ];
if ( bone.parent && bone.parent.isBone ) {
_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld );
_vector$9.setFromMatrixPosition( _boneMatrix );
position.setXYZ( j, _vector$9.x, _vector$9.y, _vector$9.z );
_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld );
_vector$9.setFromMatrixPosition( _boneMatrix );
position.setXYZ( j + 1, _vector$9.x, _vector$9.y, _vector$9.z );
j += 2;
}
}
geometry.getAttribute( 'position' ).needsUpdate = true;
Object3D.prototype.updateMatrixWorld.call( this, force );
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
function PointLightHelper( light, sphereSize, color ) {
this.light = light;
this.light.updateMatrixWorld();
this.color = color;
const geometry = new SphereBufferGeometry( sphereSize, 4, 2 );
const material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );
Mesh.call( this, geometry, material );
this.type = 'PointLightHelper';
this.matrix = this.light.matrixWorld;
this.matrixAutoUpdate = false;
this.update();
/*
const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
const d = light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.scale.set( d, d, d );
}
this.add( this.lightDistance );
*/
}
PointLightHelper.prototype = Object.create( Mesh.prototype );
PointLightHelper.prototype.constructor = PointLightHelper;
PointLightHelper.prototype.dispose = function () {
this.geometry.dispose();
this.material.dispose();
};
PointLightHelper.prototype.update = function () {
if ( this.color !== undefined ) {
this.material.color.set( this.color );
} else {
this.material.color.copy( this.light.color );
}
/*
const d = this.light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.visible = true;
this.lightDistance.scale.set( d, d, d );
}
*/
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
const _vector$a = new Vector3();
const _color1 = new Color();
const three_module_color2 = new Color();
function HemisphereLightHelper( light, size, color ) {
Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
const geometry = new OctahedronBufferGeometry( size );
geometry.rotateY( Math.PI * 0.5 );
this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );
if ( this.color === undefined ) this.material.vertexColors = true;
const position = geometry.getAttribute( 'position' );
const colors = new Float32Array( position.count * 3 );
geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) );
this.add( new Mesh( geometry, this.material ) );
this.update();
}
HemisphereLightHelper.prototype = Object.create( Object3D.prototype );
HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;
HemisphereLightHelper.prototype.dispose = function () {
this.children[ 0 ].geometry.dispose();
this.children[ 0 ].material.dispose();
};
HemisphereLightHelper.prototype.update = function () {
const mesh = this.children[ 0 ];
if ( this.color !== undefined ) {
this.material.color.set( this.color );
} else {
const colors = mesh.geometry.getAttribute( 'color' );
_color1.copy( this.light.color );
three_module_color2.copy( this.light.groundColor );
for ( let i = 0, l = colors.count; i < l; i ++ ) {
const color = ( i < ( l / 2 ) ) ? _color1 : three_module_color2;
colors.setXYZ( i, color.r, color.g, color.b );
}
colors.needsUpdate = true;
}
mesh.lookAt( _vector$a.setFromMatrixPosition( this.light.matrixWorld ).negate() );
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function GridHelper( size, divisions, color1, color2 ) {
size = size || 10;
divisions = divisions || 10;
color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
color2 = new Color( color2 !== undefined ? color2 : 0x888888 );
const center = divisions / 2;
const step = size / divisions;
const halfSize = size / 2;
const vertices = [], colors = [];
for ( let i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {
vertices.push( - halfSize, 0, k, halfSize, 0, k );
vertices.push( k, 0, - halfSize, k, 0, halfSize );
const color = i === center ? color1 : color2;
color.toArray( colors, j ); j += 3;
color.toArray( colors, j ); j += 3;
color.toArray( colors, j ); j += 3;
color.toArray( colors, j ); j += 3;
}
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );
LineSegments.call( this, geometry, material );
this.type = 'GridHelper';
}
GridHelper.prototype = Object.assign( Object.create( LineSegments.prototype ), {
constructor: GridHelper,
copy: function ( source ) {
LineSegments.prototype.copy.call( this, source );
this.geometry.copy( source.geometry );
this.material.copy( source.material );
return this;
},
clone: function () {
return new this.constructor().copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / http://github.com/Mugen87
* @author Hectate / http://www.github.com/Hectate
*/
function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) {
radius = radius || 10;
radials = radials || 16;
circles = circles || 8;
divisions = divisions || 64;
color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
color2 = new Color( color2 !== undefined ? color2 : 0x888888 );
const vertices = [];
const colors = [];
// create the radials
for ( let i = 0; i <= radials; i ++ ) {
const v = ( i / radials ) * ( Math.PI * 2 );
const x = Math.sin( v ) * radius;
const z = Math.cos( v ) * radius;
vertices.push( 0, 0, 0 );
vertices.push( x, 0, z );
const color = ( i & 1 ) ? color1 : color2;
colors.push( color.r, color.g, color.b );
colors.push( color.r, color.g, color.b );
}
// create the circles
for ( let i = 0; i <= circles; i ++ ) {
const color = ( i & 1 ) ? color1 : color2;
const r = radius - ( radius / circles * i );
for ( let j = 0; j < divisions; j ++ ) {
// first vertex
let v = ( j / divisions ) * ( Math.PI * 2 );
let x = Math.sin( v ) * r;
let z = Math.cos( v ) * r;
vertices.push( x, 0, z );
colors.push( color.r, color.g, color.b );
// second vertex
v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );
x = Math.sin( v ) * r;
z = Math.cos( v ) * r;
vertices.push( x, 0, z );
colors.push( color.r, color.g, color.b );
}
}
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );
LineSegments.call( this, geometry, material );
this.type = 'PolarGridHelper';
}
PolarGridHelper.prototype = Object.create( LineSegments.prototype );
PolarGridHelper.prototype.constructor = PolarGridHelper;
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
*/
const _v1$5 = new Vector3();
const _v2$3 = new Vector3();
const _v3$1 = new Vector3();
function DirectionalLightHelper( light, size, color ) {
Object3D.call( this );
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
if ( size === undefined ) size = 1;
let geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( [
- size, size, 0,
size, size, 0,
size, - size, 0,
- size, - size, 0,
- size, size, 0
], 3 ) );
const material = new LineBasicMaterial( { fog: false, toneMapped: false } );
this.lightPlane = new Line( geometry, material );
this.add( this.lightPlane );
geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );
this.targetLine = new Line( geometry, material );
this.add( this.targetLine );
this.update();
}
DirectionalLightHelper.prototype = Object.create( Object3D.prototype );
DirectionalLightHelper.prototype.constructor = DirectionalLightHelper;
DirectionalLightHelper.prototype.dispose = function () {
this.lightPlane.geometry.dispose();
this.lightPlane.material.dispose();
this.targetLine.geometry.dispose();
this.targetLine.material.dispose();
};
DirectionalLightHelper.prototype.update = function () {
_v1$5.setFromMatrixPosition( this.light.matrixWorld );
_v2$3.setFromMatrixPosition( this.light.target.matrixWorld );
_v3$1.subVectors( _v2$3, _v1$5 );
this.lightPlane.lookAt( _v2$3 );
if ( this.color !== undefined ) {
this.lightPlane.material.color.set( this.color );
this.targetLine.material.color.set( this.color );
} else {
this.lightPlane.material.color.copy( this.light.color );
this.targetLine.material.color.copy( this.light.color );
}
this.targetLine.lookAt( _v2$3 );
this.targetLine.scale.z = _v3$1.length();
};
/**
* @author alteredq / http://alteredqualia.com/
* @author Mugen87 / https://github.com/Mugen87
*
* - shows frustum, line of sight and up of the camera
* - suitable for fast updates
* - based on frustum visualization in lightgl.js shadowmap example
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
*/
const _vector$b = new Vector3();
const _camera = new Camera();
function CameraHelper( camera ) {
const geometry = new BufferGeometry();
const material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } );
const vertices = [];
const colors = [];
const pointMap = {};
// colors
const colorFrustum = new Color( 0xffaa00 );
const colorCone = new Color( 0xff0000 );
const colorUp = new Color( 0x00aaff );
const colorTarget = new Color( 0xffffff );
const colorCross = new Color( 0x333333 );
// near
addLine( 'n1', 'n2', colorFrustum );
addLine( 'n2', 'n4', colorFrustum );
addLine( 'n4', 'n3', colorFrustum );
addLine( 'n3', 'n1', colorFrustum );
// far
addLine( 'f1', 'f2', colorFrustum );
addLine( 'f2', 'f4', colorFrustum );
addLine( 'f4', 'f3', colorFrustum );
addLine( 'f3', 'f1', colorFrustum );
// sides
addLine( 'n1', 'f1', colorFrustum );
addLine( 'n2', 'f2', colorFrustum );
addLine( 'n3', 'f3', colorFrustum );
addLine( 'n4', 'f4', colorFrustum );
// cone
addLine( 'p', 'n1', colorCone );
addLine( 'p', 'n2', colorCone );
addLine( 'p', 'n3', colorCone );
addLine( 'p', 'n4', colorCone );
// up
addLine( 'u1', 'u2', colorUp );
addLine( 'u2', 'u3', colorUp );
addLine( 'u3', 'u1', colorUp );
// target
addLine( 'c', 't', colorTarget );
addLine( 'p', 'c', colorCross );
// cross
addLine( 'cn1', 'cn2', colorCross );
addLine( 'cn3', 'cn4', colorCross );
addLine( 'cf1', 'cf2', colorCross );
addLine( 'cf3', 'cf4', colorCross );
function addLine( a, b, color ) {
addPoint( a, color );
addPoint( b, color );
}
function addPoint( id, color ) {
vertices.push( 0, 0, 0 );
colors.push( color.r, color.g, color.b );
if ( pointMap[ id ] === undefined ) {
pointMap[ id ] = [];
}
pointMap[ id ].push( ( vertices.length / 3 ) - 1 );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
LineSegments.call( this, geometry, material );
this.type = 'CameraHelper';
this.camera = camera;
if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();
this.matrix = camera.matrixWorld;
this.matrixAutoUpdate = false;
this.pointMap = pointMap;
this.update();
}
CameraHelper.prototype = Object.create( LineSegments.prototype );
CameraHelper.prototype.constructor = CameraHelper;
CameraHelper.prototype.update = function () {
const geometry = this.geometry;
const pointMap = this.pointMap;
const w = 1, h = 1;
// we need just camera projection matrix inverse
// world matrix must be identity
_camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse );
// center / target
setPoint( 'c', pointMap, geometry, _camera, 0, 0, - 1 );
setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 );
// near
setPoint( 'n1', pointMap, geometry, _camera, - w, - h, - 1 );
setPoint( 'n2', pointMap, geometry, _camera, w, - h, - 1 );
setPoint( 'n3', pointMap, geometry, _camera, - w, h, - 1 );
setPoint( 'n4', pointMap, geometry, _camera, w, h, - 1 );
// far
setPoint( 'f1', pointMap, geometry, _camera, - w, - h, 1 );
setPoint( 'f2', pointMap, geometry, _camera, w, - h, 1 );
setPoint( 'f3', pointMap, geometry, _camera, - w, h, 1 );
setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 );
// up
setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, - 1 );
setPoint( 'u2', pointMap, geometry, _camera, - w * 0.7, h * 1.1, - 1 );
setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, - 1 );
// cross
setPoint( 'cf1', pointMap, geometry, _camera, - w, 0, 1 );
setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 );
setPoint( 'cf3', pointMap, geometry, _camera, 0, - h, 1 );
setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 );
setPoint( 'cn1', pointMap, geometry, _camera, - w, 0, - 1 );
setPoint( 'cn2', pointMap, geometry, _camera, w, 0, - 1 );
setPoint( 'cn3', pointMap, geometry, _camera, 0, - h, - 1 );
setPoint( 'cn4', pointMap, geometry, _camera, 0, h, - 1 );
geometry.getAttribute( 'position' ).needsUpdate = true;
};
function setPoint( point, pointMap, geometry, camera, x, y, z ) {
_vector$b.set( x, y, z ).unproject( camera );
const points = pointMap[ point ];
if ( points !== undefined ) {
const position = geometry.getAttribute( 'position' );
for ( let i = 0, l = points.length; i < l; i ++ ) {
position.setXYZ( points[ i ], _vector$b.x, _vector$b.y, _vector$b.z );
}
}
}
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / http://github.com/Mugen87
*/
const _box$3 = new Box3();
function BoxHelper( object, color ) {
this.object = object;
if ( color === undefined ) color = 0xffff00;
const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
const positions = new Float32Array( 8 * 3 );
const geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( indices, 1 ) );
geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.type = 'BoxHelper';
this.matrixAutoUpdate = false;
this.update();
}
BoxHelper.prototype = Object.create( LineSegments.prototype );
BoxHelper.prototype.constructor = BoxHelper;
BoxHelper.prototype.update = function ( object ) {
if ( object !== undefined ) {
console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );
}
if ( this.object !== undefined ) {
_box$3.setFromObject( this.object );
}
if ( _box$3.isEmpty() ) return;
const min = _box$3.min;
const max = _box$3.max;
/*
5____4
1/___0/|
| 6__|_7
2/___3/
0: max.x, max.y, max.z
1: min.x, max.y, max.z
2: min.x, min.y, max.z
3: max.x, min.y, max.z
4: max.x, max.y, min.z
5: min.x, max.y, min.z
6: min.x, min.y, min.z
7: max.x, min.y, min.z
*/
const position = this.geometry.attributes.position;
const array = position.array;
array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;
position.needsUpdate = true;
this.geometry.computeBoundingSphere();
};
BoxHelper.prototype.setFromObject = function ( object ) {
this.object = object;
this.update();
return this;
};
BoxHelper.prototype.copy = function ( source ) {
LineSegments.prototype.copy.call( this, source );
this.object = source.object;
return this;
};
BoxHelper.prototype.clone = function () {
return new this.constructor().copy( this );
};
/**
* @author WestLangley / http://github.com/WestLangley
*/
function Box3Helper( box, color ) {
this.type = 'Box3Helper';
this.box = box;
color = color || 0xffff00;
const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
const positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ];
const geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( indices, 1 ) );
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.type = 'Box3Helper';
this.geometry.computeBoundingSphere();
}
Box3Helper.prototype = Object.create( LineSegments.prototype );
Box3Helper.prototype.constructor = Box3Helper;
Box3Helper.prototype.updateMatrixWorld = function ( force ) {
const box = this.box;
if ( box.isEmpty() ) return;
box.getCenter( this.position );
box.getSize( this.scale );
this.scale.multiplyScalar( 0.5 );
Object3D.prototype.updateMatrixWorld.call( this, force );
};
/**
* @author WestLangley / http://github.com/WestLangley
*/
function PlaneHelper( plane, size, hex ) {
this.plane = plane;
this.size = ( size === undefined ) ? 1 : size;
const color = ( hex !== undefined ) ? hex : 0xffff00;
const positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ];
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
geometry.computeBoundingSphere();
Line.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.type = 'PlaneHelper';
//
const positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ];
const geometry2 = new BufferGeometry();
geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) );
geometry2.computeBoundingSphere();
this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) );
}
PlaneHelper.prototype = Object.create( Line.prototype );
PlaneHelper.prototype.constructor = PlaneHelper;
PlaneHelper.prototype.updateMatrixWorld = function ( force ) {
let scale = - this.plane.constant;
if ( Math.abs( scale ) < 1e-8 ) scale = 1e-8; // sign does not matter
this.scale.set( 0.5 * this.size, 0.5 * this.size, scale );
this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
this.lookAt( this.plane.normal );
Object3D.prototype.updateMatrixWorld.call( this, force );
};
/**
* @author WestLangley / http://github.com/WestLangley
* @author zz85 / http://github.com/zz85
* @author bhouston / http://clara.io
*
* Creates an arrow for visualizing directions
*
* Parameters:
* dir - Vector3
* origin - Vector3
* length - Number
* color - color in hex value
* headLength - Number
* headWidth - Number
*/
const _axis = new Vector3();
let _lineGeometry, _coneGeometry;
function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {
// dir is assumed to be normalized
Object3D.call( this );
this.type = 'ArrowHelper';
if ( dir === undefined ) dir = new Vector3( 0, 0, 1 );
if ( origin === undefined ) origin = new Vector3( 0, 0, 0 );
if ( length === undefined ) length = 1;
if ( color === undefined ) color = 0xffff00;
if ( headLength === undefined ) headLength = 0.2 * length;
if ( headWidth === undefined ) headWidth = 0.2 * headLength;
if ( _lineGeometry === undefined ) {
_lineGeometry = new BufferGeometry();
_lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );
_coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 );
_coneGeometry.translate( 0, - 0.5, 0 );
}
this.position.copy( origin );
this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.line.matrixAutoUpdate = false;
this.add( this.line );
this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) );
this.cone.matrixAutoUpdate = false;
this.add( this.cone );
this.setDirection( dir );
this.setLength( length, headLength, headWidth );
}
ArrowHelper.prototype = Object.create( Object3D.prototype );
ArrowHelper.prototype.constructor = ArrowHelper;
ArrowHelper.prototype.setDirection = function ( dir ) {
// dir is assumed to be normalized
if ( dir.y > 0.99999 ) {
this.quaternion.set( 0, 0, 0, 1 );
} else if ( dir.y < - 0.99999 ) {
this.quaternion.set( 1, 0, 0, 0 );
} else {
_axis.set( dir.z, 0, - dir.x ).normalize();
const radians = Math.acos( dir.y );
this.quaternion.setFromAxisAngle( _axis, radians );
}
};
ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {
if ( headLength === undefined ) headLength = 0.2 * length;
if ( headWidth === undefined ) headWidth = 0.2 * headLength;
this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458
this.line.updateMatrix();
this.cone.scale.set( headWidth, headLength, headWidth );
this.cone.position.y = length;
this.cone.updateMatrix();
};
ArrowHelper.prototype.setColor = function ( color ) {
this.line.material.color.set( color );
this.cone.material.color.set( color );
};
ArrowHelper.prototype.copy = function ( source ) {
Object3D.prototype.copy.call( this, source, false );
this.line.copy( source.line );
this.cone.copy( source.cone );
return this;
};
ArrowHelper.prototype.clone = function () {
return new this.constructor().copy( this );
};
/**
* @author sroucheray / http://sroucheray.org/
* @author mrdoob / http://mrdoob.com/
*/
function AxesHelper( size ) {
size = size || 1;
const vertices = [
0, 0, 0, size, 0, 0,
0, 0, 0, 0, size, 0,
0, 0, 0, 0, 0, size
];
const colors = [
1, 0, 0, 1, 0.6, 0,
0, 1, 0, 0.6, 1, 0,
0, 0, 1, 0, 0.6, 1
];
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );
LineSegments.call( this, geometry, material );
this.type = 'AxesHelper';
}
AxesHelper.prototype = Object.create( LineSegments.prototype );
AxesHelper.prototype.constructor = AxesHelper;
/**
* @author Emmett Lalish / elalish
*
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*/
const LOD_MIN = 4;
const LOD_MAX = 8;
const SIZE_MAX = Math.pow( 2, LOD_MAX );
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const ENCODINGS = {
[ LinearEncoding ]: 0,
[ sRGBEncoding ]: 1,
[ RGBEEncoding ]: 2,
[ RGBM7Encoding ]: 3,
[ RGBM16Encoding ]: 4,
[ RGBDEncoding ]: 5,
[ GammaEncoding ]: 6
};
const _flatCamera = new OrthographicCamera();
const { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
let _oldTarget = null;
// Golden Ratio
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
new Vector3( 1, 1, 1 ),
new Vector3( - 1, 1, 1 ),
new Vector3( 1, 1, - 1 ),
new Vector3( - 1, 1, - 1 ),
new Vector3( 0, PHI, INV_PHI ),
new Vector3( 0, PHI, - INV_PHI ),
new Vector3( INV_PHI, 0, PHI ),
new Vector3( - INV_PHI, 0, PHI ),
new Vector3( PHI, INV_PHI, 0 ),
new Vector3( - PHI, INV_PHI, 0 ) ];
function PMREMGenerator( renderer ) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._blurMaterial = _getBlurShader( MAX_SAMPLES );
this._equirectShader = null;
this._cubemapShader = null;
this._compileMaterial( this._blurMaterial );
}
PMREMGenerator.prototype = {
constructor: PMREMGenerator,
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*/
fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets();
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
if ( sigma > 0 ) {
this._blur( cubeUVRenderTarget, 0, 0, sigma );
}
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
},
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*/
fromEquirectangular: function ( equirectangular ) {
return this._fromTexture( equirectangular );
},
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*/
fromCubemap: function ( cubemap ) {
return this._fromTexture( cubemap );
},
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader: function () {
if ( this._cubemapShader === null ) {
this._cubemapShader = _getCubemapShader();
this._compileMaterial( this._cubemapShader );
}
},
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader: function () {
if ( this._equirectShader === null ) {
this._equirectShader = _getEquirectShader();
this._compileMaterial( this._equirectShader );
}
},
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose: function () {
this._blurMaterial.dispose();
if ( this._cubemapShader !== null ) this._cubemapShader.dispose();
if ( this._equirectShader !== null ) this._equirectShader.dispose();
for ( let i = 0; i < _lodPlanes.length; i ++ ) {
_lodPlanes[ i ].dispose();
}
},
// private interface
_cleanup: function ( outputTarget ) {
this._pingPongRenderTarget.dispose();
this._renderer.setRenderTarget( _oldTarget );
outputTarget.scissorTest = false;
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
},
_fromTexture: function ( texture ) {
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets( texture );
this._textureToCubeUV( texture, cubeUVRenderTarget );
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
},
_allocateTargets: function ( texture ) { // warning: null texture is valid
const params = {
magFilter: NearestFilter,
minFilter: NearestFilter,
generateMipmaps: false,
type: UnsignedByteType,
format: RGBEFormat,
encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding,
depthBuffer: false,
stencilBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget( params );
cubeUVRenderTarget.depthBuffer = texture ? false : true;
this._pingPongRenderTarget = _createRenderTarget( params );
return cubeUVRenderTarget;
},
_compileMaterial: function ( material ) {
const tmpMesh = new Mesh( _lodPlanes[ 0 ], material );
this._renderer.compile( tmpMesh, _flatCamera );
},
_sceneToCubeUV: function ( scene, near, far, cubeUVRenderTarget ) {
const fov = 90;
const aspect = 1;
const cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
const upSign = [ 1, - 1, 1, 1, 1, 1 ];
const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
const renderer = this._renderer;
const outputEncoding = renderer.outputEncoding;
const toneMapping = renderer.toneMapping;
const clearColor = renderer.getClearColor();
const clearAlpha = renderer.getClearAlpha();
renderer.toneMapping = NoToneMapping;
renderer.outputEncoding = LinearEncoding;
let background = scene.background;
if ( background && background.isColor ) {
background.convertSRGBToLinear();
// Convert linear to RGBE
const maxComponent = Math.max( background.r, background.g, background.b );
const fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
const alpha = ( fExp + 128.0 ) / 255.0;
renderer.setClearColor( background, alpha );
scene.background = null;
}
for ( let i = 0; i < 6; i ++ ) {
const col = i % 3;
if ( col == 0 ) {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
} else if ( col == 1 ) {
cubeCamera.up.set( 0, 0, upSign[ i ] );
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
} else {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
}
_setViewport( cubeUVRenderTarget,
col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( scene, cubeCamera );
}
renderer.toneMapping = toneMapping;
renderer.outputEncoding = outputEncoding;
renderer.setClearColor( clearColor, clearAlpha );
},
_textureToCubeUV: function ( texture, cubeUVRenderTarget ) {
const renderer = this._renderer;
if ( texture.isCubeTexture ) {
if ( this._cubemapShader == null ) {
this._cubemapShader = _getCubemapShader();
}
} else {
if ( this._equirectShader == null ) {
this._equirectShader = _getEquirectShader();
}
}
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
const mesh = new Mesh( _lodPlanes[ 0 ], material );
const uniforms = material.uniforms;
uniforms[ 'envMap' ].value = texture;
if ( ! texture.isCubeTexture ) {
uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
}
uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ];
_setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( mesh, _flatCamera );
},
_applyPMREM: function ( cubeUVRenderTarget ) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
for ( let i = 1; i < TOTAL_LODS; i ++ ) {
const sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ];
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
}
renderer.autoClear = autoClear;
},
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*/
_blur: function ( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis );
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis );
},
_halfBlur: function ( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
console.error(
'blur direction must be either latitudinal or longitudinal!' );
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial );
const blurUniforms = blurMaterial.uniforms;
const pixels = _sizeLods[ lodIn ] - 1;
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
if ( samples > MAX_SAMPLES ) {
console.warn( `sigmaRadians, ${
sigmaRadians}, is too large and will clip, as it requested ${
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
}
const weights = [];
let sum = 0;
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
const x = i / sigmaPixels;
const weight = Math.exp( - x * x / 2 );
weights.push( weight );
if ( i == 0 ) {
sum += weight;
} else if ( i < samples ) {
sum += 2 * weight;
}
}
for ( let i = 0; i < weights.length; i ++ ) {
weights[ i ] = weights[ i ] / sum;
}
blurUniforms[ 'envMap' ].value = targetIn.texture;
blurUniforms[ 'samples' ].value = samples;
blurUniforms[ 'weights' ].value = weights;
blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
if ( poleAxis ) {
blurUniforms[ 'poleAxis' ].value = poleAxis;
}
blurUniforms[ 'dTheta' ].value = radiansPerPixel;
blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
const outputSize = _sizeLods[ lodOut ];
const x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
const y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( targetOut );
renderer.render( blurMesh, _flatCamera );
}
};
function _isLDR( texture ) {
if ( texture === undefined || texture.type !== UnsignedByteType ) return false;
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
}
function _createPlanes() {
const _lodPlanes = [];
const _sizeLods = [];
const _sigmas = [];
let lod = LOD_MAX;
for ( let i = 0; i < TOTAL_LODS; i ++ ) {
const sizeLod = Math.pow( 2, lod );
_sizeLods.push( sizeLod );
let sigma = 1.0 / sizeLod;
if ( i > LOD_MAX - LOD_MIN ) {
sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
} else if ( i == 0 ) {
sigma = 0;
}
_sigmas.push( sigma );
const texelSize = 1.0 / ( sizeLod - 1 );
const min = - texelSize / 2;
const max = 1 + texelSize / 2;
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array( positionSize * vertices * cubeFaces );
const uv = new Float32Array( uvSize * vertices * cubeFaces );
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
for ( let face = 0; face < cubeFaces; face ++ ) {
const x = ( face % 3 ) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
position.set( coordinates, positionSize * vertices * face );
uv.set( uv1, uvSize * vertices * face );
const fill = [ face, face, face, face, face, face ];
faceIndex.set( fill, faceIndexSize * vertices * face );
}
const planes = new BufferGeometry();
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
_lodPlanes.push( planes );
if ( lod > LOD_MIN ) {
lod --;
}
}
return { _lodPlanes, _sizeLods, _sigmas };
}
function _createRenderTarget( params ) {
const cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
target.viewport.set( x, y, width, height );
target.scissor.set( x, y, width, height );
}
function _getBlurShader( maxSamples ) {
const weights = new Float32Array( maxSamples );
const poleAxis = new Vector3( 0, 1, 0 );
const shaderMaterial = new RawShaderMaterial( {
name: 'SphericalGaussianBlur',
defines: { 'n': maxSamples },
uniforms: {
'envMap': { value: null },
'samples': { value: 1 },
'weights': { value: weights },
'latitudinal': { value: false },
'dTheta': { value: 0 },
'mipInt': { value: 0 },
'poleAxis': { value: poleAxis },
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: `
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[n];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
${_getEncodings()}
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample(float theta, vec3 axis) {
float cosTheta = cos(theta);
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross(axis, vOutputDirection) * sin(theta)
+ axis * dot(axis, vOutputDirection) * (1.0 - cosTheta);
return bilinearCubeUV(envMap, sampleDirection, mipInt);
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross(poleAxis, vOutputDirection);
if (all(equal(axis, vec3(0.0))))
axis = vec3(vOutputDirection.z, 0.0, - vOutputDirection.x);
axis = normalize(axis);
gl_FragColor = vec4(0.0);
gl_FragColor.rgb += weights[0] * getSample(0.0, axis);
for (int i = 1; i < n; i++) {
if (i >= samples)
break;
float theta = dTheta * float(i);
gl_FragColor.rgb += weights[i] * getSample(-1.0 * theta, axis);
gl_FragColor.rgb += weights[i] * getSample(theta, axis);
}
gl_FragColor = linearToOutputTexel(gl_FragColor);
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getEquirectShader() {
const texelSize = new Vector2( 1, 1 );
const shaderMaterial = new RawShaderMaterial( {
name: 'EquirectangularToCubeUV',
uniforms: {
'envMap': { value: null },
'texelSize': { value: texelSize },
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: `
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform vec2 texelSize;
${_getEncodings()}
#include <common>
void main() {
gl_FragColor = vec4(0.0);
vec3 outputDirection = normalize(vOutputDirection);
vec2 uv = equirectUv( outputDirection );
vec2 f = fract(uv / texelSize - 0.5);
uv -= f * texelSize;
vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
uv.x += texelSize.x;
vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
uv.y += texelSize.y;
vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
uv.x -= texelSize.x;
vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
vec3 tm = mix(tl, tr, f.x);
vec3 bm = mix(bl, br, f.x);
gl_FragColor.rgb = mix(tm, bm, f.y);
gl_FragColor = linearToOutputTexel(gl_FragColor);
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getCubemapShader() {
const shaderMaterial = new RawShaderMaterial( {
name: 'CubemapToCubeUV',
uniforms: {
'envMap': { value: null },
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: `
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
${_getEncodings()}
void main() {
gl_FragColor = vec4(0.0);
gl_FragColor.rgb = envMapTexelToLinear(textureCube(envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ))).rgb;
gl_FragColor = linearToOutputTexel(gl_FragColor);
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getCommonVertexShader() {
return `
precision mediump float;
precision mediump int;
attribute vec3 position;
attribute vec2 uv;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection(vec2 uv, float face) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3(uv, 1.0);
if (face == 0.0) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if (face == 1.0) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if (face == 2.0) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if (face == 3.0) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if (face == 4.0) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if (face == 5.0) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection(uv, faceIndex);
gl_Position = vec4( position, 1.0 );
}
`;
}
function _getEncodings() {
return `
uniform int inputEncoding;
uniform int outputEncoding;
#include <encodings_pars_fragment>
vec4 inputTexelToLinear(vec4 value){
if(inputEncoding == 0){
return value;
}else if(inputEncoding == 1){
return sRGBToLinear(value);
}else if(inputEncoding == 2){
return RGBEToLinear(value);
}else if(inputEncoding == 3){
return RGBMToLinear(value, 7.0);
}else if(inputEncoding == 4){
return RGBMToLinear(value, 16.0);
}else if(inputEncoding == 5){
return RGBDToLinear(value, 256.0);
}else{
return GammaToLinear(value, 2.2);
}
}
vec4 linearToOutputTexel(vec4 value){
if(outputEncoding == 0){
return value;
}else if(outputEncoding == 1){
return LinearTosRGB(value);
}else if(outputEncoding == 2){
return LinearToRGBE(value);
}else if(outputEncoding == 3){
return LinearToRGBM(value, 7.0);
}else if(outputEncoding == 4){
return LinearToRGBM(value, 16.0);
}else if(outputEncoding == 5){
return LinearToRGBD(value, 256.0);
}else{
return LinearToGamma(value, 2.2);
}
}
vec4 envMapTexelToLinear(vec4 color) {
return inputTexelToLinear(color);
}
`;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function Face4( a, b, c, d, normal, color, materialIndex ) {
console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' );
return new Face3( a, b, c, normal, color, materialIndex );
}
const LineStrip = 0;
const LinePieces = 1;
const NoColors = 0;
const FaceColors = 1;
const VertexColors = 2;
function MeshFaceMaterial( materials ) {
console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' );
return materials;
}
function MultiMaterial( materials ) {
if ( materials === undefined ) materials = [];
console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' );
materials.isMultiMaterial = true;
materials.materials = materials;
materials.clone = function () {
return materials.slice();
};
return materials;
}
function PointCloud( geometry, material ) {
console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' );
return new Points( geometry, material );
}
function Particle( material ) {
console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' );
return new Sprite( material );
}
function ParticleSystem( geometry, material ) {
console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' );
return new Points( geometry, material );
}
function PointCloudMaterial( parameters ) {
console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' );
return new PointsMaterial( parameters );
}
function ParticleBasicMaterial( parameters ) {
console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' );
return new PointsMaterial( parameters );
}
function ParticleSystemMaterial( parameters ) {
console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' );
return new PointsMaterial( parameters );
}
function Vertex( x, y, z ) {
console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' );
return new Vector3( x, y, z );
}
//
function DynamicBufferAttribute( array, itemSize ) {
console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.' );
return new BufferAttribute( array, itemSize ).setUsage( DynamicDrawUsage );
}
function Int8Attribute( array, itemSize ) {
console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' );
return new Int8BufferAttribute( array, itemSize );
}
function Uint8Attribute( array, itemSize ) {
console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' );
return new Uint8BufferAttribute( array, itemSize );
}
function Uint8ClampedAttribute( array, itemSize ) {
console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' );
return new Uint8ClampedBufferAttribute( array, itemSize );
}
function Int16Attribute( array, itemSize ) {
console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' );
return new Int16BufferAttribute( array, itemSize );
}
function Uint16Attribute( array, itemSize ) {
console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' );
return new Uint16BufferAttribute( array, itemSize );
}
function Int32Attribute( array, itemSize ) {
console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' );
return new Int32BufferAttribute( array, itemSize );
}
function Uint32Attribute( array, itemSize ) {
console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' );
return new Uint32BufferAttribute( array, itemSize );
}
function Float32Attribute( array, itemSize ) {
console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' );
return new Float32BufferAttribute( array, itemSize );
}
function Float64Attribute( array, itemSize ) {
console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' );
return new Float64BufferAttribute( array, itemSize );
}
//
Curve.create = function ( construct, getPoint ) {
console.log( 'THREE.Curve.create() has been deprecated' );
construct.prototype = Object.create( Curve.prototype );
construct.prototype.constructor = construct;
construct.prototype.getPoint = getPoint;
return construct;
};
//
Object.assign( CurvePath.prototype, {
createPointsGeometry: function ( divisions ) {
console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );
// generate geometry from path points (for Line or Points objects)
const pts = this.getPoints( divisions );
return this.createGeometry( pts );
},
createSpacedPointsGeometry: function ( divisions ) {
console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );
// generate geometry from equidistant sampling along the path
const pts = this.getSpacedPoints( divisions );
return this.createGeometry( pts );
},
createGeometry: function ( points ) {
console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );
const geometry = new Geometry();
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );
}
return geometry;
}
} );
//
Object.assign( Path.prototype, {
fromPoints: function ( points ) {
console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' );
return this.setFromPoints( points );
}
} );
//
function ClosedSplineCurve3( points ) {
console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );
CatmullRomCurve3.call( this, points );
this.type = 'catmullrom';
this.closed = true;
}
ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );
//
function SplineCurve3( points ) {
console.warn( 'THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );
CatmullRomCurve3.call( this, points );
this.type = 'catmullrom';
}
SplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );
//
function Spline( points ) {
console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );
CatmullRomCurve3.call( this, points );
this.type = 'catmullrom';
}
Spline.prototype = Object.create( CatmullRomCurve3.prototype );
Object.assign( Spline.prototype, {
initFromArray: function ( /* a */ ) {
console.error( 'THREE.Spline: .initFromArray() has been removed.' );
},
getControlPointsArray: function ( /* optionalTarget */ ) {
console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );
},
reparametrizeByArcLength: function ( /* samplingCoef */ ) {
console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );
}
} );
//
function AxisHelper( size ) {
console.warn( 'THREE.AxisHelper has been renamed to THREE.AxesHelper.' );
return new AxesHelper( size );
}
function BoundingBoxHelper( object, color ) {
console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' );
return new BoxHelper( object, color );
}
function EdgesHelper( object, hex ) {
console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' );
return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );
}
GridHelper.prototype.setColors = function () {
console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' );
};
SkeletonHelper.prototype.update = function () {
console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' );
};
function WireframeHelper( object, hex ) {
console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' );
return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );
}
//
Object.assign( Loader.prototype, {
extractUrlBase: function ( url ) {
console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' );
return LoaderUtils.extractUrlBase( url );
}
} );
Loader.Handlers = {
add: function ( /* regex, loader */ ) {
console.error( 'THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.' );
},
get: function ( /* file */ ) {
console.error( 'THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.' );
}
};
function XHRLoader( manager ) {
console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' );
return new FileLoader( manager );
}
function BinaryTextureLoader( manager ) {
console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' );
return new DataTextureLoader( manager );
}
Object.assign( ObjectLoader.prototype, {
setTexturePath: function ( value ) {
console.warn( 'THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().' );
return this.setResourcePath( value );
}
} );
//
Object.assign( Box2.prototype, {
center: function ( optionalTarget ) {
console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' );
return this.getCenter( optionalTarget );
},
empty: function () {
console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
},
isIntersectionBox: function ( box ) {
console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
},
size: function ( optionalTarget ) {
console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' );
return this.getSize( optionalTarget );
}
} );
Object.assign( Box3.prototype, {
center: function ( optionalTarget ) {
console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' );
return this.getCenter( optionalTarget );
},
empty: function () {
console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
},
isIntersectionBox: function ( box ) {
console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
},
isIntersectionSphere: function ( sphere ) {
console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
return this.intersectsSphere( sphere );
},
size: function ( optionalTarget ) {
console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' );
return this.getSize( optionalTarget );
}
} );
Object.assign( Sphere.prototype, {
empty: function () {
console.warn( 'THREE.Sphere: .empty() has been renamed to .isEmpty().' );
return this.isEmpty();
},
} );
Frustum.prototype.setFromMatrix = function ( m ) {
console.warn( 'THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().' );
return this.setFromProjectionMatrix( m );
};
Line3.prototype.center = function ( optionalTarget ) {
console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' );
return this.getCenter( optionalTarget );
};
Object.assign( MathUtils, {
random16: function () {
console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' );
return Math.random();
},
nearestPowerOfTwo: function ( value ) {
console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' );
return MathUtils.floorPowerOfTwo( value );
},
nextPowerOfTwo: function ( value ) {
console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' );
return MathUtils.ceilPowerOfTwo( value );
}
} );
Object.assign( Matrix3.prototype, {
flattenToArrayOffset: function ( array, offset ) {
console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
return this.toArray( array, offset );
},
multiplyVector3: function ( vector ) {
console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
return vector.applyMatrix3( this );
},
multiplyVector3Array: function ( /* a */ ) {
console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' );
},
applyToBufferAttribute: function ( attribute ) {
console.warn( 'THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.' );
return attribute.applyMatrix3( this );
},
applyToVector3Array: function ( /* array, offset, length */ ) {
console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );
}
} );
Object.assign( Matrix4.prototype, {
extractPosition: function ( m ) {
console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
return this.copyPosition( m );
},
flattenToArrayOffset: function ( array, offset ) {
console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
return this.toArray( array, offset );
},
getPosition: function () {
console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
return new Vector3().setFromMatrixColumn( this, 3 );
},
setRotationFromQuaternion: function ( q ) {
console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
return this.makeRotationFromQuaternion( q );
},
multiplyToArray: function () {
console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );
},
multiplyVector3: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
},
multiplyVector4: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
},
multiplyVector3Array: function ( /* a */ ) {
console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' );
},
rotateAxis: function ( v ) {
console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
v.transformDirection( this );
},
crossVector: function ( vector ) {
console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
},
translate: function () {
console.error( 'THREE.Matrix4: .translate() has been removed.' );
},
rotateX: function () {
console.error( 'THREE.Matrix4: .rotateX() has been removed.' );
},
rotateY: function () {
console.error( 'THREE.Matrix4: .rotateY() has been removed.' );
},
rotateZ: function () {
console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );
},
rotateByAxis: function () {
console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );
},
applyToBufferAttribute: function ( attribute ) {
console.warn( 'THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.' );
return attribute.applyMatrix4( this );
},
applyToVector3Array: function ( /* array, offset, length */ ) {
console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );
},
makeFrustum: function ( left, right, bottom, top, near, far ) {
console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' );
return this.makePerspective( left, right, top, bottom, near, far );
}
} );
Plane.prototype.isIntersectionLine = function ( line ) {
console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
return this.intersectsLine( line );
};
Quaternion.prototype.multiplyVector3 = function ( vector ) {
console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
return vector.applyQuaternion( this );
};
Object.assign( Ray.prototype, {
isIntersectionBox: function ( box ) {
console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
return this.intersectsBox( box );
},
isIntersectionPlane: function ( plane ) {
console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
return this.intersectsPlane( plane );
},
isIntersectionSphere: function ( sphere ) {
console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
return this.intersectsSphere( sphere );
}
} );
Object.assign( Triangle.prototype, {
area: function () {
console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' );
return this.getArea();
},
barycoordFromPoint: function ( point, target ) {
console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
return this.getBarycoord( point, target );
},
midpoint: function ( target ) {
console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' );
return this.getMidpoint( target );
},
normal: function ( target ) {
console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
return this.getNormal( target );
},
plane: function ( target ) {
console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' );
return this.getPlane( target );
}
} );
Object.assign( Triangle, {
barycoordFromPoint: function ( point, a, b, c, target ) {
console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
return Triangle.getBarycoord( point, a, b, c, target );
},
normal: function ( a, b, c, target ) {
console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
return Triangle.getNormal( a, b, c, target );
}
} );
Object.assign( Shape.prototype, {
extractAllPoints: function ( divisions ) {
console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' );
return this.extractPoints( divisions );
},
extrude: function ( options ) {
console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' );
return new ExtrudeGeometry( this, options );
},
makeGeometry: function ( options ) {
console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' );
return new ShapeGeometry( this, options );
}
} );
Object.assign( Vector2.prototype, {
fromAttribute: function ( attribute, index, offset ) {
console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' );
return this.fromBufferAttribute( attribute, index, offset );
},
distanceToManhattan: function ( v ) {
console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
return this.manhattanDistanceTo( v );
},
lengthManhattan: function () {
console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' );
return this.manhattanLength();
}
} );
Object.assign( Vector3.prototype, {
setEulerFromRotationMatrix: function () {
console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );
},
setEulerFromQuaternion: function () {
console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );
},
getPositionFromMatrix: function ( m ) {
console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
return this.setFromMatrixPosition( m );
},
getScaleFromMatrix: function ( m ) {
console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
return this.setFromMatrixScale( m );
},
getColumnFromMatrix: function ( index, matrix ) {
console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
return this.setFromMatrixColumn( matrix, index );
},
applyProjection: function ( m ) {
console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' );
return this.applyMatrix4( m );
},
fromAttribute: function ( attribute, index, offset ) {
console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' );
return this.fromBufferAttribute( attribute, index, offset );
},
distanceToManhattan: function ( v ) {
console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
return this.manhattanDistanceTo( v );
},
lengthManhattan: function () {
console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' );
return this.manhattanLength();
}
} );
Object.assign( Vector4.prototype, {
fromAttribute: function ( attribute, index, offset ) {
console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' );
return this.fromBufferAttribute( attribute, index, offset );
},
lengthManhattan: function () {
console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' );
return this.manhattanLength();
}
} );
//
Object.assign( Geometry.prototype, {
computeTangents: function () {
console.error( 'THREE.Geometry: .computeTangents() has been removed.' );
},
computeLineDistances: function () {
console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' );
},
applyMatrix: function ( matrix ) {
console.warn( 'THREE.Geometry: .applyMatrix() has been renamed to .applyMatrix4().' );
return this.applyMatrix4( matrix );
}
} );
Object.assign( Object3D.prototype, {
getChildByName: function ( name ) {
console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
return this.getObjectByName( name );
},
renderDepth: function () {
console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );
},
translate: function ( distance, axis ) {
console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
return this.translateOnAxis( axis, distance );
},
getWorldRotation: function () {
console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' );
},
applyMatrix: function ( matrix ) {
console.warn( 'THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().' );
return this.applyMatrix4( matrix );
}
} );
Object.defineProperties( Object3D.prototype, {
eulerOrder: {
get: function () {
console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
return this.rotation.order;
},
set: function ( value ) {
console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
this.rotation.order = value;
}
},
useQuaternion: {
get: function () {
console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
},
set: function () {
console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
}
}
} );
Object.assign( Mesh.prototype, {
setDrawMode: function () {
console.error( 'THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' );
},
} );
Object.defineProperties( Mesh.prototype, {
drawMode: {
get: function () {
console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.' );
return TrianglesDrawMode;
},
set: function () {
console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' );
}
}
} );
Object.defineProperties( LOD.prototype, {
objects: {
get: function () {
console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
return this.levels;
}
}
} );
Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {
get: function () {
console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );
},
set: function () {
console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );
}
} );
SkinnedMesh.prototype.initBones = function () {
console.error( 'THREE.SkinnedMesh: initBones() has been removed.' );
};
Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {
get: function () {
console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
return this.arcLengthDivisions;
},
set: function ( value ) {
console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
this.arcLengthDivisions = value;
}
} );
//
PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {
console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
"Use .setFocalLength and .filmGauge for a photographic setup." );
if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
this.setFocalLength( focalLength );
};
//
Object.defineProperties( Light.prototype, {
onlyShadow: {
set: function () {
console.warn( 'THREE.Light: .onlyShadow has been removed.' );
}
},
shadowCameraFov: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
this.shadow.camera.fov = value;
}
},
shadowCameraLeft: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
this.shadow.camera.left = value;
}
},
shadowCameraRight: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
this.shadow.camera.right = value;
}
},
shadowCameraTop: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
this.shadow.camera.top = value;
}
},
shadowCameraBottom: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
this.shadow.camera.bottom = value;
}
},
shadowCameraNear: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
this.shadow.camera.near = value;
}
},
shadowCameraFar: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
this.shadow.camera.far = value;
}
},
shadowCameraVisible: {
set: function () {
console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );
}
},
shadowBias: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
this.shadow.bias = value;
}
},
shadowDarkness: {
set: function () {
console.warn( 'THREE.Light: .shadowDarkness has been removed.' );
}
},
shadowMapWidth: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
this.shadow.mapSize.width = value;
}
},
shadowMapHeight: {
set: function ( value ) {
console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
this.shadow.mapSize.height = value;
}
}
} );
//
Object.defineProperties( BufferAttribute.prototype, {
length: {
get: function () {
console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' );
return this.array.length;
}
},
dynamic: {
get: function () {
console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' );
return this.usage === DynamicDrawUsage;
},
set: function ( /* value */ ) {
console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' );
this.setUsage( DynamicDrawUsage );
}
}
} );
Object.assign( BufferAttribute.prototype, {
setDynamic: function ( value ) {
console.warn( 'THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.' );
this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage );
return this;
},
copyIndicesArray: function ( /* indices */ ) {
console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' );
},
setArray: function ( /* array */ ) {
console.error( 'THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' );
}
} );
Object.assign( BufferGeometry.prototype, {
addIndex: function ( index ) {
console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
this.setIndex( index );
},
addAttribute: function ( name, attribute ) {
console.warn( 'THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().' );
if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {
console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );
return this.setAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );
}
if ( name === 'index' ) {
console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
this.setIndex( attribute );
return this;
}
return this.setAttribute( name, attribute );
},
addDrawCall: function ( start, count, indexOffset ) {
if ( indexOffset !== undefined ) {
console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );
}
console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
this.addGroup( start, count );
},
clearDrawCalls: function () {
console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
this.clearGroups();
},
computeTangents: function () {
console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );
},
computeOffsets: function () {
console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );
},
removeAttribute: function ( name ) {
console.warn( 'THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().' );
return this.deleteAttribute( name );
},
applyMatrix: function ( matrix ) {
console.warn( 'THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().' );
return this.applyMatrix4( matrix );
}
} );
Object.defineProperties( BufferGeometry.prototype, {
drawcalls: {
get: function () {
console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
return this.groups;
}
},
offsets: {
get: function () {
console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
return this.groups;
}
}
} );
Object.defineProperties( InstancedBufferGeometry.prototype, {
maxInstancedCount: {
get: function () {
console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' );
return this.instanceCount;
},
set: function ( value ) {
console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' );
this.instanceCount = value;
}
}
} );
Object.defineProperties( Raycaster.prototype, {
linePrecision: {
get: function () {
console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' );
return this.params.Line.threshold;
},
set: function ( value ) {
console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' );
this.params.Line.threshold = value;
}
}
} );
Object.defineProperties( InterleavedBuffer.prototype, {
dynamic: {
get: function () {
console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' );
return this.usage === DynamicDrawUsage;
},
set: function ( value ) {
console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' );
this.setUsage( value );
}
}
} );
Object.assign( InterleavedBuffer.prototype, {
setDynamic: function ( value ) {
console.warn( 'THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.' );
this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage );
return this;
},
setArray: function ( /* array */ ) {
console.error( 'THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' );
}
} );
//
Object.assign( ExtrudeBufferGeometry.prototype, {
getArrays: function () {
console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' );
},
addShapeList: function () {
console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' );
},
addShape: function () {
console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' );
}
} );
//
Object.defineProperties( Uniform.prototype, {
dynamic: {
set: function () {
console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );
}
},
onUpdate: {
value: function () {
console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' );
return this;
}
}
} );
//
Object.defineProperties( Material.prototype, {
wrapAround: {
get: function () {
console.warn( 'THREE.Material: .wrapAround has been removed.' );
},
set: function () {
console.warn( 'THREE.Material: .wrapAround has been removed.' );
}
},
overdraw: {
get: function () {
console.warn( 'THREE.Material: .overdraw has been removed.' );
},
set: function () {
console.warn( 'THREE.Material: .overdraw has been removed.' );
}
},
wrapRGB: {
get: function () {
console.warn( 'THREE.Material: .wrapRGB has been removed.' );
return new Color();
}
},
shading: {
get: function () {
console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
},
set: function ( value ) {
console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
this.flatShading = ( value === FlatShading );
}
},
stencilMask: {
get: function () {
console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' );
return this.stencilFuncMask;
},
set: function ( value ) {
console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' );
this.stencilFuncMask = value;
}
}
} );
Object.defineProperties( MeshPhongMaterial.prototype, {
metal: {
get: function () {
console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
return false;
},
set: function () {
console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );
}
}
} );
Object.defineProperties( ShaderMaterial.prototype, {
derivatives: {
get: function () {
console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
return this.extensions.derivatives;
},
set: function ( value ) {
console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
this.extensions.derivatives = value;
}
}
} );
//
Object.assign( WebGLRenderer.prototype, {
clearTarget: function ( renderTarget, color, depth, stencil ) {
console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' );
this.setRenderTarget( renderTarget );
this.clear( color, depth, stencil );
},
animate: function ( callback ) {
console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' );
this.setAnimationLoop( callback );
},
getCurrentRenderTarget: function () {
console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' );
return this.getRenderTarget();
},
getMaxAnisotropy: function () {
console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' );
return this.capabilities.getMaxAnisotropy();
},
getPrecision: function () {
console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' );
return this.capabilities.precision;
},
resetGLState: function () {
console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' );
return this.state.reset();
},
supportsFloatTextures: function () {
console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
return this.extensions.get( 'OES_texture_float' );
},
supportsHalfFloatTextures: function () {
console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
return this.extensions.get( 'OES_texture_half_float' );
},
supportsStandardDerivatives: function () {
console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
return this.extensions.get( 'OES_standard_derivatives' );
},
supportsCompressedTextureS3TC: function () {
console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );
},
supportsCompressedTexturePVRTC: function () {
console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );
},
supportsBlendMinMax: function () {
console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
return this.extensions.get( 'EXT_blend_minmax' );
},
supportsVertexTextures: function () {
console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' );
return this.capabilities.vertexTextures;
},
supportsInstancedArrays: function () {
console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
return this.extensions.get( 'ANGLE_instanced_arrays' );
},
enableScissorTest: function ( boolean ) {
console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
this.setScissorTest( boolean );
},
initMaterial: function () {
console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );
},
addPrePlugin: function () {
console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );
},
addPostPlugin: function () {
console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );
},
updateShadowMap: function () {
console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );
},
setFaceCulling: function () {
console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' );
},
allocTextureUnit: function () {
console.warn( 'THREE.WebGLRenderer: .allocTextureUnit() has been removed.' );
},
setTexture: function () {
console.warn( 'THREE.WebGLRenderer: .setTexture() has been removed.' );
},
setTexture2D: function () {
console.warn( 'THREE.WebGLRenderer: .setTexture2D() has been removed.' );
},
setTextureCube: function () {
console.warn( 'THREE.WebGLRenderer: .setTextureCube() has been removed.' );
},
getActiveMipMapLevel: function () {
console.warn( 'THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().' );
return this.getActiveMipmapLevel();
}
} );
Object.defineProperties( WebGLRenderer.prototype, {
shadowMapEnabled: {
get: function () {
return this.shadowMap.enabled;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
this.shadowMap.enabled = value;
}
},
shadowMapType: {
get: function () {
return this.shadowMap.type;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
this.shadowMap.type = value;
}
},
shadowMapCullFace: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );
return undefined;
},
set: function ( /* value */ ) {
console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );
}
},
context: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.' );
return this.getContext();
}
},
vr: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .vr has been renamed to .xr' );
return this.xr;
}
},
gammaInput: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' );
return false;
},
set: function () {
console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' );
}
},
gammaOutput: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' );
return false;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' );
this.outputEncoding = ( value === true ) ? sRGBEncoding : LinearEncoding;
}
},
toneMappingWhitePoint: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' );
return 1.0;
},
set: function () {
console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' );
}
},
} );
Object.defineProperties( WebGLShadowMap.prototype, {
cullFace: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );
return undefined;
},
set: function ( /* cullFace */ ) {
console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );
}
},
renderReverseSided: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );
return undefined;
},
set: function () {
console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );
}
},
renderSingleSided: {
get: function () {
console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );
return undefined;
},
set: function () {
console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );
}
}
} );
function WebGLRenderTargetCube( width, height, options ) {
console.warn( 'THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).' );
return new WebGLCubeRenderTarget( width, options );
}
//
Object.defineProperties( WebGLRenderTarget.prototype, {
wrapS: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
return this.texture.wrapS;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
this.texture.wrapS = value;
}
},
wrapT: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
return this.texture.wrapT;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
this.texture.wrapT = value;
}
},
magFilter: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
return this.texture.magFilter;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
this.texture.magFilter = value;
}
},
minFilter: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
return this.texture.minFilter;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
this.texture.minFilter = value;
}
},
anisotropy: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
return this.texture.anisotropy;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
this.texture.anisotropy = value;
}
},
offset: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
return this.texture.offset;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
this.texture.offset = value;
}
},
repeat: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
return this.texture.repeat;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
this.texture.repeat = value;
}
},
format: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
return this.texture.format;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
this.texture.format = value;
}
},
type: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
return this.texture.type;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
this.texture.type = value;
}
},
generateMipmaps: {
get: function () {
console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
return this.texture.generateMipmaps;
},
set: function ( value ) {
console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
this.texture.generateMipmaps = value;
}
}
} );
//
Object.defineProperties( Audio.prototype, {
load: {
value: function ( file ) {
console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' );
const scope = this;
const audioLoader = new AudioLoader();
audioLoader.load( file, function ( buffer ) {
scope.setBuffer( buffer );
} );
return this;
}
},
startTime: {
set: function () {
console.warn( 'THREE.Audio: .startTime is now .play( delay ).' );
}
}
} );
AudioAnalyser.prototype.getData = function () {
console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' );
return this.getFrequencyData();
};
//
CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) {
console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' );
return this.update( renderer, scene );
};
//
const GeometryUtils = {
merge: function ( geometry1, geometry2, materialIndexOffset ) {
console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' );
let matrix;
if ( geometry2.isMesh ) {
geometry2.matrixAutoUpdate && geometry2.updateMatrix();
matrix = geometry2.matrix;
geometry2 = geometry2.geometry;
}
geometry1.merge( geometry2, matrix, materialIndexOffset );
},
center: function ( geometry ) {
console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' );
return geometry.center();
}
};
ImageUtils.crossOrigin = undefined;
ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) {
console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );
const loader = new TextureLoader();
loader.setCrossOrigin( this.crossOrigin );
const texture = loader.load( url, onLoad, undefined, onError );
if ( mapping ) texture.mapping = mapping;
return texture;
};
ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) {
console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );
const loader = new CubeTextureLoader();
loader.setCrossOrigin( this.crossOrigin );
const texture = loader.load( urls, onLoad, undefined, onError );
if ( mapping ) texture.mapping = mapping;
return texture;
};
ImageUtils.loadCompressedTexture = function () {
console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );
};
ImageUtils.loadCompressedTextureCube = function () {
console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );
};
//
function CanvasRenderer() {
console.error( 'THREE.CanvasRenderer has been removed' );
}
//
function JSONLoader() {
console.error( 'THREE.JSONLoader has been removed.' );
}
//
const SceneUtils = {
createMultiMaterialObject: function ( /* geometry, materials */ ) {
console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' );
},
detach: function ( /* child, parent, scene */ ) {
console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' );
},
attach: function ( /* child, scene, parent */ ) {
console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' );
}
};
//
function LensFlare() {
console.error( 'THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js' );
}
if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
/* eslint-disable no-undef */
__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: {
revision: REVISION,
} } ) );
/* eslint-enable no-undef */
}
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/OBJLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
var OBJLoader_OBJLoader = ( function () {
// o object_name | g group_name
var object_pattern = /^[og]\s*(.+)?/;
// mtllib file_reference
var material_library_pattern = /^mtllib /;
// usemtl material_name
var material_use_pattern = /^usemtl /;
// usemap map_name
var map_use_pattern = /^usemap /;
var vA = new Vector3();
var vB = new Vector3();
var vC = new Vector3();
var ab = new Vector3();
var cb = new Vector3();
function ParserState() {
var state = {
objects: [],
object: {},
vertices: [],
normals: [],
colors: [],
uvs: [],
materials: {},
materialLibraries: [],
startObject: function ( name, fromDeclaration ) {
// If the current object (initial from reset) is not from a g/o declaration in the parsed
// file. We need to use it for the first parsed g/o to keep things in sync.
if ( this.object && this.object.fromDeclaration === false ) {
this.object.name = name;
this.object.fromDeclaration = ( fromDeclaration !== false );
return;
}
var previousMaterial = ( this.object && typeof this.object.currentMaterial === 'function' ? this.object.currentMaterial() : undefined );
if ( this.object && typeof this.object._finalize === 'function' ) {
this.object._finalize( true );
}
this.object = {
name: name || '',
fromDeclaration: ( fromDeclaration !== false ),
geometry: {
vertices: [],
normals: [],
colors: [],
uvs: [],
hasNormalIndices: false,
hasUVIndices: false
},
materials: [],
smooth: true,
startMaterial: function ( name, libraries ) {
var previous = this._finalize( false );
// New usemtl declaration overwrites an inherited material, except if faces were declared
// after the material, then it must be preserved for proper MultiMaterial continuation.
if ( previous && ( previous.inherited || previous.groupCount <= 0 ) ) {
this.materials.splice( previous.index, 1 );
}
var material = {
index: this.materials.length,
name: name || '',
mtllib: ( Array.isArray( libraries ) && libraries.length > 0 ? libraries[ libraries.length - 1 ] : '' ),
smooth: ( previous !== undefined ? previous.smooth : this.smooth ),
groupStart: ( previous !== undefined ? previous.groupEnd : 0 ),
groupEnd: - 1,
groupCount: - 1,
inherited: false,
clone: function ( index ) {
var cloned = {
index: ( typeof index === 'number' ? index : this.index ),
name: this.name,
mtllib: this.mtllib,
smooth: this.smooth,
groupStart: 0,
groupEnd: - 1,
groupCount: - 1,
inherited: false
};
cloned.clone = this.clone.bind( cloned );
return cloned;
}
};
this.materials.push( material );
return material;
},
currentMaterial: function () {
if ( this.materials.length > 0 ) {
return this.materials[ this.materials.length - 1 ];
}
return undefined;
},
_finalize: function ( end ) {
var lastMultiMaterial = this.currentMaterial();
if ( lastMultiMaterial && lastMultiMaterial.groupEnd === - 1 ) {
lastMultiMaterial.groupEnd = this.geometry.vertices.length / 3;
lastMultiMaterial.groupCount = lastMultiMaterial.groupEnd - lastMultiMaterial.groupStart;
lastMultiMaterial.inherited = false;
}
// Ignore objects tail materials if no face declarations followed them before a new o/g started.
if ( end && this.materials.length > 1 ) {
for ( var mi = this.materials.length - 1; mi >= 0; mi -- ) {
if ( this.materials[ mi ].groupCount <= 0 ) {
this.materials.splice( mi, 1 );
}
}
}
// Guarantee at least one empty material, this makes the creation later more straight forward.
if ( end && this.materials.length === 0 ) {
this.materials.push( {
name: '',
smooth: this.smooth
} );
}
return lastMultiMaterial;
}
};
// Inherit previous objects material.
// Spec tells us that a declared material must be set to all objects until a new material is declared.
// If a usemtl declaration is encountered while this new object is being parsed, it will
// overwrite the inherited material. Exception being that there was already face declarations
// to the inherited material, then it will be preserved for proper MultiMaterial continuation.
if ( previousMaterial && previousMaterial.name && typeof previousMaterial.clone === 'function' ) {
var declared = previousMaterial.clone( 0 );
declared.inherited = true;
this.object.materials.push( declared );
}
this.objects.push( this.object );
},
finalize: function () {
if ( this.object && typeof this.object._finalize === 'function' ) {
this.object._finalize( true );
}
},
parseVertexIndex: function ( value, len ) {
var index = parseInt( value, 10 );
return ( index >= 0 ? index - 1 : index + len / 3 ) * 3;
},
parseNormalIndex: function ( value, len ) {
var index = parseInt( value, 10 );
return ( index >= 0 ? index - 1 : index + len / 3 ) * 3;
},
parseUVIndex: function ( value, len ) {
var index = parseInt( value, 10 );
return ( index >= 0 ? index - 1 : index + len / 2 ) * 2;
},
addVertex: function ( a, b, c ) {
var src = this.vertices;
var dst = this.object.geometry.vertices;
dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
dst.push( src[ b + 0 ], src[ b + 1 ], src[ b + 2 ] );
dst.push( src[ c + 0 ], src[ c + 1 ], src[ c + 2 ] );
},
addVertexPoint: function ( a ) {
var src = this.vertices;
var dst = this.object.geometry.vertices;
dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
},
addVertexLine: function ( a ) {
var src = this.vertices;
var dst = this.object.geometry.vertices;
dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
},
addNormal: function ( a, b, c ) {
var src = this.normals;
var dst = this.object.geometry.normals;
dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
dst.push( src[ b + 0 ], src[ b + 1 ], src[ b + 2 ] );
dst.push( src[ c + 0 ], src[ c + 1 ], src[ c + 2 ] );
},
addFaceNormal: function ( a, b, c ) {
var src = this.vertices;
var dst = this.object.geometry.normals;
vA.fromArray( src, a );
vB.fromArray( src, b );
vC.fromArray( src, c );
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
dst.push( cb.x, cb.y, cb.z );
dst.push( cb.x, cb.y, cb.z );
dst.push( cb.x, cb.y, cb.z );
},
addColor: function ( a, b, c ) {
var src = this.colors;
var dst = this.object.geometry.colors;
if ( src[ a ] !== undefined ) dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
if ( src[ b ] !== undefined ) dst.push( src[ b + 0 ], src[ b + 1 ], src[ b + 2 ] );
if ( src[ c ] !== undefined ) dst.push( src[ c + 0 ], src[ c + 1 ], src[ c + 2 ] );
},
addUV: function ( a, b, c ) {
var src = this.uvs;
var dst = this.object.geometry.uvs;
dst.push( src[ a + 0 ], src[ a + 1 ] );
dst.push( src[ b + 0 ], src[ b + 1 ] );
dst.push( src[ c + 0 ], src[ c + 1 ] );
},
addDefaultUV: function () {
var dst = this.object.geometry.uvs;
dst.push( 0, 0 );
dst.push( 0, 0 );
dst.push( 0, 0 );
},
addUVLine: function ( a ) {
var src = this.uvs;
var dst = this.object.geometry.uvs;
dst.push( src[ a + 0 ], src[ a + 1 ] );
},
addFace: function ( a, b, c, ua, ub, uc, na, nb, nc ) {
var vLen = this.vertices.length;
var ia = this.parseVertexIndex( a, vLen );
var ib = this.parseVertexIndex( b, vLen );
var ic = this.parseVertexIndex( c, vLen );
this.addVertex( ia, ib, ic );
this.addColor( ia, ib, ic );
// normals
if ( na !== undefined && na !== '' ) {
var nLen = this.normals.length;
ia = this.parseNormalIndex( na, nLen );
ib = this.parseNormalIndex( nb, nLen );
ic = this.parseNormalIndex( nc, nLen );
this.addNormal( ia, ib, ic );
this.object.geometry.hasNormalIndices = true;
} else {
this.addFaceNormal( ia, ib, ic );
}
// uvs
if ( ua !== undefined && ua !== '' ) {
var uvLen = this.uvs.length;
ia = this.parseUVIndex( ua, uvLen );
ib = this.parseUVIndex( ub, uvLen );
ic = this.parseUVIndex( uc, uvLen );
this.addUV( ia, ib, ic );
this.object.geometry.hasUVIndices = true;
} else {
// add placeholder values (for inconsistent face definitions)
this.addDefaultUV();
}
},
addPointGeometry: function ( vertices ) {
this.object.geometry.type = 'Points';
var vLen = this.vertices.length;
for ( var vi = 0, l = vertices.length; vi < l; vi ++ ) {
this.addVertexPoint( this.parseVertexIndex( vertices[ vi ], vLen ) );
}
},
addLineGeometry: function ( vertices, uvs ) {
this.object.geometry.type = 'Line';
var vLen = this.vertices.length;
var uvLen = this.uvs.length;
for ( var vi = 0, l = vertices.length; vi < l; vi ++ ) {
this.addVertexLine( this.parseVertexIndex( vertices[ vi ], vLen ) );
}
for ( var uvi = 0, l = uvs.length; uvi < l; uvi ++ ) {
this.addUVLine( this.parseUVIndex( uvs[ uvi ], uvLen ) );
}
}
};
state.startObject( '', false );
return state;
}
//
function OBJLoader( manager ) {
Loader.call( this, manager );
this.materials = null;
}
OBJLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: OBJLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new FileLoader( scope.manager );
loader.setPath( this.path );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
setMaterials: function ( materials ) {
this.materials = materials;
return this;
},
parse: function ( text ) {
var state = new ParserState();
if ( text.indexOf( '\r\n' ) !== - 1 ) {
// This is faster than String.split with regex that splits on both
text = text.replace( /\r\n/g, '\n' );
}
if ( text.indexOf( '\\\n' ) !== - 1 ) {
// join lines separated by a line continuation character (\)
text = text.replace( /\\\n/g, '' );
}
var lines = text.split( '\n' );
var line = '', lineFirstChar = '';
var lineLength = 0;
var result = [];
// Faster to just trim left side of the line. Use if available.
var trimLeft = ( typeof ''.trimLeft === 'function' );
for ( var i = 0, l = lines.length; i < l; i ++ ) {
line = lines[ i ];
line = trimLeft ? line.trimLeft() : line.trim();
lineLength = line.length;
if ( lineLength === 0 ) continue;
lineFirstChar = line.charAt( 0 );
// @todo invoke passed in handler if any
if ( lineFirstChar === '#' ) continue;
if ( lineFirstChar === 'v' ) {
var data = line.split( /\s+/ );
switch ( data[ 0 ] ) {
case 'v':
state.vertices.push(
parseFloat( data[ 1 ] ),
parseFloat( data[ 2 ] ),
parseFloat( data[ 3 ] )
);
if ( data.length >= 7 ) {
state.colors.push(
parseFloat( data[ 4 ] ),
parseFloat( data[ 5 ] ),
parseFloat( data[ 6 ] )
);
} else {
// if no colors are defined, add placeholders so color and vertex indices match
state.colors.push( undefined, undefined, undefined );
}
break;
case 'vn':
state.normals.push(
parseFloat( data[ 1 ] ),
parseFloat( data[ 2 ] ),
parseFloat( data[ 3 ] )
);
break;
case 'vt':
state.uvs.push(
parseFloat( data[ 1 ] ),
parseFloat( data[ 2 ] )
);
break;
}
} else if ( lineFirstChar === 'f' ) {
var lineData = line.substr( 1 ).trim();
var vertexData = lineData.split( /\s+/ );
var faceVertices = [];
// Parse the face vertex data into an easy to work with format
for ( var j = 0, jl = vertexData.length; j < jl; j ++ ) {
var vertex = vertexData[ j ];
if ( vertex.length > 0 ) {
var vertexParts = vertex.split( '/' );
faceVertices.push( vertexParts );
}
}
// Draw an edge between the first vertex and all subsequent vertices to form an n-gon
var v1 = faceVertices[ 0 ];
for ( var j = 1, jl = faceVertices.length - 1; j < jl; j ++ ) {
var v2 = faceVertices[ j ];
var v3 = faceVertices[ j + 1 ];
state.addFace(
v1[ 0 ], v2[ 0 ], v3[ 0 ],
v1[ 1 ], v2[ 1 ], v3[ 1 ],
v1[ 2 ], v2[ 2 ], v3[ 2 ]
);
}
} else if ( lineFirstChar === 'l' ) {
var lineParts = line.substring( 1 ).trim().split( " " );
var lineVertices = [], lineUVs = [];
if ( line.indexOf( "/" ) === - 1 ) {
lineVertices = lineParts;
} else {
for ( var li = 0, llen = lineParts.length; li < llen; li ++ ) {
var parts = lineParts[ li ].split( "/" );
if ( parts[ 0 ] !== "" ) lineVertices.push( parts[ 0 ] );
if ( parts[ 1 ] !== "" ) lineUVs.push( parts[ 1 ] );
}
}
state.addLineGeometry( lineVertices, lineUVs );
} else if ( lineFirstChar === 'p' ) {
var lineData = line.substr( 1 ).trim();
var pointData = lineData.split( " " );
state.addPointGeometry( pointData );
} else if ( ( result = object_pattern.exec( line ) ) !== null ) {
// o object_name
// or
// g group_name
// WORKAROUND: https://bugs.chromium.org/p/v8/issues/detail?id=2869
// var name = result[ 0 ].substr( 1 ).trim();
var name = ( " " + result[ 0 ].substr( 1 ).trim() ).substr( 1 );
state.startObject( name );
} else if ( material_use_pattern.test( line ) ) {
// material
state.object.startMaterial( line.substring( 7 ).trim(), state.materialLibraries );
} else if ( material_library_pattern.test( line ) ) {
// mtl file
state.materialLibraries.push( line.substring( 7 ).trim() );
} else if ( map_use_pattern.test( line ) ) {
// the line is parsed but ignored since the loader assumes textures are defined MTL files
// (according to https://www.okino.com/conv/imp_wave.htm, 'usemap' is the old-style Wavefront texture reference method)
console.warn( 'THREE.OBJLoader: Rendering identifier "usemap" not supported. Textures must be defined in MTL files.' );
} else if ( lineFirstChar === 's' ) {
result = line.split( ' ' );
// smooth shading
// @todo Handle files that have varying smooth values for a set of faces inside one geometry,
// but does not define a usemtl for each face set.
// This should be detected and a dummy material created (later MultiMaterial and geometry groups).
// This requires some care to not create extra material on each smooth value for "normal" obj files.
// where explicit usemtl defines geometry groups.
// Example asset: examples/models/obj/cerberus/Cerberus.obj
/*
* http://paulbourke.net/dataformats/obj/
* or
* http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf
*
* From chapter "Grouping" Syntax explanation "s group_number":
* "group_number is the smoothing group number. To turn off smoothing groups, use a value of 0 or off.
* Polygonal elements use group numbers to put elements in different smoothing groups. For free-form
* surfaces, smoothing groups are either turned on or off; there is no difference between values greater
* than 0."
*/
if ( result.length > 1 ) {
var value = result[ 1 ].trim().toLowerCase();
state.object.smooth = ( value !== '0' && value !== 'off' );
} else {
// ZBrush can produce "s" lines #11707
state.object.smooth = true;
}
var material = state.object.currentMaterial();
if ( material ) material.smooth = state.object.smooth;
} else {
// Handle null terminated files without exception
if ( line === '\0' ) continue;
console.warn( 'THREE.OBJLoader: Unexpected line: "' + line + '"' );
}
}
state.finalize();
var container = new Group();
container.materialLibraries = [].concat( state.materialLibraries );
for ( var i = 0, l = state.objects.length; i < l; i ++ ) {
var object = state.objects[ i ];
var geometry = object.geometry;
var materials = object.materials;
var isLine = ( geometry.type === 'Line' );
var isPoints = ( geometry.type === 'Points' );
var hasVertexColors = false;
// Skip o/g line declarations that did not follow with any faces
if ( geometry.vertices.length === 0 ) continue;
var buffergeometry = new BufferGeometry();
buffergeometry.setAttribute( 'position', new Float32BufferAttribute( geometry.vertices, 3 ) );
if ( geometry.hasNormalIndices === true ) {
buffergeometry.setAttribute( 'normal', new Float32BufferAttribute( geometry.normals, 3 ) );
}
if ( geometry.colors.length > 0 ) {
hasVertexColors = true;
buffergeometry.setAttribute( 'color', new Float32BufferAttribute( geometry.colors, 3 ) );
}
if ( geometry.hasUVIndices === true ) {
buffergeometry.setAttribute( 'uv', new Float32BufferAttribute( geometry.uvs, 2 ) );
}
// Create materials
var createdMaterials = [];
for ( var mi = 0, miLen = materials.length; mi < miLen; mi ++ ) {
var sourceMaterial = materials[ mi ];
var materialHash = sourceMaterial.name + '_' + sourceMaterial.smooth + '_' + hasVertexColors;
var material = state.materials[ materialHash ];
if ( this.materials !== null ) {
material = this.materials.create( sourceMaterial.name );
// mtl etc. loaders probably can't create line materials correctly, copy properties to a line material.
if ( isLine && material && ! ( material instanceof LineBasicMaterial ) ) {
var materialLine = new LineBasicMaterial();
Material.prototype.copy.call( materialLine, material );
materialLine.color.copy( material.color );
material = materialLine;
} else if ( isPoints && material && ! ( material instanceof PointsMaterial ) ) {
var materialPoints = new PointsMaterial( { size: 10, sizeAttenuation: false } );
Material.prototype.copy.call( materialPoints, material );
materialPoints.color.copy( material.color );
materialPoints.map = material.map;
material = materialPoints;
}
}
if ( material === undefined ) {
if ( isLine ) {
material = new LineBasicMaterial();
} else if ( isPoints ) {
material = new PointsMaterial( { size: 1, sizeAttenuation: false } );
} else {
material = new MeshPhongMaterial();
}
material.name = sourceMaterial.name;
material.flatShading = sourceMaterial.smooth ? false : true;
material.vertexColors = hasVertexColors;
state.materials[ materialHash ] = material;
}
createdMaterials.push( material );
}
// Create mesh
var mesh;
if ( createdMaterials.length > 1 ) {
for ( var mi = 0, miLen = materials.length; mi < miLen; mi ++ ) {
var sourceMaterial = materials[ mi ];
buffergeometry.addGroup( sourceMaterial.groupStart, sourceMaterial.groupCount, mi );
}
if ( isLine ) {
mesh = new LineSegments( buffergeometry, createdMaterials );
} else if ( isPoints ) {
mesh = new Points( buffergeometry, createdMaterials );
} else {
mesh = new Mesh( buffergeometry, createdMaterials );
}
} else {
if ( isLine ) {
mesh = new LineSegments( buffergeometry, createdMaterials[ 0 ] );
} else if ( isPoints ) {
mesh = new Points( buffergeometry, createdMaterials[ 0 ] );
} else {
mesh = new Mesh( buffergeometry, createdMaterials[ 0 ] );
}
}
mesh.name = object.name;
container.add( mesh );
}
return container;
}
} );
return OBJLoader;
} )();
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/MTLLoader.js
/**
* Loads a Wavefront .mtl file specifying materials
*
* @author angelxuanchang
*/
var MTLLoader = function ( manager ) {
Loader.call( this, manager );
};
MTLLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: MTLLoader,
/**
* Loads and parses a MTL asset from a URL.
*
* @param {String} url - URL to the MTL file.
* @param {Function} [onLoad] - Callback invoked with the loaded object.
* @param {Function} [onProgress] - Callback for download progress.
* @param {Function} [onError] - Callback for download errors.
*
* @see setPath setResourcePath
*
* @note In order for relative texture references to resolve correctly
* you must call setResourcePath() explicitly prior to load.
*/
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path;
var loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text, path ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
setMaterialOptions: function ( value ) {
this.materialOptions = value;
return this;
},
/**
* Parses a MTL file.
*
* @param {String} text - Content of MTL file
* @return {MTLLoader.MaterialCreator}
*
* @see setPath setResourcePath
*
* @note In order for relative texture references to resolve correctly
* you must call setResourcePath() explicitly prior to parse.
*/
parse: function ( text, path ) {
var lines = text.split( '\n' );
var info = {};
var delimiter_pattern = /\s+/;
var materialsInfo = {};
for ( var i = 0; i < lines.length; i ++ ) {
var line = lines[ i ];
line = line.trim();
if ( line.length === 0 || line.charAt( 0 ) === '#' ) {
// Blank line or comment ignore
continue;
}
var pos = line.indexOf( ' ' );
var key = ( pos >= 0 ) ? line.substring( 0, pos ) : line;
key = key.toLowerCase();
var value = ( pos >= 0 ) ? line.substring( pos + 1 ) : '';
value = value.trim();
if ( key === 'newmtl' ) {
// New material
info = { name: value };
materialsInfo[ value ] = info;
} else {
if ( key === 'ka' || key === 'kd' || key === 'ks' || key === 'ke' ) {
var ss = value.split( delimiter_pattern, 3 );
info[ key ] = [ parseFloat( ss[ 0 ] ), parseFloat( ss[ 1 ] ), parseFloat( ss[ 2 ] ) ];
} else {
info[ key ] = value;
}
}
}
var materialCreator = new MTLLoader.MaterialCreator( this.resourcePath || path, this.materialOptions );
materialCreator.setCrossOrigin( this.crossOrigin );
materialCreator.setManager( this.manager );
materialCreator.setMaterials( materialsInfo );
return materialCreator;
}
} );
/**
* Create a new MTLLoader.MaterialCreator
* @param baseUrl - Url relative to which textures are loaded
* @param options - Set of options on how to construct the materials
* side: Which side to apply the material
* FrontSide (default), THREE.BackSide, THREE.DoubleSide
* wrap: What type of wrapping to apply for textures
* RepeatWrapping (default), THREE.ClampToEdgeWrapping, THREE.MirroredRepeatWrapping
* normalizeRGB: RGBs need to be normalized to 0-1 from 0-255
* Default: false, assumed to be already normalized
* ignoreZeroRGBs: Ignore values of RGBs (Ka,Kd,Ks) that are all 0's
* Default: false
* @constructor
*/
MTLLoader.MaterialCreator = function ( baseUrl, options ) {
this.baseUrl = baseUrl || '';
this.options = options;
this.materialsInfo = {};
this.materials = {};
this.materialsArray = [];
this.nameLookup = {};
this.side = ( this.options && this.options.side ) ? this.options.side : FrontSide;
this.wrap = ( this.options && this.options.wrap ) ? this.options.wrap : RepeatWrapping;
};
MTLLoader.MaterialCreator.prototype = {
constructor: MTLLoader.MaterialCreator,
crossOrigin: 'anonymous',
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setManager: function ( value ) {
this.manager = value;
},
setMaterials: function ( materialsInfo ) {
this.materialsInfo = this.convert( materialsInfo );
this.materials = {};
this.materialsArray = [];
this.nameLookup = {};
},
convert: function ( materialsInfo ) {
if ( ! this.options ) return materialsInfo;
var converted = {};
for ( var mn in materialsInfo ) {
// Convert materials info into normalized form based on options
var mat = materialsInfo[ mn ];
var covmat = {};
converted[ mn ] = covmat;
for ( var prop in mat ) {
var save = true;
var value = mat[ prop ];
var lprop = prop.toLowerCase();
switch ( lprop ) {
case 'kd':
case 'ka':
case 'ks':
// Diffuse color (color under white light) using RGB values
if ( this.options && this.options.normalizeRGB ) {
value = [ value[ 0 ] / 255, value[ 1 ] / 255, value[ 2 ] / 255 ];
}
if ( this.options && this.options.ignoreZeroRGBs ) {
if ( value[ 0 ] === 0 && value[ 1 ] === 0 && value[ 2 ] === 0 ) {
// ignore
save = false;
}
}
break;
default:
break;
}
if ( save ) {
covmat[ lprop ] = value;
}
}
}
return converted;
},
preload: function () {
for ( var mn in this.materialsInfo ) {
this.create( mn );
}
},
getIndex: function ( materialName ) {
return this.nameLookup[ materialName ];
},
getAsArray: function () {
var index = 0;
for ( var mn in this.materialsInfo ) {
this.materialsArray[ index ] = this.create( mn );
this.nameLookup[ mn ] = index;
index ++;
}
return this.materialsArray;
},
create: function ( materialName ) {
if ( this.materials[ materialName ] === undefined ) {
this.createMaterial_( materialName );
}
return this.materials[ materialName ];
},
createMaterial_: function ( materialName ) {
// Create material
var scope = this;
var mat = this.materialsInfo[ materialName ];
var params = {
name: materialName,
side: this.side
};
function resolveURL( baseUrl, url ) {
if ( typeof url !== 'string' || url === '' )
return '';
// Absolute URL
if ( /^https?:\/\//i.test( url ) ) return url;
return baseUrl + url;
}
function setMapForType( mapType, value ) {
if ( params[ mapType ] ) return; // Keep the first encountered texture
var texParams = scope.getTextureParams( value, params );
var map = scope.loadTexture( resolveURL( scope.baseUrl, texParams.url ) );
map.repeat.copy( texParams.scale );
map.offset.copy( texParams.offset );
map.wrapS = scope.wrap;
map.wrapT = scope.wrap;
params[ mapType ] = map;
}
for ( var prop in mat ) {
var value = mat[ prop ];
var n;
if ( value === '' ) continue;
switch ( prop.toLowerCase() ) {
// Ns is material specular exponent
case 'kd':
// Diffuse color (color under white light) using RGB values
params.color = new Color().fromArray( value );
break;
case 'ks':
// Specular color (color when light is reflected from shiny surface) using RGB values
params.specular = new Color().fromArray( value );
break;
case 'ke':
// Emissive using RGB values
params.emissive = new Color().fromArray( value );
break;
case 'map_kd':
// Diffuse texture map
setMapForType( "map", value );
break;
case 'map_ks':
// Specular map
setMapForType( "specularMap", value );
break;
case 'map_ke':
// Emissive map
setMapForType( "emissiveMap", value );
break;
case 'norm':
setMapForType( "normalMap", value );
break;
case 'map_bump':
case 'bump':
// Bump texture map
setMapForType( "bumpMap", value );
break;
case 'map_d':
// Alpha map
setMapForType( "alphaMap", value );
params.transparent = true;
break;
case 'ns':
// The specular exponent (defines the focus of the specular highlight)
// A high exponent results in a tight, concentrated highlight. Ns values normally range from 0 to 1000.
params.shininess = parseFloat( value );
break;
case 'd':
n = parseFloat( value );
if ( n < 1 ) {
params.opacity = n;
params.transparent = true;
}
break;
case 'tr':
n = parseFloat( value );
if ( this.options && this.options.invertTrProperty ) n = 1 - n;
if ( n > 0 ) {
params.opacity = 1 - n;
params.transparent = true;
}
break;
default:
break;
}
}
this.materials[ materialName ] = new MeshPhongMaterial( params );
return this.materials[ materialName ];
},
getTextureParams: function ( value, matParams ) {
var texParams = {
scale: new Vector2( 1, 1 ),
offset: new Vector2( 0, 0 )
};
var items = value.split( /\s+/ );
var pos;
pos = items.indexOf( '-bm' );
if ( pos >= 0 ) {
matParams.bumpScale = parseFloat( items[ pos + 1 ] );
items.splice( pos, 2 );
}
pos = items.indexOf( '-s' );
if ( pos >= 0 ) {
texParams.scale.set( parseFloat( items[ pos + 1 ] ), parseFloat( items[ pos + 2 ] ) );
items.splice( pos, 4 ); // we expect 3 parameters here!
}
pos = items.indexOf( '-o' );
if ( pos >= 0 ) {
texParams.offset.set( parseFloat( items[ pos + 1 ] ), parseFloat( items[ pos + 2 ] ) );
items.splice( pos, 4 ); // we expect 3 parameters here!
}
texParams.url = items.join( ' ' ).trim();
return texParams;
},
loadTexture: function ( url, mapping, onLoad, onProgress, onError ) {
var texture;
var manager = ( this.manager !== undefined ) ? this.manager : DefaultLoadingManager;
var loader = manager.getHandler( url );
if ( loader === null ) {
loader = new TextureLoader( manager );
}
if ( loader.setCrossOrigin ) loader.setCrossOrigin( this.crossOrigin );
texture = loader.load( url, onLoad, onProgress, onError );
if ( mapping !== undefined ) texture.mapping = mapping;
return texture;
}
};
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/DDSLoader.js
/**
* @author mrdoob / http://mrdoob.com/
*/
var DDSLoader = function ( manager ) {
CompressedTextureLoader.call( this, manager );
};
DDSLoader.prototype = Object.assign( Object.create( CompressedTextureLoader.prototype ), {
constructor: DDSLoader,
parse: function ( buffer, loadMipmaps ) {
var dds = { mipmaps: [], width: 0, height: 0, format: null, mipmapCount: 1 };
// Adapted from @toji's DDS utils
// https://github.com/toji/webgl-texture-utils/blob/master/texture-util/dds.js
// All values and structures referenced from:
// http://msdn.microsoft.com/en-us/library/bb943991.aspx/
var DDS_MAGIC = 0x20534444;
// var DDSD_CAPS = 0x1;
// var DDSD_HEIGHT = 0x2;
// var DDSD_WIDTH = 0x4;
// var DDSD_PITCH = 0x8;
// var DDSD_PIXELFORMAT = 0x1000;
var DDSD_MIPMAPCOUNT = 0x20000;
// var DDSD_LINEARSIZE = 0x80000;
// var DDSD_DEPTH = 0x800000;
// var DDSCAPS_COMPLEX = 0x8;
// var DDSCAPS_MIPMAP = 0x400000;
// var DDSCAPS_TEXTURE = 0x1000;
var DDSCAPS2_CUBEMAP = 0x200;
var DDSCAPS2_CUBEMAP_POSITIVEX = 0x400;
var DDSCAPS2_CUBEMAP_NEGATIVEX = 0x800;
var DDSCAPS2_CUBEMAP_POSITIVEY = 0x1000;
var DDSCAPS2_CUBEMAP_NEGATIVEY = 0x2000;
var DDSCAPS2_CUBEMAP_POSITIVEZ = 0x4000;
var DDSCAPS2_CUBEMAP_NEGATIVEZ = 0x8000;
// var DDSCAPS2_VOLUME = 0x200000;
// var DDPF_ALPHAPIXELS = 0x1;
// var DDPF_ALPHA = 0x2;
var DDPF_FOURCC = 0x4;
// var DDPF_RGB = 0x40;
// var DDPF_YUV = 0x200;
// var DDPF_LUMINANCE = 0x20000;
function fourCCToInt32( value ) {
return value.charCodeAt( 0 ) +
( value.charCodeAt( 1 ) << 8 ) +
( value.charCodeAt( 2 ) << 16 ) +
( value.charCodeAt( 3 ) << 24 );
}
function int32ToFourCC( value ) {
return String.fromCharCode(
value & 0xff,
( value >> 8 ) & 0xff,
( value >> 16 ) & 0xff,
( value >> 24 ) & 0xff
);
}
function loadARGBMip( buffer, dataOffset, width, height ) {
var dataLength = width * height * 4;
var srcBuffer = new Uint8Array( buffer, dataOffset, dataLength );
var byteArray = new Uint8Array( dataLength );
var dst = 0;
var src = 0;
for ( var y = 0; y < height; y ++ ) {
for ( var x = 0; x < width; x ++ ) {
var b = srcBuffer[ src ]; src ++;
var g = srcBuffer[ src ]; src ++;
var r = srcBuffer[ src ]; src ++;
var a = srcBuffer[ src ]; src ++;
byteArray[ dst ] = r; dst ++; //r
byteArray[ dst ] = g; dst ++; //g
byteArray[ dst ] = b; dst ++; //b
byteArray[ dst ] = a; dst ++; //a
}
}
return byteArray;
}
var FOURCC_DXT1 = fourCCToInt32( "DXT1" );
var FOURCC_DXT3 = fourCCToInt32( "DXT3" );
var FOURCC_DXT5 = fourCCToInt32( "DXT5" );
var FOURCC_ETC1 = fourCCToInt32( "ETC1" );
var headerLengthInt = 31; // The header length in 32 bit ints
// Offsets into the header array
var off_magic = 0;
var off_size = 1;
var off_flags = 2;
var off_height = 3;
var off_width = 4;
var off_mipmapCount = 7;
var off_pfFlags = 20;
var off_pfFourCC = 21;
var off_RGBBitCount = 22;
var off_RBitMask = 23;
var off_GBitMask = 24;
var off_BBitMask = 25;
var off_ABitMask = 26;
// var off_caps = 27;
var off_caps2 = 28;
// var off_caps3 = 29;
// var off_caps4 = 30;
// Parse header
var header = new Int32Array( buffer, 0, headerLengthInt );
if ( header[ off_magic ] !== DDS_MAGIC ) {
console.error( 'THREE.DDSLoader.parse: Invalid magic number in DDS header.' );
return dds;
}
if ( ! header[ off_pfFlags ] & DDPF_FOURCC ) {
console.error( 'THREE.DDSLoader.parse: Unsupported format, must contain a FourCC code.' );
return dds;
}
var blockBytes;
var fourCC = header[ off_pfFourCC ];
var isRGBAUncompressed = false;
switch ( fourCC ) {
case FOURCC_DXT1:
blockBytes = 8;
dds.format = RGB_S3TC_DXT1_Format;
break;
case FOURCC_DXT3:
blockBytes = 16;
dds.format = RGBA_S3TC_DXT3_Format;
break;
case FOURCC_DXT5:
blockBytes = 16;
dds.format = RGBA_S3TC_DXT5_Format;
break;
case FOURCC_ETC1:
blockBytes = 8;
dds.format = RGB_ETC1_Format;
break;
default:
if ( header[ off_RGBBitCount ] === 32
&& header[ off_RBitMask ] & 0xff0000
&& header[ off_GBitMask ] & 0xff00
&& header[ off_BBitMask ] & 0xff
&& header[ off_ABitMask ] & 0xff000000 ) {
isRGBAUncompressed = true;
blockBytes = 64;
dds.format = RGBAFormat;
} else {
console.error( 'THREE.DDSLoader.parse: Unsupported FourCC code ', int32ToFourCC( fourCC ) );
return dds;
}
}
dds.mipmapCount = 1;
if ( header[ off_flags ] & DDSD_MIPMAPCOUNT && loadMipmaps !== false ) {
dds.mipmapCount = Math.max( 1, header[ off_mipmapCount ] );
}
var caps2 = header[ off_caps2 ];
dds.isCubemap = caps2 & DDSCAPS2_CUBEMAP ? true : false;
if ( dds.isCubemap && (
! ( caps2 & DDSCAPS2_CUBEMAP_POSITIVEX ) ||
! ( caps2 & DDSCAPS2_CUBEMAP_NEGATIVEX ) ||
! ( caps2 & DDSCAPS2_CUBEMAP_POSITIVEY ) ||
! ( caps2 & DDSCAPS2_CUBEMAP_NEGATIVEY ) ||
! ( caps2 & DDSCAPS2_CUBEMAP_POSITIVEZ ) ||
! ( caps2 & DDSCAPS2_CUBEMAP_NEGATIVEZ )
) ) {
console.error( 'THREE.DDSLoader.parse: Incomplete cubemap faces' );
return dds;
}
dds.width = header[ off_width ];
dds.height = header[ off_height ];
var dataOffset = header[ off_size ] + 4;
// Extract mipmaps buffers
var faces = dds.isCubemap ? 6 : 1;
for ( var face = 0; face < faces; face ++ ) {
var width = dds.width;
var height = dds.height;
for ( var i = 0; i < dds.mipmapCount; i ++ ) {
if ( isRGBAUncompressed ) {
var byteArray = loadARGBMip( buffer, dataOffset, width, height );
var dataLength = byteArray.length;
} else {
var dataLength = Math.max( 4, width ) / 4 * Math.max( 4, height ) / 4 * blockBytes;
var byteArray = new Uint8Array( buffer, dataOffset, dataLength );
}
var mipmap = { "data": byteArray, "width": width, "height": height };
dds.mipmaps.push( mipmap );
dataOffset += dataLength;
width = Math.max( width >> 1, 1 );
height = Math.max( height >> 1, 1 );
}
}
return dds;
}
} );
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/src/loaders/LoadingManager.js
/**
* @author mrdoob / http://mrdoob.com/
*/
function LoadingManager_LoadingManager( onLoad, onProgress, onError ) {
const scope = this;
let isLoading = false;
let itemsLoaded = 0;
let itemsTotal = 0;
let urlModifier = undefined;
const handlers = [];
// Refer to #5689 for the reason why we don't set .onStart
// in the constructor
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
this.resolveURL = function ( url ) {
if ( urlModifier ) {
return urlModifier( url );
}
return url;
};
this.setURLModifier = function ( transform ) {
urlModifier = transform;
return this;
};
this.addHandler = function ( regex, loader ) {
handlers.push( regex, loader );
return this;
};
this.removeHandler = function ( regex ) {
const index = handlers.indexOf( regex );
if ( index !== - 1 ) {
handlers.splice( index, 2 );
}
return this;
};
this.getHandler = function ( file ) {
for ( let i = 0, l = handlers.length; i < l; i += 2 ) {
const regex = handlers[ i ];
const loader = handlers[ i + 1 ];
if ( regex.global ) regex.lastIndex = 0; // see #17920
if ( regex.test( file ) ) {
return loader;
}
}
return null;
};
}
const LoadingManager_DefaultLoadingManager = new LoadingManager_LoadingManager();
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.array.iterator.js
var es_array_iterator = __webpack_require__("a133");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.array-buffer.slice.js
var es_array_buffer_slice = __webpack_require__("3e54");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.object.to-string.js
var es_object_to_string = __webpack_require__("e18c");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.float32-array.js
var es_typed_array_float32_array = __webpack_require__("b6bc");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.uint32-array.js
var es_typed_array_uint32_array = __webpack_require__("d838");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.copy-within.js
var es_typed_array_copy_within = __webpack_require__("ab6e");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.every.js
var es_typed_array_every = __webpack_require__("927c");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.fill.js
var es_typed_array_fill = __webpack_require__("3c51");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.filter.js
var es_typed_array_filter = __webpack_require__("db0a");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.find.js
var es_typed_array_find = __webpack_require__("1cc1");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.find-index.js
var es_typed_array_find_index = __webpack_require__("ab0f");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.for-each.js
var es_typed_array_for_each = __webpack_require__("fc6e");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.includes.js
var es_typed_array_includes = __webpack_require__("f30b");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.index-of.js
var es_typed_array_index_of = __webpack_require__("cfd1");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.iterator.js
var es_typed_array_iterator = __webpack_require__("d104");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.join.js
var es_typed_array_join = __webpack_require__("f74a");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.last-index-of.js
var es_typed_array_last_index_of = __webpack_require__("3598");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.map.js
var es_typed_array_map = __webpack_require__("b497");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.reduce.js
var es_typed_array_reduce = __webpack_require__("2909");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.reduce-right.js
var es_typed_array_reduce_right = __webpack_require__("a7ef");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.reverse.js
var es_typed_array_reverse = __webpack_require__("b523");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.set.js
var es_typed_array_set = __webpack_require__("e671");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.slice.js
var es_typed_array_slice = __webpack_require__("4140");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.some.js
var es_typed_array_some = __webpack_require__("83db");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.sort.js
var es_typed_array_sort = __webpack_require__("829d");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.subarray.js
var es_typed_array_subarray = __webpack_require__("939f");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.to-locale-string.js
var es_typed_array_to_locale_string = __webpack_require__("1bb1");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.typed-array.to-string.js
var es_typed_array_to_string = __webpack_require__("c3ba");
// CONCATENATED MODULE: ./src/util.js
/* eslint-disable */
var util_box = new Box3();
function getSize(object) {
util_box.setFromObject(object);
return util_box.getSize(new Vector3());
}
function getCenter(object) {
util_box.setFromObject(object);
return util_box.getCenter(new Vector3());
} // function lightsDiff(lights, oldLights) {
// }
function toIndexed(bufferGeometry) {
var rawPositions = bufferGeometry.getAttribute('position').array;
var rawUvs;
var hasUV = bufferGeometry.getAttribute('uv') !== undefined;
if (hasUV) rawUvs = bufferGeometry.getAttribute('uv').array;
var rawNormals;
var hasNormal = bufferGeometry.getAttribute('normal') !== undefined;
if (hasNormal) rawNormals = bufferGeometry.getAttribute('normal').array;
var indices = [];
var vertices = [];
var normals = [];
var uvs = [];
var face;
var faceNormalss;
var faceUvs;
var tmpIndices;
var v0 = new Vector3();
var v1 = new Vector3();
var v2 = new Vector3();
var n0 = new Vector3();
var n1 = new Vector3();
var n2 = new Vector3();
var uv0 = new Vector2();
var uv1 = new Vector2();
var uv2 = new Vector2();
for (var i = 0; i < rawPositions.length; i += 9) {
v0.x = rawPositions[i];
v0.y = rawPositions[i + 1];
v0.z = rawPositions[i + 2];
v1.x = rawPositions[i + 3];
v1.y = rawPositions[i + 4];
v1.z = rawPositions[i + 5];
v2.x = rawPositions[i + 6];
v2.y = rawPositions[i + 7];
v2.z = rawPositions[i + 8];
face = [v0, v1, v2];
if (hasNormal) {
n0.x = rawNormals[i];
n0.y = rawNormals[i + 1];
n0.z = rawNormals[i + 2];
n1.x = rawNormals[i + 3];
n1.y = rawNormals[i + 4];
n1.z = rawNormals[i + 5];
n2.x = rawNormals[i + 6];
n2.y = rawNormals[i + 7];
n2.z = rawNormals[i + 8];
faceNormalss = [n0, n1, n2];
}
if (hasUV) {
uv0.x = rawUvs[i];
uv0.y = rawUvs[i + 1];
uv1.x = rawUvs[i + 2];
uv1.y = rawUvs[i + 3];
uv2.x = rawUvs[i + 4];
uv2.y = rawUvs[i + 5];
faceUvs = [uv0, uv1, uv2];
}
tmpIndices = [];
face.forEach(function (v, i) {
var id = exists(v, vertices);
if (id === -1) {
id = vertices.length;
vertices.push(v.clone());
if (hasNormal) normals.push(faceNormalss[i].clone());
if (hasUV) uvs.push(faceUvs[i].clone());
}
tmpIndices.push(id);
});
indices.push(tmpIndices[0], tmpIndices[1], tmpIndices[2]);
}
var positionBuffer = new Float32Array(vertices.length * 3);
var normalBuffer;
var uvBuffer;
if (hasNormal) normalBuffer = new Float32Array(vertices.length * 3);
if (hasUV) uvBuffer = new Float32Array(vertices.length * 2);
var i2 = 0;
var i3 = 0;
for (var _i = 0; _i < vertices.length; _i++) {
i3 = _i * 3;
positionBuffer[i3] = vertices[_i].x;
positionBuffer[i3 + 1] = vertices[_i].y;
positionBuffer[i3 + 2] = vertices[_i].z;
if (hasNormal) {
normalBuffer[i3] = normals[_i].x;
normalBuffer[i3 + 1] = normals[_i].y;
normalBuffer[i3 + 2] = normals[_i].z;
}
if (hasUV) {
i2 = _i * 2;
uvBuffer[i2] = uvs[_i].x;
uvBuffer[i2 + 1] = uvs[_i].y;
}
}
bufferGeometry.addAttribute('position', new BufferAttribute(positionBuffer, 3));
if (hasNormal) bufferGeometry.addAttribute('normal', new BufferAttribute(normalBuffer, 3));
if (hasUV) bufferGeometry.addAttribute('uv', new BufferAttribute(uvBuffer, 2));
bufferGeometry.setIndex(new BufferAttribute(new Uint32Array(indices), 1));
return bufferGeometry;
function exists(v, vertices) {
for (var _i2 = 0; _i2 < vertices.length; _i2++) {
if (v.equals(vertices[_i2])) return _i2;
}
return -1;
}
}
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js?{"cacheDirectory":"node_modules/.cache/vue-loader","cacheIdentifier":"788fb7fa-vue-loader-template"}!./node_modules/_vue-loader@15.9.3@vue-loader/lib/loaders/templateLoader.js??vue-loader-options!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-mixin.vue?vue&type=template&id=4fcd6d94&
var render = function () {var _vm=this;var _h=_vm.$createElement;var _c=_vm._self._c||_h;return _c('div',{staticStyle:{"width":"100%","height":"100%","margin":"0","border":"0","padding":"0"}},[(_vm.suportWebGL)?_c('canvas',{ref:"canvas",staticStyle:{"width":"100%","height":"100%"}}):_c('div',[_vm._t("default",[_vm._v(" Your browser does not seem to support "),_c('a',{staticStyle:{"color":"#000"},attrs:{"href":"http://khronos.org/webgl/wiki/Getting_a_WebGL_Implementation"}},[_vm._v("WebGL")]),_vm._v("."),_c('br'),_vm._v("' ")])],2)])}
var staticRenderFns = []
// CONCATENATED MODULE: ./src/model-mixin.vue?vue&type=template&id=4fcd6d94&
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.number.constructor.js
var es_number_constructor = __webpack_require__("513c");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.object.assign.js
var es_object_assign = __webpack_require__("f09c");
// CONCATENATED MODULE: ./node_modules/_@babel_runtime@7.10.3@@babel/runtime/helpers/esm/arrayLikeToArray.js
function _arrayLikeToArray(arr, len) {
if (len == null || len > arr.length) len = arr.length;
for (var i = 0, arr2 = new Array(len); i < len; i++) {
arr2[i] = arr[i];
}
return arr2;
}
// CONCATENATED MODULE: ./node_modules/_@babel_runtime@7.10.3@@babel/runtime/helpers/esm/arrayWithoutHoles.js
function _arrayWithoutHoles(arr) {
if (Array.isArray(arr)) return _arrayLikeToArray(arr);
}
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.symbol.js
var es_symbol = __webpack_require__("f3dd");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.symbol.description.js
var es_symbol_description = __webpack_require__("0a51");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.symbol.iterator.js
var es_symbol_iterator = __webpack_require__("9b11");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.array.from.js
var es_array_from = __webpack_require__("98e0");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.string.iterator.js
var es_string_iterator = __webpack_require__("96db");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/web.dom-collections.iterator.js
var web_dom_collections_iterator = __webpack_require__("af86");
// CONCATENATED MODULE: ./node_modules/_@babel_runtime@7.10.3@@babel/runtime/helpers/esm/iterableToArray.js
function _iterableToArray(iter) {
if (typeof Symbol !== "undefined" && Symbol.iterator in Object(iter)) return Array.from(iter);
}
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.array.slice.js
var es_array_slice = __webpack_require__("77ad");
// EXTERNAL MODULE: ./node_modules/_core-js@3.6.5@core-js/modules/es.regexp.to-string.js
var es_regexp_to_string = __webpack_require__("1c2e8");
// CONCATENATED MODULE: ./node_modules/_@babel_runtime@7.10.3@@babel/runtime/helpers/esm/unsupportedIterableToArray.js
function _unsupportedIterableToArray(o, minLen) {
if (!o) return;
if (typeof o === "string") return _arrayLikeToArray(o, minLen);
var n = Object.prototype.toString.call(o).slice(8, -1);
if (n === "Object" && o.constructor) n = o.constructor.name;
if (n === "Map" || n === "Set") return Array.from(o);
if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen);
}
// CONCATENATED MODULE: ./node_modules/_@babel_runtime@7.10.3@@babel/runtime/helpers/esm/nonIterableSpread.js
function _nonIterableSpread() {
throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
}
// CONCATENATED MODULE: ./node_modules/_@babel_runtime@7.10.3@@babel/runtime/helpers/esm/toConsumableArray.js
function _toConsumableArray(arr) {
return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread();
}
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/controls/OrbitControls.js
/**
* @author qiao / https://github.com/qiao
* @author mrdoob / http://mrdoob.com
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author erich666 / http://erichaines.com
* @author ScieCode / http://github.com/sciecode
*/
// This set of controls performs orbiting, dollying (zooming), and panning.
// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
//
// Orbit - left mouse / touch: one-finger move
// Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
// Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move
var OrbitControls = function ( object, domElement ) {
if ( domElement === undefined ) console.warn( 'THREE.OrbitControls: The second parameter "domElement" is now mandatory.' );
if ( domElement === document ) console.error( 'THREE.OrbitControls: "document" should not be used as the target "domElement". Please use "renderer.domElement" instead.' );
this.object = object;
this.domElement = domElement;
// Set to false to disable this control
this.enabled = true;
// "target" sets the location of focus, where the object orbits around
this.target = new Vector3();
// How far you can dolly in and out ( PerspectiveCamera only )
this.minDistance = 0;
this.maxDistance = Infinity;
// How far you can zoom in and out ( OrthographicCamera only )
this.minZoom = 0;
this.maxZoom = Infinity;
// How far you can orbit vertically, upper and lower limits.
// Range is 0 to Math.PI radians.
this.minPolarAngle = 0; // radians
this.maxPolarAngle = Math.PI; // radians
// How far you can orbit horizontally, upper and lower limits.
// If set, the interval [ min, max ] must be a sub-interval of [ - 2 PI, 2 PI ], with ( max - min < 2 PI )
this.minAzimuthAngle = - Infinity; // radians
this.maxAzimuthAngle = Infinity; // radians
// Set to true to enable damping (inertia)
// If damping is enabled, you must call controls.update() in your animation loop
this.enableDamping = false;
this.dampingFactor = 0.05;
// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
// Set to false to disable zooming
this.enableZoom = true;
this.zoomSpeed = 1.0;
// Set to false to disable rotating
this.enableRotate = true;
this.rotateSpeed = 1.0;
// Set to false to disable panning
this.enablePan = true;
this.panSpeed = 1.0;
this.screenSpacePanning = true; // if false, pan orthogonal to world-space direction camera.up
this.keyPanSpeed = 7.0; // pixels moved per arrow key push
// Set to true to automatically rotate around the target
// If auto-rotate is enabled, you must call controls.update() in your animation loop
this.autoRotate = false;
this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60
// Set to false to disable use of the keys
this.enableKeys = true;
// The four arrow keys
this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 };
// Mouse buttons
this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN };
// Touch fingers
this.touches = { ONE: TOUCH.ROTATE, TWO: TOUCH.DOLLY_PAN };
// for reset
this.target0 = this.target.clone();
this.position0 = this.object.position.clone();
this.zoom0 = this.object.zoom;
//
// public methods
//
this.getPolarAngle = function () {
return spherical.phi;
};
this.getAzimuthalAngle = function () {
return spherical.theta;
};
this.saveState = function () {
scope.target0.copy( scope.target );
scope.position0.copy( scope.object.position );
scope.zoom0 = scope.object.zoom;
};
this.reset = function () {
scope.target.copy( scope.target0 );
scope.object.position.copy( scope.position0 );
scope.object.zoom = scope.zoom0;
scope.object.updateProjectionMatrix();
scope.dispatchEvent( changeEvent );
scope.update();
state = STATE.NONE;
};
// this method is exposed, but perhaps it would be better if we can make it private...
this.update = function () {
var offset = new Vector3();
// so camera.up is the orbit axis
var quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) );
var quatInverse = quat.clone().inverse();
var lastPosition = new Vector3();
var lastQuaternion = new Quaternion();
var twoPI = 2 * Math.PI;
return function update() {
var position = scope.object.position;
offset.copy( position ).sub( scope.target );
// rotate offset to "y-axis-is-up" space
offset.applyQuaternion( quat );
// angle from z-axis around y-axis
spherical.setFromVector3( offset );
if ( scope.autoRotate && state === STATE.NONE ) {
rotateLeft( getAutoRotationAngle() );
}
if ( scope.enableDamping ) {
spherical.theta += sphericalDelta.theta * scope.dampingFactor;
spherical.phi += sphericalDelta.phi * scope.dampingFactor;
} else {
spherical.theta += sphericalDelta.theta;
spherical.phi += sphericalDelta.phi;
}
// restrict theta to be between desired limits
var min = scope.minAzimuthAngle;
var max = scope.maxAzimuthAngle;
if ( isFinite ( min ) && isFinite( max ) ) {
if ( min < - Math.PI ) min += twoPI; else if ( min > Math.PI ) min -= twoPI;
if ( max < - Math.PI ) max += twoPI; else if ( max > Math.PI ) max -= twoPI;
if ( min < max ) {
spherical.theta = Math.max( min, Math.min( max, spherical.theta ) );
} else {
spherical.theta = ( spherical.theta > ( min + max ) / 2 ) ?
Math.max( min, spherical.theta ) :
Math.min( max, spherical.theta );
}
}
// restrict phi to be between desired limits
spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );
spherical.makeSafe();
spherical.radius *= scale;
// restrict radius to be between desired limits
spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) );
// move target to panned location
if ( scope.enableDamping === true ) {
scope.target.addScaledVector( panOffset, scope.dampingFactor );
} else {
scope.target.add( panOffset );
}
offset.setFromSpherical( spherical );
// rotate offset back to "camera-up-vector-is-up" space
offset.applyQuaternion( quatInverse );
position.copy( scope.target ).add( offset );
scope.object.lookAt( scope.target );
if ( scope.enableDamping === true ) {
sphericalDelta.theta *= ( 1 - scope.dampingFactor );
sphericalDelta.phi *= ( 1 - scope.dampingFactor );
panOffset.multiplyScalar( 1 - scope.dampingFactor );
} else {
sphericalDelta.set( 0, 0, 0 );
panOffset.set( 0, 0, 0 );
}
scale = 1;
// update condition is:
// min(camera displacement, camera rotation in radians)^2 > EPS
// using small-angle approximation cos(x/2) = 1 - x^2 / 8
if ( zoomChanged ||
lastPosition.distanceToSquared( scope.object.position ) > EPS ||
8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) {
scope.dispatchEvent( changeEvent );
lastPosition.copy( scope.object.position );
lastQuaternion.copy( scope.object.quaternion );
zoomChanged = false;
return true;
}
return false;
};
}();
this.dispose = function () {
scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false );
scope.domElement.removeEventListener( 'mousedown', onMouseDown, false );
scope.domElement.removeEventListener( 'wheel', onMouseWheel, false );
scope.domElement.removeEventListener( 'touchstart', onTouchStart, false );
scope.domElement.removeEventListener( 'touchend', onTouchEnd, false );
scope.domElement.removeEventListener( 'touchmove', onTouchMove, false );
scope.domElement.ownerDocument.removeEventListener( 'mousemove', onMouseMove, false );
scope.domElement.ownerDocument.removeEventListener( 'mouseup', onMouseUp, false );
scope.domElement.removeEventListener( 'keydown', onKeyDown, false );
//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?
};
//
// internals
//
var scope = this;
var changeEvent = { type: 'change' };
var startEvent = { type: 'start' };
var endEvent = { type: 'end' };
var STATE = {
NONE: - 1,
ROTATE: 0,
DOLLY: 1,
PAN: 2,
TOUCH_ROTATE: 3,
TOUCH_PAN: 4,
TOUCH_DOLLY_PAN: 5,
TOUCH_DOLLY_ROTATE: 6
};
var state = STATE.NONE;
var EPS = 0.000001;
// current position in spherical coordinates
var spherical = new Spherical();
var sphericalDelta = new Spherical();
var scale = 1;
var panOffset = new Vector3();
var zoomChanged = false;
var rotateStart = new Vector2();
var rotateEnd = new Vector2();
var rotateDelta = new Vector2();
var panStart = new Vector2();
var panEnd = new Vector2();
var panDelta = new Vector2();
var dollyStart = new Vector2();
var dollyEnd = new Vector2();
var dollyDelta = new Vector2();
function getAutoRotationAngle() {
return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;
}
function getZoomScale() {
return Math.pow( 0.95, scope.zoomSpeed );
}
function rotateLeft( angle ) {
sphericalDelta.theta -= angle;
}
function rotateUp( angle ) {
sphericalDelta.phi -= angle;
}
var panLeft = function () {
var v = new Vector3();
return function panLeft( distance, objectMatrix ) {
v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
v.multiplyScalar( - distance );
panOffset.add( v );
};
}();
var panUp = function () {
var v = new Vector3();
return function panUp( distance, objectMatrix ) {
if ( scope.screenSpacePanning === true ) {
v.setFromMatrixColumn( objectMatrix, 1 );
} else {
v.setFromMatrixColumn( objectMatrix, 0 );
v.crossVectors( scope.object.up, v );
}
v.multiplyScalar( distance );
panOffset.add( v );
};
}();
// deltaX and deltaY are in pixels; right and down are positive
var pan = function () {
var offset = new Vector3();
return function pan( deltaX, deltaY ) {
var element = scope.domElement;
if ( scope.object.isPerspectiveCamera ) {
// perspective
var position = scope.object.position;
offset.copy( position ).sub( scope.target );
var targetDistance = offset.length();
// half of the fov is center to top of screen
targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );
// we use only clientHeight here so aspect ratio does not distort speed
panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );
} else if ( scope.object.isOrthographicCamera ) {
// orthographic
panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );
} else {
// camera neither orthographic nor perspective
console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
scope.enablePan = false;
}
};
}();
function dollyOut( dollyScale ) {
if ( scope.object.isPerspectiveCamera ) {
scale /= dollyScale;
} else if ( scope.object.isOrthographicCamera ) {
scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) );
scope.object.updateProjectionMatrix();
zoomChanged = true;
} else {
console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
scope.enableZoom = false;
}
}
function dollyIn( dollyScale ) {
if ( scope.object.isPerspectiveCamera ) {
scale *= dollyScale;
} else if ( scope.object.isOrthographicCamera ) {
scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) );
scope.object.updateProjectionMatrix();
zoomChanged = true;
} else {
console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
scope.enableZoom = false;
}
}
//
// event callbacks - update the object state
//
function handleMouseDownRotate( event ) {
rotateStart.set( event.clientX, event.clientY );
}
function handleMouseDownDolly( event ) {
dollyStart.set( event.clientX, event.clientY );
}
function handleMouseDownPan( event ) {
panStart.set( event.clientX, event.clientY );
}
function handleMouseMoveRotate( event ) {
rotateEnd.set( event.clientX, event.clientY );
rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );
var element = scope.domElement;
rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height
rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );
rotateStart.copy( rotateEnd );
scope.update();
}
function handleMouseMoveDolly( event ) {
dollyEnd.set( event.clientX, event.clientY );
dollyDelta.subVectors( dollyEnd, dollyStart );
if ( dollyDelta.y > 0 ) {
dollyOut( getZoomScale() );
} else if ( dollyDelta.y < 0 ) {
dollyIn( getZoomScale() );
}
dollyStart.copy( dollyEnd );
scope.update();
}
function handleMouseMovePan( event ) {
panEnd.set( event.clientX, event.clientY );
panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );
pan( panDelta.x, panDelta.y );
panStart.copy( panEnd );
scope.update();
}
function handleMouseUp( /*event*/ ) {
// no-op
}
function handleMouseWheel( event ) {
if ( event.deltaY < 0 ) {
dollyIn( getZoomScale() );
} else if ( event.deltaY > 0 ) {
dollyOut( getZoomScale() );
}
scope.update();
}
function handleKeyDown( event ) {
var needsUpdate = false;
switch ( event.keyCode ) {
case scope.keys.UP:
pan( 0, scope.keyPanSpeed );
needsUpdate = true;
break;
case scope.keys.BOTTOM:
pan( 0, - scope.keyPanSpeed );
needsUpdate = true;
break;
case scope.keys.LEFT:
pan( scope.keyPanSpeed, 0 );
needsUpdate = true;
break;
case scope.keys.RIGHT:
pan( - scope.keyPanSpeed, 0 );
needsUpdate = true;
break;
}
if ( needsUpdate ) {
// prevent the browser from scrolling on cursor keys
event.preventDefault();
scope.update();
}
}
function handleTouchStartRotate( event ) {
if ( event.touches.length == 1 ) {
rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
} else {
var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );
rotateStart.set( x, y );
}
}
function handleTouchStartPan( event ) {
if ( event.touches.length == 1 ) {
panStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
} else {
var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );
panStart.set( x, y );
}
}
function handleTouchStartDolly( event ) {
var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;
var distance = Math.sqrt( dx * dx + dy * dy );
dollyStart.set( 0, distance );
}
function handleTouchStartDollyPan( event ) {
if ( scope.enableZoom ) handleTouchStartDolly( event );
if ( scope.enablePan ) handleTouchStartPan( event );
}
function handleTouchStartDollyRotate( event ) {
if ( scope.enableZoom ) handleTouchStartDolly( event );
if ( scope.enableRotate ) handleTouchStartRotate( event );
}
function handleTouchMoveRotate( event ) {
if ( event.touches.length == 1 ) {
rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
} else {
var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );
rotateEnd.set( x, y );
}
rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );
var element = scope.domElement;
rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height
rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );
rotateStart.copy( rotateEnd );
}
function handleTouchMovePan( event ) {
if ( event.touches.length == 1 ) {
panEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
} else {
var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );
panEnd.set( x, y );
}
panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );
pan( panDelta.x, panDelta.y );
panStart.copy( panEnd );
}
function handleTouchMoveDolly( event ) {
var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;
var distance = Math.sqrt( dx * dx + dy * dy );
dollyEnd.set( 0, distance );
dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) );
dollyOut( dollyDelta.y );
dollyStart.copy( dollyEnd );
}
function handleTouchMoveDollyPan( event ) {
if ( scope.enableZoom ) handleTouchMoveDolly( event );
if ( scope.enablePan ) handleTouchMovePan( event );
}
function handleTouchMoveDollyRotate( event ) {
if ( scope.enableZoom ) handleTouchMoveDolly( event );
if ( scope.enableRotate ) handleTouchMoveRotate( event );
}
function handleTouchEnd( /*event*/ ) {
// no-op
}
//
// event handlers - FSM: listen for events and reset state
//
function onMouseDown( event ) {
if ( scope.enabled === false ) return;
// Prevent the browser from scrolling.
event.preventDefault();
// Manually set the focus since calling preventDefault above
// prevents the browser from setting it automatically.
scope.domElement.focus ? scope.domElement.focus() : window.focus();
var mouseAction;
switch ( event.button ) {
case 0:
mouseAction = scope.mouseButtons.LEFT;
break;
case 1:
mouseAction = scope.mouseButtons.MIDDLE;
break;
case 2:
mouseAction = scope.mouseButtons.RIGHT;
break;
default:
mouseAction = - 1;
}
switch ( mouseAction ) {
case MOUSE.DOLLY:
if ( scope.enableZoom === false ) return;
handleMouseDownDolly( event );
state = STATE.DOLLY;
break;
case MOUSE.ROTATE:
if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
if ( scope.enablePan === false ) return;
handleMouseDownPan( event );
state = STATE.PAN;
} else {
if ( scope.enableRotate === false ) return;
handleMouseDownRotate( event );
state = STATE.ROTATE;
}
break;
case MOUSE.PAN:
if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
if ( scope.enableRotate === false ) return;
handleMouseDownRotate( event );
state = STATE.ROTATE;
} else {
if ( scope.enablePan === false ) return;
handleMouseDownPan( event );
state = STATE.PAN;
}
break;
default:
state = STATE.NONE;
}
if ( state !== STATE.NONE ) {
scope.domElement.ownerDocument.addEventListener( 'mousemove', onMouseMove, false );
scope.domElement.ownerDocument.addEventListener( 'mouseup', onMouseUp, false );
scope.dispatchEvent( startEvent );
}
}
function onMouseMove( event ) {
if ( scope.enabled === false ) return;
event.preventDefault();
switch ( state ) {
case STATE.ROTATE:
if ( scope.enableRotate === false ) return;
handleMouseMoveRotate( event );
break;
case STATE.DOLLY:
if ( scope.enableZoom === false ) return;
handleMouseMoveDolly( event );
break;
case STATE.PAN:
if ( scope.enablePan === false ) return;
handleMouseMovePan( event );
break;
}
}
function onMouseUp( event ) {
if ( scope.enabled === false ) return;
handleMouseUp( event );
scope.domElement.ownerDocument.removeEventListener( 'mousemove', onMouseMove, false );
scope.domElement.ownerDocument.removeEventListener( 'mouseup', onMouseUp, false );
scope.dispatchEvent( endEvent );
state = STATE.NONE;
}
function onMouseWheel( event ) {
if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return;
event.preventDefault();
event.stopPropagation();
scope.dispatchEvent( startEvent );
handleMouseWheel( event );
scope.dispatchEvent( endEvent );
}
function onKeyDown( event ) {
if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return;
handleKeyDown( event );
}
function onTouchStart( event ) {
if ( scope.enabled === false ) return;
event.preventDefault(); // prevent scrolling
switch ( event.touches.length ) {
case 1:
switch ( scope.touches.ONE ) {
case TOUCH.ROTATE:
if ( scope.enableRotate === false ) return;
handleTouchStartRotate( event );
state = STATE.TOUCH_ROTATE;
break;
case TOUCH.PAN:
if ( scope.enablePan === false ) return;
handleTouchStartPan( event );
state = STATE.TOUCH_PAN;
break;
default:
state = STATE.NONE;
}
break;
case 2:
switch ( scope.touches.TWO ) {
case TOUCH.DOLLY_PAN:
if ( scope.enableZoom === false && scope.enablePan === false ) return;
handleTouchStartDollyPan( event );
state = STATE.TOUCH_DOLLY_PAN;
break;
case TOUCH.DOLLY_ROTATE:
if ( scope.enableZoom === false && scope.enableRotate === false ) return;
handleTouchStartDollyRotate( event );
state = STATE.TOUCH_DOLLY_ROTATE;
break;
default:
state = STATE.NONE;
}
break;
default:
state = STATE.NONE;
}
if ( state !== STATE.NONE ) {
scope.dispatchEvent( startEvent );
}
}
function onTouchMove( event ) {
if ( scope.enabled === false ) return;
event.preventDefault(); // prevent scrolling
event.stopPropagation();
switch ( state ) {
case STATE.TOUCH_ROTATE:
if ( scope.enableRotate === false ) return;
handleTouchMoveRotate( event );
scope.update();
break;
case STATE.TOUCH_PAN:
if ( scope.enablePan === false ) return;
handleTouchMovePan( event );
scope.update();
break;
case STATE.TOUCH_DOLLY_PAN:
if ( scope.enableZoom === false && scope.enablePan === false ) return;
handleTouchMoveDollyPan( event );
scope.update();
break;
case STATE.TOUCH_DOLLY_ROTATE:
if ( scope.enableZoom === false && scope.enableRotate === false ) return;
handleTouchMoveDollyRotate( event );
scope.update();
break;
default:
state = STATE.NONE;
}
}
function onTouchEnd( event ) {
if ( scope.enabled === false ) return;
handleTouchEnd( event );
scope.dispatchEvent( endEvent );
state = STATE.NONE;
}
function onContextMenu( event ) {
if ( scope.enabled === false ) return;
event.preventDefault();
}
//
scope.domElement.addEventListener( 'contextmenu', onContextMenu, false );
scope.domElement.addEventListener( 'mousedown', onMouseDown, false );
scope.domElement.addEventListener( 'wheel', onMouseWheel, false );
scope.domElement.addEventListener( 'touchstart', onTouchStart, false );
scope.domElement.addEventListener( 'touchend', onTouchEnd, false );
scope.domElement.addEventListener( 'touchmove', onTouchMove, false );
scope.domElement.addEventListener( 'keydown', onKeyDown, false );
// make sure element can receive keys.
if ( scope.domElement.tabIndex === - 1 ) {
scope.domElement.tabIndex = 0;
}
// force an update at start
this.update();
};
OrbitControls.prototype = Object.create( EventDispatcher.prototype );
OrbitControls.prototype.constructor = OrbitControls;
// This set of controls performs orbiting, dollying (zooming), and panning.
// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
// This is very similar to OrbitControls, another set of touch behavior
//
// Orbit - right mouse, or left mouse + ctrl/meta/shiftKey / touch: two-finger rotate
// Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
// Pan - left mouse, or arrow keys / touch: one-finger move
var MapControls = function ( object, domElement ) {
OrbitControls.call( this, object, domElement );
this.screenSpacePanning = false; // pan orthogonal to world-space direction camera.up
this.mouseButtons.LEFT = MOUSE.PAN;
this.mouseButtons.RIGHT = MOUSE.ROTATE;
this.touches.ONE = TOUCH.PAN;
this.touches.TWO = TOUCH.DOLLY_ROTATE;
};
MapControls.prototype = Object.create( EventDispatcher.prototype );
MapControls.prototype.constructor = MapControls;
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-mixin.vue?vue&type=script&lang=js&
//
//
//
//
//
//
//
//
//
//
//
var suportWebGL = function () {
try {
var canvas = document.createElement('canvas');
return !!(window.WebGLRenderingContext && (canvas.getContext('webgl') || canvas.getContext('experimental-webgl')));
} catch (e) {
return false;
}
}();
var DEFAULT_GL_OPTIONS = {
antialias: true,
alpha: true
};
/* harmony default export */ var model_mixinvue_type_script_lang_js_ = ({
props: {
src: {
type: String
},
width: {
type: Number
},
height: {
type: Number
},
position: {
type: Object,
default: function _default() {
return {
x: 0,
y: 0,
z: 0
};
}
},
rotation: {
type: Object,
default: function _default() {
return {
x: 0,
y: 0,
z: 0
};
}
},
scale: {
type: Object,
default: function _default() {
return {
x: 1,
y: 1,
z: 1
};
}
},
lights: {
type: Array,
default: function _default() {
return [];
}
},
cameraPosition: {
type: Object,
default: function _default() {
return {
x: 0,
y: 0,
z: 0
};
}
},
cameraRotation: {
type: Object,
default: function _default() {
return {
x: 0,
y: 0,
z: 0
};
}
},
cameraUp: {
type: Object
},
cameraLookAt: {
type: Object
},
backgroundColor: {
default: 0xffffff
},
backgroundAlpha: {
type: Number,
default: 1
},
controlsOptions: {
type: Object
},
crossOrigin: {
default: 'anonymous'
},
outputEncoding: {
type: Number,
default: LinearEncoding
},
glOptions: {
type: Object
}
},
data: function data() {
return {
suportWebGL: suportWebGL,
size: {
width: this.width,
height: this.height
},
object: null,
raycaster: new Raycaster(),
mouse: new Vector2(),
camera: new PerspectiveCamera(45, 1, 0.01, 100000),
scene: new Scene(),
wrapper: new Object3D(),
renderer: null,
controls: null,
allLights: [],
clock: typeof performance === 'undefined' ? Date : performance,
reqId: null // requestAnimationFrame id
};
},
computed: {
hasListener: function hasListener() {
// 判断是否有鼠标事件监听,用于减少不必要的拾取判断
/* eslint-disable no-underscore-dangle */
var events = this._events;
var result = {};
['on-mousemove', 'on-mouseup', 'on-mousedown', 'on-click'].forEach(function (name) {
result[name] = !!events[name] && events[name].length > 0;
});
return result;
}
},
mounted: function mounted() {
if (this.width === undefined || this.height === undefined) {
this.size = {
width: this.$el.offsetWidth,
height: this.$el.offsetHeight
};
}
var options = Object.assign({}, DEFAULT_GL_OPTIONS, this.glOptions, {
canvas: this.$refs.canvas
});
this.renderer = new WebGLRenderer(options);
this.renderer.shadowMap.enabled = true;
this.renderer.outputEncoding = this.outputEncoding;
this.controls = new OrbitControls(this.camera, this.$el);
this.controls.type = 'orbit';
this.scene.add(this.wrapper);
this.load();
this.update();
this.$el.addEventListener('mousedown', this.onMouseDown, false);
this.$el.addEventListener('mousemove', this.onMouseMove, false);
this.$el.addEventListener('mouseup', this.onMouseUp, false);
this.$el.addEventListener('click', this.onClick, false);
window.addEventListener('resize', this.onResize, false);
this.animate();
},
beforeDestroy: function beforeDestroy() {
cancelAnimationFrame(this.reqId);
this.scene.dispose();
this.renderer.dispose();
if (this.controls) {
this.controls.dispose();
}
this.$el.removeEventListener('mousedown', this.onMouseDown, false);
this.$el.removeEventListener('mousemove', this.onMouseMove, false);
this.$el.removeEventListener('mouseup', this.onMouseUp, false);
this.$el.removeEventListener('click', this.onClick, false);
window.removeEventListener('resize', this.onResize, false);
},
watch: {
src: function src() {
this.load();
},
rotation: {
deep: true,
handler: function handler(val) {
if (!this.object) return;
this.object.rotation.set(val.x, val.y, val.z);
}
},
position: {
deep: true,
handler: function handler(val) {
if (!this.object) return;
this.object.position.set(val.x, val.y, val.z);
}
},
scale: {
deep: true,
handler: function handler(val) {
if (!this.object) return;
this.object.scale.set(val.x, val.y, val.z);
}
},
lights: {
deep: true,
handler: function handler() {
this.updateLights();
}
},
size: {
deep: true,
handler: function handler() {
this.updateCamera();
this.updateRenderer();
}
},
controlsOptions: {
deep: true,
handler: function handler() {
this.updateControls();
}
},
backgroundAlpha: function backgroundAlpha() {
this.updateRenderer();
},
backgroundColor: function backgroundColor() {
this.updateRenderer();
}
},
methods: {
onResize: function onResize() {
var _this = this;
if (this.width === undefined || this.height === undefined) {
this.$nextTick(function () {
_this.size = {
width: _this.$el.offsetWidth,
height: _this.$el.offsetHeight
};
});
}
},
onMouseDown: function onMouseDown(event) {
if (!this.hasListener['on-mousedown']) return;
var intersected = this.pick(event.clientX, event.clientY);
this.$emit('on-mousedown', intersected);
},
onMouseMove: function onMouseMove(event) {
if (!this.hasListener['on-mousemove']) return;
var intersected = this.pick(event.clientX, event.clientY);
this.$emit('on-mousemove', intersected);
},
onMouseUp: function onMouseUp(event) {
if (!this.hasListener['on-mouseup']) return;
var intersected = this.pick(event.clientX, event.clientY);
this.$emit('on-mouseup', intersected);
},
onClick: function onClick(event) {
if (!this.hasListener['on-click']) return;
var intersected = this.pick(event.clientX, event.clientY);
this.$emit('on-click', intersected);
},
pick: function pick(x, y) {
if (!this.object) return null;
var rect = this.$el.getBoundingClientRect();
x -= rect.left;
y -= rect.top;
this.mouse.x = x / this.size.width * 2 - 1;
this.mouse.y = -(y / this.size.height) * 2 + 1;
this.raycaster.setFromCamera(this.mouse, this.camera);
var intersects = this.raycaster.intersectObject(this.object, true);
return (intersects && intersects.length) > 0 ? intersects[0] : null;
},
update: function update() {
this.updateRenderer();
this.updateCamera();
this.updateLights();
this.updateControls();
},
updateModel: function updateModel() {
var object = this.object;
if (!object) return;
var position = this.position;
var rotation = this.rotation;
var scale = this.scale;
object.position.set(position.x, position.y, position.z);
object.rotation.set(rotation.x, rotation.y, rotation.z);
object.scale.set(scale.x, scale.y, scale.z);
},
updateRenderer: function updateRenderer() {
var renderer = this.renderer;
renderer.setSize(this.size.width, this.size.height);
renderer.setPixelRatio(window.devicePixelRatio || 1);
renderer.setClearColor(new Color(this.backgroundColor).getHex());
renderer.setClearAlpha(this.backgroundAlpha);
},
updateCamera: function updateCamera() {
var camera = this.camera;
var object = this.object;
camera.aspect = this.size.width / this.size.height;
camera.updateProjectionMatrix();
if (!this.cameraLookAt && !this.cameraUp) {
if (!object) return;
var distance = getSize(object).length();
camera.position.set(this.cameraPosition.x, this.cameraPosition.y, this.cameraPosition.z);
camera.rotation.set(this.cameraRotation.x, this.cameraRotation.y, this.cameraRotation.z);
if (this.cameraPosition.x === 0 && this.cameraPosition.y === 0 && this.cameraPosition.z === 0) {
camera.position.z = distance;
}
camera.lookAt(new Vector3());
} else {
camera.position.set(this.cameraPosition.x, this.cameraPosition.y, this.cameraPosition.z);
camera.rotation.set(this.cameraRotation.x, this.cameraRotation.y, this.cameraRotation.z);
camera.up.set(this.cameraUp.x, this.cameraUp.y, this.cameraUp.z);
camera.lookAt(new Vector3(this.cameraLookAt.x, this.cameraLookAt.y, this.cameraLookAt.z));
}
},
updateLights: function updateLights() {
var _this$scene,
_this2 = this;
(_this$scene = this.scene).remove.apply(_this$scene, _toConsumableArray(this.allLights));
this.allLights = [];
this.lights.forEach(function (item) {
if (!item.type) return;
var type = item.type.toLowerCase();
var light = null;
if (type === 'ambient' || type === 'ambientlight') {
var color = item.color === 0x000000 ? item.color : item.color || 0x404040;
var intensity = item.intensity === 0 ? item.intensity : item.intensity || 1;
light = new AmbientLight(color, intensity);
} else if (type === 'point' || type === 'pointlight') {
var _color = item.color === 0x000000 ? item.color : item.color || 0xffffff;
var _intensity = item.intensity === 0 ? item.intensity : item.intensity || 1;
var distance = item.distance || 0;
var decay = item.decay === 0 ? item.decay : item.decay || 1;
light = new PointLight(_color, _intensity, distance, decay);
if (item.position) {
light.position.copy(item.position);
}
} else if (type === 'directional' || type === 'directionallight') {
var _color2 = item.color === 0x000000 ? item.color : item.color || 0xffffff;
var _intensity2 = item.intensity === 0 ? item.intensity : item.intensity || 1;
light = new DirectionalLight(_color2, _intensity2);
if (item.position) {
light.position.copy(item.position);
}
if (item.target) {
light.target.copy(item.target);
}
} else if (type === 'hemisphere' || type === 'hemispherelight') {
var skyColor = item.skyColor === 0x000000 ? item.skyColor : item.skyColor || 0xffffff;
var groundColor = item.groundColor === 0x000000 ? item.groundColor : item.groundColor || 0xffffff;
var _intensity3 = item.intensity === 0 ? item.intensity : item.intensity || 1;
light = new HemisphereLight(skyColor, groundColor, _intensity3);
if (item.position) {
light.position.copy(item.position);
}
}
_this2.allLights.push(light);
_this2.scene.add(light);
});
},
updateControls: function updateControls() {
if (this.controlsOptions) {
Object.assign(this.controls, this.controlsOptions);
}
},
load: function load() {
var _this3 = this;
if (!this.src) return;
if (this.object) {
this.wrapper.remove(this.object);
}
this.loader.load(this.src, function () {
var object = _this3.getObject.apply(_this3, arguments);
if (_this3.process) {
_this3.process(object);
}
_this3.addObject(object);
_this3.$emit('on-load');
}, function (xhr) {
_this3.$emit('on-progress', xhr);
}, function (err) {
_this3.$emit('on-error', err);
});
},
getObject: function getObject(object) {
return object;
},
addObject: function addObject(object) {
var center = getCenter(object); // correction position
this.wrapper.position.copy(center.negate());
this.object = object;
this.wrapper.add(object);
this.updateCamera();
this.updateModel();
},
animate: function animate() {
this.reqId = requestAnimationFrame(this.animate);
this.render();
},
render: function render() {
this.renderer.render(this.scene, this.camera);
}
}
});
// CONCATENATED MODULE: ./src/model-mixin.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_mixinvue_type_script_lang_js_ = (model_mixinvue_type_script_lang_js_);
// CONCATENATED MODULE: ./node_modules/_vue-loader@15.9.3@vue-loader/lib/runtime/componentNormalizer.js
/* globals __VUE_SSR_CONTEXT__ */
// IMPORTANT: Do NOT use ES2015 features in this file (except for modules).
// This module is a runtime utility for cleaner component module output and will
// be included in the final webpack user bundle.
function normalizeComponent (
scriptExports,
render,
staticRenderFns,
functionalTemplate,
injectStyles,
scopeId,
moduleIdentifier, /* server only */
shadowMode /* vue-cli only */
) {
// Vue.extend constructor export interop
var options = typeof scriptExports === 'function'
? scriptExports.options
: scriptExports
// render functions
if (render) {
options.render = render
options.staticRenderFns = staticRenderFns
options._compiled = true
}
// functional template
if (functionalTemplate) {
options.functional = true
}
// scopedId
if (scopeId) {
options._scopeId = 'data-v-' + scopeId
}
var hook
if (moduleIdentifier) { // server build
hook = function (context) {
// 2.3 injection
context =
context || // cached call
(this.$vnode && this.$vnode.ssrContext) || // stateful
(this.parent && this.parent.$vnode && this.parent.$vnode.ssrContext) // functional
// 2.2 with runInNewContext: true
if (!context && typeof __VUE_SSR_CONTEXT__ !== 'undefined') {
context = __VUE_SSR_CONTEXT__
}
// inject component styles
if (injectStyles) {
injectStyles.call(this, context)
}
// register component module identifier for async chunk inferrence
if (context && context._registeredComponents) {
context._registeredComponents.add(moduleIdentifier)
}
}
// used by ssr in case component is cached and beforeCreate
// never gets called
options._ssrRegister = hook
} else if (injectStyles) {
hook = shadowMode
? function () {
injectStyles.call(
this,
(options.functional ? this.parent : this).$root.$options.shadowRoot
)
}
: injectStyles
}
if (hook) {
if (options.functional) {
// for template-only hot-reload because in that case the render fn doesn't
// go through the normalizer
options._injectStyles = hook
// register for functional component in vue file
var originalRender = options.render
options.render = function renderWithStyleInjection (h, context) {
hook.call(context)
return originalRender(h, context)
}
} else {
// inject component registration as beforeCreate hook
var existing = options.beforeCreate
options.beforeCreate = existing
? [].concat(existing, hook)
: [hook]
}
}
return {
exports: scriptExports,
options: options
}
}
// CONCATENATED MODULE: ./src/model-mixin.vue
/* normalize component */
var component = normalizeComponent(
src_model_mixinvue_type_script_lang_js_,
render,
staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_mixin = (component.exports);
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-obj.vue?vue&type=script&lang=js&
// TODO: Better way to handle texture formats
var model_objvue_type_script_lang_js_manager = new LoadingManager_LoadingManager(); // 0.122+ new api
model_objvue_type_script_lang_js_manager.addHandler(/\.dds$/i, new DDSLoader());
/* harmony default export */ var model_objvue_type_script_lang_js_ = ({
name: 'model-obj',
mixins: [model_mixin],
props: {
lights: {
type: Array,
default: function _default() {
return [{
type: 'HemisphereLight',
position: {
x: 0,
y: 1,
z: 0
},
skyColor: 0xaaaaff,
groundColor: 0x806060,
intensity: 0.2
}, {
type: 'DirectionalLight',
position: {
x: 1,
y: 1,
z: 1
},
color: 0xffffff,
intensity: 0.8
}];
}
},
smoothing: {
type: Boolean,
default: false
},
mtlPath: {
type: String
},
mtl: {
type: String
}
},
data: function data() {
var objLoader = new OBJLoader_OBJLoader(model_objvue_type_script_lang_js_manager);
var mtlLoader = new MTLLoader(model_objvue_type_script_lang_js_manager);
mtlLoader.setCrossOrigin(this.crossOrigin);
return {
loader: objLoader,
mtlLoader: mtlLoader
};
},
watch: {
mtl: function mtl() {
this.load();
}
},
methods: {
process: function process(object) {
if (this.smoothing) {
object.traverse(function (child) {
if (child.geometry) {
child.geometry = toIndexed(child.geometry);
child.geometry.computeVertexNormals();
}
});
}
},
load: function load() {
var _this = this;
if (!this.src) return;
if (this.object) {
this.wrapper.remove(this.object);
}
var onLoad = function onLoad(object) {
if (_this.process) {
_this.process(object);
}
_this.addObject(object);
_this.$emit('on-load');
};
var onProgress = function onProgress(xhr) {
_this.$emit('on-progress', xhr);
};
var onError = function onError(err) {
_this.$emit('on-error', err);
};
if (this.mtl) {
var mtlPath = this.mtlPath;
var mtlSrc = this.mtl;
if (!this.mtlPath) {
var result = /^(.*\/)([^/]*)$/.exec(this.mtl);
if (result) {
mtlPath = result[1];
mtlSrc = result[2];
}
}
if (mtlPath) {
this.mtlLoader.setPath(mtlPath);
}
this.mtlLoader.load(mtlSrc, function (materials) {
materials.preload();
_this.loader.setMaterials(materials).load(_this.src, onLoad, onProgress, onError);
}, function () {}, onError);
} else {
this.loader.load(this.src, onLoad, onProgress, onError);
}
}
}
});
// CONCATENATED MODULE: ./src/model-obj.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_objvue_type_script_lang_js_ = (model_objvue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-obj.vue
var model_obj_render, model_obj_staticRenderFns
/* normalize component */
var model_obj_component = normalizeComponent(
src_model_objvue_type_script_lang_js_,
model_obj_render,
model_obj_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_obj = (model_obj_component.exports);
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/libs/inflate.module.min.js
/** @license zlib.js 2012 - imaya [ https://github.com/imaya/zlib.js ] The MIT License */var mod={}, inflate_module_min_l=void 0,aa=mod;function inflate_module_min_r(c,d){var a=c.split("."),b=aa;!(a[0]in b)&&b.execScript&&b.execScript("var "+a[0]);for(var e;a.length&&(e=a.shift());)!a.length&&d!==inflate_module_min_l?b[e]=d:b=b[e]?b[e]:b[e]={}};var inflate_module_min_t="undefined"!==typeof Uint8Array&&"undefined"!==typeof Uint16Array&&"undefined"!==typeof Uint32Array&&"undefined"!==typeof DataView;function inflate_module_min_v(c){var d=c.length,a=0,b=Number.POSITIVE_INFINITY,e,f,g,h,k,m,n,p,s,x;for(p=0;p<d;++p)c[p]>a&&(a=c[p]),c[p]<b&&(b=c[p]);e=1<<a;f=new (inflate_module_min_t?Uint32Array:Array)(e);g=1;h=0;for(k=2;g<=a;){for(p=0;p<d;++p)if(c[p]===g){m=0;n=h;for(s=0;s<g;++s)m=m<<1|n&1,n>>=1;x=g<<16|p;for(s=m;s<e;s+=k)f[s]=x;++h}++g;h<<=1;k<<=1}return[f,a,b]};function inflate_module_min_w(c,d){this.g=[];this.h=32768;this.d=this.f=this.a=this.l=0;this.input=inflate_module_min_t?new Uint8Array(c):c;this.m=!1;this.i=y;this.r=!1;if(d||!(d={}))d.index&&(this.a=d.index),d.bufferSize&&(this.h=d.bufferSize),d.bufferType&&(this.i=d.bufferType),d.resize&&(this.r=d.resize);switch(this.i){case A:this.b=32768;this.c=new (inflate_module_min_t?Uint8Array:Array)(32768+this.h+258);break;case y:this.b=0;this.c=new (inflate_module_min_t?Uint8Array:Array)(this.h);this.e=this.z;this.n=this.v;this.j=this.w;break;default:throw Error("invalid inflate mode");
}}var A=0,y=1,B={t:A,s:y};
inflate_module_min_w.prototype.k=function(){for(;!this.m;){var c=inflate_module_min_C(this,3);c&1&&(this.m=!0);c>>>=1;switch(c){case 0:var d=this.input,a=this.a,b=this.c,e=this.b,f=d.length,g=inflate_module_min_l,h=inflate_module_min_l,k=b.length,m=inflate_module_min_l;this.d=this.f=0;if(a+1>=f)throw Error("invalid uncompressed block header: LEN");g=d[a++]|d[a++]<<8;if(a+1>=f)throw Error("invalid uncompressed block header: NLEN");h=d[a++]|d[a++]<<8;if(g===~h)throw Error("invalid uncompressed block header: length verify");if(a+g>d.length)throw Error("input buffer is broken");switch(this.i){case A:for(;e+
g>b.length;){m=k-e;g-=m;if(inflate_module_min_t)b.set(d.subarray(a,a+m),e),e+=m,a+=m;else for(;m--;)b[e++]=d[a++];this.b=e;b=this.e();e=this.b}break;case y:for(;e+g>b.length;)b=this.e({p:2});break;default:throw Error("invalid inflate mode");}if(inflate_module_min_t)b.set(d.subarray(a,a+g),e),e+=g,a+=g;else for(;g--;)b[e++]=d[a++];this.a=a;this.b=e;this.c=b;break;case 1:this.j(ba,ca);break;case 2:for(var n=inflate_module_min_C(this,5)+257,p=inflate_module_min_C(this,5)+1,s=inflate_module_min_C(this,4)+4,x=new (inflate_module_min_t?Uint8Array:Array)(D.length),S=inflate_module_min_l,T=inflate_module_min_l,U=inflate_module_min_l,u=inflate_module_min_l,M=inflate_module_min_l,F=inflate_module_min_l,z=inflate_module_min_l,q=inflate_module_min_l,V=inflate_module_min_l,q=0;q<s;++q)x[D[q]]=
inflate_module_min_C(this,3);if(!inflate_module_min_t){q=s;for(s=x.length;q<s;++q)x[D[q]]=0}S=inflate_module_min_v(x);u=new (inflate_module_min_t?Uint8Array:Array)(n+p);q=0;for(V=n+p;q<V;)switch(M=E(this,S),M){case 16:for(z=3+inflate_module_min_C(this,2);z--;)u[q++]=F;break;case 17:for(z=3+inflate_module_min_C(this,3);z--;)u[q++]=0;F=0;break;case 18:for(z=11+inflate_module_min_C(this,7);z--;)u[q++]=0;F=0;break;default:F=u[q++]=M}T=inflate_module_min_t?inflate_module_min_v(u.subarray(0,n)):inflate_module_min_v(u.slice(0,n));U=inflate_module_min_t?inflate_module_min_v(u.subarray(n)):inflate_module_min_v(u.slice(n));this.j(T,U);break;default:throw Error("unknown BTYPE: "+c);}}return this.n()};
var G=[16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15],D=inflate_module_min_t?new Uint16Array(G):G,H=[3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258,258,258],I=inflate_module_min_t?new Uint16Array(H):H,J=[0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0],K=inflate_module_min_t?new Uint8Array(J):J,L=[1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577],da=inflate_module_min_t?new Uint16Array(L):L,ea=[0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,
13,13],inflate_module_min_N=inflate_module_min_t?new Uint8Array(ea):ea,O=new (inflate_module_min_t?Uint8Array:Array)(288),inflate_module_min_P,fa;inflate_module_min_P=0;for(fa=O.length;inflate_module_min_P<fa;++inflate_module_min_P)O[inflate_module_min_P]=143>=inflate_module_min_P?8:255>=inflate_module_min_P?9:279>=inflate_module_min_P?7:8;var ba=inflate_module_min_v(O),Q=new (inflate_module_min_t?Uint8Array:Array)(30),R,ga;R=0;for(ga=Q.length;R<ga;++R)Q[R]=5;var ca=inflate_module_min_v(Q);function inflate_module_min_C(c,d){for(var a=c.f,b=c.d,e=c.input,f=c.a,g=e.length,h;b<d;){if(f>=g)throw Error("input buffer is broken");a|=e[f++]<<b;b+=8}h=a&(1<<d)-1;c.f=a>>>d;c.d=b-d;c.a=f;return h}
function E(c,d){for(var a=c.f,b=c.d,e=c.input,f=c.a,g=e.length,h=d[0],k=d[1],m,n;b<k&&!(f>=g);)a|=e[f++]<<b,b+=8;m=h[a&(1<<k)-1];n=m>>>16;if(n>b)throw Error("invalid code length: "+n);c.f=a>>n;c.d=b-n;c.a=f;return m&65535}
inflate_module_min_w.prototype.j=function(c,d){var a=this.c,b=this.b;this.o=c;for(var e=a.length-258,f,g,h,k;256!==(f=E(this,c));)if(256>f)b>=e&&(this.b=b,a=this.e(),b=this.b),a[b++]=f;else{g=f-257;k=I[g];0<K[g]&&(k+=inflate_module_min_C(this,K[g]));f=E(this,d);h=da[f];0<inflate_module_min_N[f]&&(h+=inflate_module_min_C(this,inflate_module_min_N[f]));b>=e&&(this.b=b,a=this.e(),b=this.b);for(;k--;)a[b]=a[b++-h]}for(;8<=this.d;)this.d-=8,this.a--;this.b=b};
inflate_module_min_w.prototype.w=function(c,d){var a=this.c,b=this.b;this.o=c;for(var e=a.length,f,g,h,k;256!==(f=E(this,c));)if(256>f)b>=e&&(a=this.e(),e=a.length),a[b++]=f;else{g=f-257;k=I[g];0<K[g]&&(k+=inflate_module_min_C(this,K[g]));f=E(this,d);h=da[f];0<inflate_module_min_N[f]&&(h+=inflate_module_min_C(this,inflate_module_min_N[f]));b+k>e&&(a=this.e(),e=a.length);for(;k--;)a[b]=a[b++-h]}for(;8<=this.d;)this.d-=8,this.a--;this.b=b};
inflate_module_min_w.prototype.e=function(){var c=new (inflate_module_min_t?Uint8Array:Array)(this.b-32768),d=this.b-32768,a,b,e=this.c;if(inflate_module_min_t)c.set(e.subarray(32768,c.length));else{a=0;for(b=c.length;a<b;++a)c[a]=e[a+32768]}this.g.push(c);this.l+=c.length;if(inflate_module_min_t)e.set(e.subarray(d,d+32768));else for(a=0;32768>a;++a)e[a]=e[d+a];this.b=32768;return e};
inflate_module_min_w.prototype.z=function(c){var d,a=this.input.length/this.a+1|0,b,e,f,g=this.input,h=this.c;c&&("number"===typeof c.p&&(a=c.p),"number"===typeof c.u&&(a+=c.u));2>a?(b=(g.length-this.a)/this.o[2],f=258*(b/2)|0,e=f<h.length?h.length+f:h.length<<1):e=h.length*a;inflate_module_min_t?(d=new Uint8Array(e),d.set(h)):d=h;return this.c=d};
inflate_module_min_w.prototype.n=function(){var c=0,d=this.c,a=this.g,b,e=new (inflate_module_min_t?Uint8Array:Array)(this.l+(this.b-32768)),f,g,h,k;if(0===a.length)return inflate_module_min_t?this.c.subarray(32768,this.b):this.c.slice(32768,this.b);f=0;for(g=a.length;f<g;++f){b=a[f];h=0;for(k=b.length;h<k;++h)e[c++]=b[h]}f=32768;for(g=this.b;f<g;++f)e[c++]=d[f];this.g=[];return this.buffer=e};
inflate_module_min_w.prototype.v=function(){var c,d=this.b;inflate_module_min_t?this.r?(c=new Uint8Array(d),c.set(this.c.subarray(0,d))):c=this.c.subarray(0,d):(this.c.length>d&&(this.c.length=d),c=this.c);return this.buffer=c};function W(c,d){var a,b;this.input=c;this.a=0;if(d||!(d={}))d.index&&(this.a=d.index),d.verify&&(this.A=d.verify);a=c[this.a++];b=c[this.a++];switch(a&15){case ha:this.method=ha;break;default:throw Error("unsupported compression method");}if(0!==((a<<8)+b)%31)throw Error("invalid fcheck flag:"+((a<<8)+b)%31);if(b&32)throw Error("fdict flag is not supported");this.q=new inflate_module_min_w(c,{index:this.a,bufferSize:d.bufferSize,bufferType:d.bufferType,resize:d.resize})}
W.prototype.k=function(){var c=this.input,d,a;d=this.q.k();this.a=this.q.a;if(this.A){a=(c[this.a++]<<24|c[this.a++]<<16|c[this.a++]<<8|c[this.a++])>>>0;var b=d;if("string"===typeof b){var e=b.split(""),f,g;f=0;for(g=e.length;f<g;f++)e[f]=(e[f].charCodeAt(0)&255)>>>0;b=e}for(var h=1,k=0,m=b.length,n,p=0;0<m;){n=1024<m?1024:m;m-=n;do h+=b[p++],k+=h;while(--n);h%=65521;k%=65521}if(a!==(k<<16|h)>>>0)throw Error("invalid adler-32 checksum");}return d};var ha=8;inflate_module_min_r("Zlib.Inflate",W);inflate_module_min_r("Zlib.Inflate.prototype.decompress",W.prototype.k);var X={ADAPTIVE:B.s,BLOCK:B.t},Y,Z,$,ia;if(Object.keys)Y=Object.keys(X);else for(Z in Y=[],$=0,X)Y[$++]=Z;$=0;for(ia=Y.length;$<ia;++$)Z=Y[$],inflate_module_min_r("Zlib.Inflate.BufferType."+Z,X[Z]);
var Zlib=mod.Zlib;
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/curves/NURBSUtils.js
/**
* @author renej
* NURBS utils
*
* See NURBSCurve and NURBSSurface.
*
**/
/**************************************************************
* NURBS Utils
**************************************************************/
var NURBSUtils = {
/*
Finds knot vector span.
p : degree
u : parametric value
U : knot vector
returns the span
*/
findSpan: function ( p, u, U ) {
var n = U.length - p - 1;
if ( u >= U[ n ] ) {
return n - 1;
}
if ( u <= U[ p ] ) {
return p;
}
var low = p;
var high = n;
var mid = Math.floor( ( low + high ) / 2 );
while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
if ( u < U[ mid ] ) {
high = mid;
} else {
low = mid;
}
mid = Math.floor( ( low + high ) / 2 );
}
return mid;
},
/*
Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
span : span in which u lies
u : parametric point
p : degree
U : knot vector
returns array[p+1] with basis functions values.
*/
calcBasisFunctions: function ( span, u, p, U ) {
var N = [];
var left = [];
var right = [];
N[ 0 ] = 1.0;
for ( var j = 1; j <= p; ++ j ) {
left[ j ] = u - U[ span + 1 - j ];
right[ j ] = U[ span + j ] - u;
var saved = 0.0;
for ( var r = 0; r < j; ++ r ) {
var rv = right[ r + 1 ];
var lv = left[ j - r ];
var temp = N[ r ] / ( rv + lv );
N[ r ] = saved + rv * temp;
saved = lv * temp;
}
N[ j ] = saved;
}
return N;
},
/*
Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
p : degree of B-Spline
U : knot vector
P : control points (x, y, z, w)
u : parametric point
returns point for given u
*/
calcBSplinePoint: function ( p, U, P, u ) {
var span = this.findSpan( p, u, U );
var N = this.calcBasisFunctions( span, u, p, U );
var C = new Vector4( 0, 0, 0, 0 );
for ( var j = 0; j <= p; ++ j ) {
var point = P[ span - p + j ];
var Nj = N[ j ];
var wNj = point.w * Nj;
C.x += point.x * wNj;
C.y += point.y * wNj;
C.z += point.z * wNj;
C.w += point.w * Nj;
}
return C;
},
/*
Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
span : span in which u lies
u : parametric point
p : degree
n : number of derivatives to calculate
U : knot vector
returns array[n+1][p+1] with basis functions derivatives
*/
calcBasisFunctionDerivatives: function ( span, u, p, n, U ) {
var zeroArr = [];
for ( var i = 0; i <= p; ++ i )
zeroArr[ i ] = 0.0;
var ders = [];
for ( var i = 0; i <= n; ++ i )
ders[ i ] = zeroArr.slice( 0 );
var ndu = [];
for ( var i = 0; i <= p; ++ i )
ndu[ i ] = zeroArr.slice( 0 );
ndu[ 0 ][ 0 ] = 1.0;
var left = zeroArr.slice( 0 );
var right = zeroArr.slice( 0 );
for ( var j = 1; j <= p; ++ j ) {
left[ j ] = u - U[ span + 1 - j ];
right[ j ] = U[ span + j ] - u;
var saved = 0.0;
for ( var r = 0; r < j; ++ r ) {
var rv = right[ r + 1 ];
var lv = left[ j - r ];
ndu[ j ][ r ] = rv + lv;
var temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
ndu[ r ][ j ] = saved + rv * temp;
saved = lv * temp;
}
ndu[ j ][ j ] = saved;
}
for ( var j = 0; j <= p; ++ j ) {
ders[ 0 ][ j ] = ndu[ j ][ p ];
}
for ( var r = 0; r <= p; ++ r ) {
var s1 = 0;
var s2 = 1;
var a = [];
for ( var i = 0; i <= p; ++ i ) {
a[ i ] = zeroArr.slice( 0 );
}
a[ 0 ][ 0 ] = 1.0;
for ( var k = 1; k <= n; ++ k ) {
var d = 0.0;
var rk = r - k;
var pk = p - k;
if ( r >= k ) {
a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
}
var j1 = ( rk >= - 1 ) ? 1 : - rk;
var j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
for ( var j = j1; j <= j2; ++ j ) {
a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
}
if ( r <= pk ) {
a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
d += a[ s2 ][ k ] * ndu[ r ][ pk ];
}
ders[ k ][ r ] = d;
var j = s1;
s1 = s2;
s2 = j;
}
}
var r = p;
for ( var k = 1; k <= n; ++ k ) {
for ( var j = 0; j <= p; ++ j ) {
ders[ k ][ j ] *= r;
}
r *= p - k;
}
return ders;
},
/*
Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
p : degree
U : knot vector
P : control points
u : Parametric points
nd : number of derivatives
returns array[d+1] with derivatives
*/
calcBSplineDerivatives: function ( p, U, P, u, nd ) {
var du = nd < p ? nd : p;
var CK = [];
var span = this.findSpan( p, u, U );
var nders = this.calcBasisFunctionDerivatives( span, u, p, du, U );
var Pw = [];
for ( var i = 0; i < P.length; ++ i ) {
var point = P[ i ].clone();
var w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
Pw[ i ] = point;
}
for ( var k = 0; k <= du; ++ k ) {
var point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
for ( var j = 1; j <= p; ++ j ) {
point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
}
CK[ k ] = point;
}
for ( var k = du + 1; k <= nd + 1; ++ k ) {
CK[ k ] = new Vector4( 0, 0, 0 );
}
return CK;
},
/*
Calculate "K over I"
returns k!/(i!(k-i)!)
*/
calcKoverI: function ( k, i ) {
var nom = 1;
for ( var j = 2; j <= k; ++ j ) {
nom *= j;
}
var denom = 1;
for ( var j = 2; j <= i; ++ j ) {
denom *= j;
}
for ( var j = 2; j <= k - i; ++ j ) {
denom *= j;
}
return nom / denom;
},
/*
Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
Pders : result of function calcBSplineDerivatives
returns array with derivatives for rational curve.
*/
calcRationalCurveDerivatives: function ( Pders ) {
var nd = Pders.length;
var Aders = [];
var wders = [];
for ( var i = 0; i < nd; ++ i ) {
var point = Pders[ i ];
Aders[ i ] = new Vector3( point.x, point.y, point.z );
wders[ i ] = point.w;
}
var CK = [];
for ( var k = 0; k < nd; ++ k ) {
var v = Aders[ k ].clone();
for ( var i = 1; i <= k; ++ i ) {
v.sub( CK[ k - i ].clone().multiplyScalar( this.calcKoverI( k, i ) * wders[ i ] ) );
}
CK[ k ] = v.divideScalar( wders[ 0 ] );
}
return CK;
},
/*
Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
p : degree
U : knot vector
P : control points in homogeneous space
u : parametric points
nd : number of derivatives
returns array with derivatives.
*/
calcNURBSDerivatives: function ( p, U, P, u, nd ) {
var Pders = this.calcBSplineDerivatives( p, U, P, u, nd );
return this.calcRationalCurveDerivatives( Pders );
},
/*
Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
p1, p2 : degrees of B-Spline surface
U1, U2 : knot vectors
P : control points (x, y, z, w)
u, v : parametric values
returns point for given (u, v)
*/
calcSurfacePoint: function ( p, q, U, V, P, u, v, target ) {
var uspan = this.findSpan( p, u, U );
var vspan = this.findSpan( q, v, V );
var Nu = this.calcBasisFunctions( uspan, u, p, U );
var Nv = this.calcBasisFunctions( vspan, v, q, V );
var temp = [];
for ( var l = 0; l <= q; ++ l ) {
temp[ l ] = new Vector4( 0, 0, 0, 0 );
for ( var k = 0; k <= p; ++ k ) {
var point = P[ uspan - p + k ][ vspan - q + l ].clone();
var w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
}
}
var Sw = new Vector4( 0, 0, 0, 0 );
for ( var l = 0; l <= q; ++ l ) {
Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
}
Sw.divideScalar( Sw.w );
target.set( Sw.x, Sw.y, Sw.z );
}
};
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/curves/NURBSCurve.js
/**
* @author renej
* NURBS curve object
*
* Derives from Curve, overriding getPoint and getTangent.
*
* Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight.
*
**/
/**************************************************************
* NURBS curve
**************************************************************/
var NURBSCurve = function ( degree, knots /* array of reals */, controlPoints /* array of Vector(2|3|4) */, startKnot /* index in knots */, endKnot /* index in knots */ ) {
Curve.call( this );
this.degree = degree;
this.knots = knots;
this.controlPoints = [];
// Used by periodic NURBS to remove hidden spans
this.startKnot = startKnot || 0;
this.endKnot = endKnot || ( this.knots.length - 1 );
for ( var i = 0; i < controlPoints.length; ++ i ) {
// ensure Vector4 for control points
var point = controlPoints[ i ];
this.controlPoints[ i ] = new Vector4( point.x, point.y, point.z, point.w );
}
};
NURBSCurve.prototype = Object.create( Curve.prototype );
NURBSCurve.prototype.constructor = NURBSCurve;
NURBSCurve.prototype.getPoint = function ( t, optionalTarget ) {
var point = optionalTarget || new Vector3();
var u = this.knots[ this.startKnot ] + t * ( this.knots[ this.endKnot ] - this.knots[ this.startKnot ] ); // linear mapping t->u
// following results in (wx, wy, wz, w) homogeneous point
var hpoint = NURBSUtils.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u );
if ( hpoint.w != 1.0 ) {
// project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)
hpoint.divideScalar( hpoint.w );
}
return point.set( hpoint.x, hpoint.y, hpoint.z );
};
NURBSCurve.prototype.getTangent = function ( t, optionalTarget ) {
var tangent = optionalTarget || new Vector3();
var u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] );
var ders = NURBSUtils.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 );
tangent.copy( ders[ 1 ] ).normalize();
return tangent;
};
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/FBXLoader.js
/**
* @author Kyle-Larson https://github.com/Kyle-Larson
* @author Takahiro https://github.com/takahirox
* @author Lewy Blue https://github.com/looeee
*
* Loader loads FBX file and generates Group representing FBX scene.
* Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format
* Versions lower than this may load but will probably have errors
*
* Needs Support:
* Morph normals / blend shape normals
*
* FBX format references:
* https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure
* http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference)
*
* Binary format specification:
* https://code.blender.org/2013/08/fbx-binary-file-format-specification/
*/
var FBXLoader_FBXLoader = ( function () {
var fbxTree;
var connections;
var sceneGraph;
function FBXLoader( manager ) {
Loader.call( this, manager );
}
FBXLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: FBXLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
var loader = new FileLoader( this.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
try {
onLoad( scope.parse( buffer, path ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
parse: function ( FBXBuffer, path ) {
if ( isFbxFormatBinary( FBXBuffer ) ) {
fbxTree = new BinaryParser().parse( FBXBuffer );
} else {
var FBXText = convertArrayBufferToString( FBXBuffer );
if ( ! isFbxFormatASCII( FBXText ) ) {
throw new Error( 'THREE.FBXLoader: Unknown format.' );
}
if ( getFbxVersion( FBXText ) < 7000 ) {
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) );
}
fbxTree = new TextParser().parse( FBXText );
}
// console.log( fbxTree );
var textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree );
}
} );
// Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group
function FBXTreeParser( textureLoader, manager ) {
this.textureLoader = textureLoader;
this.manager = manager;
}
FBXTreeParser.prototype = {
constructor: FBXTreeParser,
parse: function () {
connections = this.parseConnections();
var images = this.parseImages();
var textures = this.parseTextures( images );
var materials = this.parseMaterials( textures );
var deformers = this.parseDeformers();
var geometryMap = new GeometryParser().parse( deformers );
this.parseScene( deformers, geometryMap, materials );
return sceneGraph;
},
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
// and details the connection type
parseConnections: function () {
var connectionMap = new Map();
if ( 'Connections' in fbxTree ) {
var rawConnections = fbxTree.Connections.connections;
rawConnections.forEach( function ( rawConnection ) {
var fromID = rawConnection[ 0 ];
var toID = rawConnection[ 1 ];
var relationship = rawConnection[ 2 ];
if ( ! connectionMap.has( fromID ) ) {
connectionMap.set( fromID, {
parents: [],
children: []
} );
}
var parentRelationship = { ID: toID, relationship: relationship };
connectionMap.get( fromID ).parents.push( parentRelationship );
if ( ! connectionMap.has( toID ) ) {
connectionMap.set( toID, {
parents: [],
children: []
} );
}
var childRelationship = { ID: fromID, relationship: relationship };
connectionMap.get( toID ).children.push( childRelationship );
} );
}
return connectionMap;
},
// Parse FBXTree.Objects.Video for embedded image data
// These images are connected to textures in FBXTree.Objects.Textures
// via FBXTree.Connections.
parseImages: function () {
var images = {};
var blobs = {};
if ( 'Video' in fbxTree.Objects ) {
var videoNodes = fbxTree.Objects.Video;
for ( var nodeID in videoNodes ) {
var videoNode = videoNodes[ nodeID ];
var id = parseInt( nodeID );
images[ id ] = videoNode.RelativeFilename || videoNode.Filename;
// raw image data is in videoNode.Content
if ( 'Content' in videoNode ) {
var arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 );
var base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' );
if ( arrayBufferContent || base64Content ) {
var image = this.parseImage( videoNodes[ nodeID ] );
blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image;
}
}
}
}
for ( var id in images ) {
var filename = images[ id ];
if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ];
else images[ id ] = images[ id ].split( '\\' ).pop();
}
return images;
},
// Parse embedded image data in FBXTree.Video.Content
parseImage: function ( videoNode ) {
var content = videoNode.Content;
var fileName = videoNode.RelativeFilename || videoNode.Filename;
var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase();
var type;
switch ( extension ) {
case 'bmp':
type = 'image/bmp';
break;
case 'jpg':
case 'jpeg':
type = 'image/jpeg';
break;
case 'png':
type = 'image/png';
break;
case 'tif':
type = 'image/tiff';
break;
case 'tga':
if ( this.manager.getHandler( '.tga' ) === null ) {
console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName );
}
type = 'image/tga';
break;
default:
console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' );
return;
}
if ( typeof content === 'string' ) { // ASCII format
return 'data:' + type + ';base64,' + content;
} else { // Binary Format
var array = new Uint8Array( content );
return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) );
}
},
// Parse nodes in FBXTree.Objects.Texture
// These contain details such as UV scaling, cropping, rotation etc and are connected
// to images in FBXTree.Objects.Video
parseTextures: function ( images ) {
var textureMap = new Map();
if ( 'Texture' in fbxTree.Objects ) {
var textureNodes = fbxTree.Objects.Texture;
for ( var nodeID in textureNodes ) {
var texture = this.parseTexture( textureNodes[ nodeID ], images );
textureMap.set( parseInt( nodeID ), texture );
}
}
return textureMap;
},
// Parse individual node in FBXTree.Objects.Texture
parseTexture: function ( textureNode, images ) {
var texture = this.loadTexture( textureNode, images );
texture.ID = textureNode.id;
texture.name = textureNode.attrName;
var wrapModeU = textureNode.WrapModeU;
var wrapModeV = textureNode.WrapModeV;
var valueU = wrapModeU !== undefined ? wrapModeU.value : 0;
var valueV = wrapModeV !== undefined ? wrapModeV.value : 0;
// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a
// 0: repeat(default), 1: clamp
texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping;
texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping;
if ( 'Scaling' in textureNode ) {
var values = textureNode.Scaling.value;
texture.repeat.x = values[ 0 ];
texture.repeat.y = values[ 1 ];
}
return texture;
},
// load a texture specified as a blob or data URI, or via an external URL using TextureLoader
loadTexture: function ( textureNode, images ) {
var fileName;
var currentPath = this.textureLoader.path;
var children = connections.get( textureNode.id ).children;
if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) {
fileName = images[ children[ 0 ].ID ];
if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) {
this.textureLoader.setPath( undefined );
}
}
var texture;
var extension = textureNode.FileName.slice( - 3 ).toLowerCase();
if ( extension === 'tga' ) {
var loader = this.manager.getHandler( '.tga' );
if ( loader === null ) {
console.warn( 'FBXLoader: TGA loader not found, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
texture = loader.load( fileName );
}
} else if ( extension === 'psd' ) {
console.warn( 'FBXLoader: PSD textures are not supported, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
texture = this.textureLoader.load( fileName );
}
this.textureLoader.setPath( currentPath );
return texture;
},
// Parse nodes in FBXTree.Objects.Material
parseMaterials: function ( textureMap ) {
var materialMap = new Map();
if ( 'Material' in fbxTree.Objects ) {
var materialNodes = fbxTree.Objects.Material;
for ( var nodeID in materialNodes ) {
var material = this.parseMaterial( materialNodes[ nodeID ], textureMap );
if ( material !== null ) materialMap.set( parseInt( nodeID ), material );
}
}
return materialMap;
},
// Parse single node in FBXTree.Objects.Material
// Materials are connected to texture maps in FBXTree.Objects.Textures
// FBX format currently only supports Lambert and Phong shading models
parseMaterial: function ( materialNode, textureMap ) {
var ID = materialNode.id;
var name = materialNode.attrName;
var type = materialNode.ShadingModel;
// Case where FBX wraps shading model in property object.
if ( typeof type === 'object' ) {
type = type.value;
}
// Ignore unused materials which don't have any connections.
if ( ! connections.has( ID ) ) return null;
var parameters = this.parseParameters( materialNode, textureMap, ID );
var material;
switch ( type.toLowerCase() ) {
case 'phong':
material = new MeshPhongMaterial();
break;
case 'lambert':
material = new MeshLambertMaterial();
break;
default:
console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type );
material = new MeshPhongMaterial();
break;
}
material.setValues( parameters );
material.name = name;
return material;
},
// Parse FBX material and return parameters suitable for a three.js material
// Also parse the texture map and return any textures associated with the material
parseParameters: function ( materialNode, textureMap, ID ) {
var parameters = {};
if ( materialNode.BumpFactor ) {
parameters.bumpScale = materialNode.BumpFactor.value;
}
if ( materialNode.Diffuse ) {
parameters.color = new Color().fromArray( materialNode.Diffuse.value );
} else if ( materialNode.DiffuseColor && materialNode.DiffuseColor.type === 'Color' ) {
// The blender exporter exports diffuse here instead of in materialNode.Diffuse
parameters.color = new Color().fromArray( materialNode.DiffuseColor.value );
}
if ( materialNode.DisplacementFactor ) {
parameters.displacementScale = materialNode.DisplacementFactor.value;
}
if ( materialNode.Emissive ) {
parameters.emissive = new Color().fromArray( materialNode.Emissive.value );
} else if ( materialNode.EmissiveColor && materialNode.EmissiveColor.type === 'Color' ) {
// The blender exporter exports emissive color here instead of in materialNode.Emissive
parameters.emissive = new Color().fromArray( materialNode.EmissiveColor.value );
}
if ( materialNode.EmissiveFactor ) {
parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value );
}
if ( materialNode.Opacity ) {
parameters.opacity = parseFloat( materialNode.Opacity.value );
}
if ( parameters.opacity < 1.0 ) {
parameters.transparent = true;
}
if ( materialNode.ReflectionFactor ) {
parameters.reflectivity = materialNode.ReflectionFactor.value;
}
if ( materialNode.Shininess ) {
parameters.shininess = materialNode.Shininess.value;
}
if ( materialNode.Specular ) {
parameters.specular = new Color().fromArray( materialNode.Specular.value );
} else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) {
// The blender exporter exports specular color here instead of in materialNode.Specular
parameters.specular = new Color().fromArray( materialNode.SpecularColor.value );
}
var scope = this;
connections.get( ID ).children.forEach( function ( child ) {
var type = child.relationship;
switch ( type ) {
case 'Bump':
parameters.bumpMap = scope.getTexture( textureMap, child.ID );
break;
case 'Maya|TEX_ao_map':
parameters.aoMap = scope.getTexture( textureMap, child.ID );
break;
case 'DiffuseColor':
case 'Maya|TEX_color_map':
parameters.map = scope.getTexture( textureMap, child.ID );
parameters.map.encoding = sRGBEncoding;
break;
case 'DisplacementColor':
parameters.displacementMap = scope.getTexture( textureMap, child.ID );
break;
case 'EmissiveColor':
parameters.emissiveMap = scope.getTexture( textureMap, child.ID );
parameters.emissiveMap.encoding = sRGBEncoding;
break;
case 'NormalMap':
case 'Maya|TEX_normal_map':
parameters.normalMap = scope.getTexture( textureMap, child.ID );
break;
case 'ReflectionColor':
parameters.envMap = scope.getTexture( textureMap, child.ID );
parameters.envMap.mapping = EquirectangularReflectionMapping;
parameters.envMap.encoding = sRGBEncoding;
break;
case 'SpecularColor':
parameters.specularMap = scope.getTexture( textureMap, child.ID );
parameters.specularMap.encoding = sRGBEncoding;
break;
case 'TransparentColor':
case 'TransparencyFactor':
parameters.alphaMap = scope.getTexture( textureMap, child.ID );
parameters.transparent = true;
break;
case 'AmbientColor':
case 'ShininessExponent': // AKA glossiness map
case 'SpecularFactor': // AKA specularLevel
case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor
default:
console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type );
break;
}
} );
return parameters;
},
// get a texture from the textureMap for use by a material.
getTexture: function ( textureMap, id ) {
// if the texture is a layered texture, just use the first layer and issue a warning
if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) {
console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' );
id = connections.get( id ).children[ 0 ].ID;
}
return textureMap.get( id );
},
// Parse nodes in FBXTree.Objects.Deformer
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
parseDeformers: function () {
var skeletons = {};
var morphTargets = {};
if ( 'Deformer' in fbxTree.Objects ) {
var DeformerNodes = fbxTree.Objects.Deformer;
for ( var nodeID in DeformerNodes ) {
var deformerNode = DeformerNodes[ nodeID ];
var relationships = connections.get( parseInt( nodeID ) );
if ( deformerNode.attrType === 'Skin' ) {
var skeleton = this.parseSkeleton( relationships, DeformerNodes );
skeleton.ID = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' );
skeleton.geometryID = relationships.parents[ 0 ].ID;
skeletons[ nodeID ] = skeleton;
} else if ( deformerNode.attrType === 'BlendShape' ) {
var morphTarget = {
id: nodeID,
};
morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes );
morphTarget.id = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' );
morphTargets[ nodeID ] = morphTarget;
}
}
}
return {
skeletons: skeletons,
morphTargets: morphTargets,
};
},
// Parse single nodes in FBXTree.Objects.Deformer
// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster'
// Each skin node represents a skeleton and each cluster node represents a bone
parseSkeleton: function ( relationships, deformerNodes ) {
var rawBones = [];
relationships.children.forEach( function ( child ) {
var boneNode = deformerNodes[ child.ID ];
if ( boneNode.attrType !== 'Cluster' ) return;
var rawBone = {
ID: child.ID,
indices: [],
weights: [],
transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ),
// transform: new Matrix4().fromArray( boneNode.Transform.a ),
// linkMode: boneNode.Mode,
};
if ( 'Indexes' in boneNode ) {
rawBone.indices = boneNode.Indexes.a;
rawBone.weights = boneNode.Weights.a;
}
rawBones.push( rawBone );
} );
return {
rawBones: rawBones,
bones: []
};
},
// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel"
parseMorphTargets: function ( relationships, deformerNodes ) {
var rawMorphTargets = [];
for ( var i = 0; i < relationships.children.length; i ++ ) {
var child = relationships.children[ i ];
var morphTargetNode = deformerNodes[ child.ID ];
var rawMorphTarget = {
name: morphTargetNode.attrName,
initialWeight: morphTargetNode.DeformPercent,
id: morphTargetNode.id,
fullWeights: morphTargetNode.FullWeights.a
};
if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return;
rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) {
return child.relationship === undefined;
} )[ 0 ].ID;
rawMorphTargets.push( rawMorphTarget );
}
return rawMorphTargets;
},
// create the main Group() to be returned by the loader
parseScene: function ( deformers, geometryMap, materialMap ) {
sceneGraph = new Group();
var modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap );
var modelNodes = fbxTree.Objects.Model;
var scope = this;
modelMap.forEach( function ( model ) {
var modelNode = modelNodes[ model.ID ];
scope.setLookAtProperties( model, modelNode );
var parentConnections = connections.get( model.ID ).parents;
parentConnections.forEach( function ( connection ) {
var parent = modelMap.get( connection.ID );
if ( parent !== undefined ) parent.add( model );
} );
if ( model.parent === null ) {
sceneGraph.add( model );
}
} );
this.bindSkeleton( deformers.skeletons, geometryMap, modelMap );
this.createAmbientLight();
this.setupMorphMaterials();
sceneGraph.traverse( function ( node ) {
if ( node.userData.transformData ) {
if ( node.parent ) node.userData.transformData.parentMatrixWorld = node.parent.matrix;
var transform = generateTransform( node.userData.transformData );
node.applyMatrix4( transform );
}
} );
var animations = new AnimationParser().parse();
// if all the models where already combined in a single group, just return that
if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) {
sceneGraph.children[ 0 ].animations = animations;
sceneGraph = sceneGraph.children[ 0 ];
}
sceneGraph.animations = animations;
},
// parse nodes in FBXTree.Objects.Model
parseModels: function ( skeletons, geometryMap, materialMap ) {
var modelMap = new Map();
var modelNodes = fbxTree.Objects.Model;
for ( var nodeID in modelNodes ) {
var id = parseInt( nodeID );
var node = modelNodes[ nodeID ];
var relationships = connections.get( id );
var model = this.buildSkeleton( relationships, skeletons, id, node.attrName );
if ( ! model ) {
switch ( node.attrType ) {
case 'Camera':
model = this.createCamera( relationships );
break;
case 'Light':
model = this.createLight( relationships );
break;
case 'Mesh':
model = this.createMesh( relationships, geometryMap, materialMap );
break;
case 'NurbsCurve':
model = this.createCurve( relationships, geometryMap );
break;
case 'LimbNode':
case 'Root':
model = new Bone();
break;
case 'Null':
default:
model = new Group();
break;
}
model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : '';
model.ID = id;
}
this.getTransformData( model, node );
modelMap.set( id, model );
}
return modelMap;
},
buildSkeleton: function ( relationships, skeletons, id, name ) {
var bone = null;
relationships.parents.forEach( function ( parent ) {
for ( var ID in skeletons ) {
var skeleton = skeletons[ ID ];
skeleton.rawBones.forEach( function ( rawBone, i ) {
if ( rawBone.ID === parent.ID ) {
var subBone = bone;
bone = new Bone();
bone.matrixWorld.copy( rawBone.transformLink );
// set name and id here - otherwise in cases where "subBone" is created it will not have a name / id
bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : '';
bone.ID = id;
skeleton.bones[ i ] = bone;
// In cases where a bone is shared between multiple meshes
// duplicate the bone here and and it as a child of the first bone
if ( subBone !== null ) {
bone.add( subBone );
}
}
} );
}
} );
return bone;
},
// create a PerspectiveCamera or OrthographicCamera
createCamera: function ( relationships ) {
var model;
var cameraAttribute;
relationships.children.forEach( function ( child ) {
var attr = fbxTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
cameraAttribute = attr;
}
} );
if ( cameraAttribute === undefined ) {
model = new Object3D();
} else {
var type = 0;
if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) {
type = 1;
}
var nearClippingPlane = 1;
if ( cameraAttribute.NearPlane !== undefined ) {
nearClippingPlane = cameraAttribute.NearPlane.value / 1000;
}
var farClippingPlane = 1000;
if ( cameraAttribute.FarPlane !== undefined ) {
farClippingPlane = cameraAttribute.FarPlane.value / 1000;
}
var width = window.innerWidth;
var height = window.innerHeight;
if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) {
width = cameraAttribute.AspectWidth.value;
height = cameraAttribute.AspectHeight.value;
}
var aspect = width / height;
var fov = 45;
if ( cameraAttribute.FieldOfView !== undefined ) {
fov = cameraAttribute.FieldOfView.value;
}
var focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null;
switch ( type ) {
case 0: // Perspective
model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane );
if ( focalLength !== null ) model.setFocalLength( focalLength );
break;
case 1: // Orthographic
model = new OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' );
model = new Object3D();
break;
}
}
return model;
},
// Create a DirectionalLight, PointLight or SpotLight
createLight: function ( relationships ) {
var model;
var lightAttribute;
relationships.children.forEach( function ( child ) {
var attr = fbxTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
lightAttribute = attr;
}
} );
if ( lightAttribute === undefined ) {
model = new Object3D();
} else {
var type;
// LightType can be undefined for Point lights
if ( lightAttribute.LightType === undefined ) {
type = 0;
} else {
type = lightAttribute.LightType.value;
}
var color = 0xffffff;
if ( lightAttribute.Color !== undefined ) {
color = new Color().fromArray( lightAttribute.Color.value );
}
var intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100;
// light disabled
if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) {
intensity = 0;
}
var distance = 0;
if ( lightAttribute.FarAttenuationEnd !== undefined ) {
if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) {
distance = 0;
} else {
distance = lightAttribute.FarAttenuationEnd.value;
}
}
// TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd?
var decay = 1;
switch ( type ) {
case 0: // Point
model = new PointLight( color, intensity, distance, decay );
break;
case 1: // Directional
model = new DirectionalLight( color, intensity );
break;
case 2: // Spot
var angle = Math.PI / 3;
if ( lightAttribute.InnerAngle !== undefined ) {
angle = MathUtils.degToRad( lightAttribute.InnerAngle.value );
}
var penumbra = 0;
if ( lightAttribute.OuterAngle !== undefined ) {
// TODO: this is not correct - FBX calculates outer and inner angle in degrees
// with OuterAngle > InnerAngle && OuterAngle <= Math.PI
// while three.js uses a penumbra between (0, 1) to attenuate the inner angle
penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value );
penumbra = Math.max( penumbra, 1 );
}
model = new SpotLight( color, intensity, distance, angle, penumbra, decay );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' );
model = new PointLight( color, intensity );
break;
}
if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) {
model.castShadow = true;
}
}
return model;
},
createMesh: function ( relationships, geometryMap, materialMap ) {
var model;
var geometry = null;
var material = null;
var materials = [];
// get geometry and materials(s) from connections
relationships.children.forEach( function ( child ) {
if ( geometryMap.has( child.ID ) ) {
geometry = geometryMap.get( child.ID );
}
if ( materialMap.has( child.ID ) ) {
materials.push( materialMap.get( child.ID ) );
}
} );
if ( materials.length > 1 ) {
material = materials;
} else if ( materials.length > 0 ) {
material = materials[ 0 ];
} else {
material = new MeshPhongMaterial( { color: 0xcccccc } );
materials.push( material );
}
if ( 'color' in geometry.attributes ) {
materials.forEach( function ( material ) {
material.vertexColors = true;
} );
}
if ( geometry.FBX_Deformer ) {
materials.forEach( function ( material ) {
material.skinning = true;
} );
model = new SkinnedMesh( geometry, material );
model.normalizeSkinWeights();
} else {
model = new Mesh( geometry, material );
}
return model;
},
createCurve: function ( relationships, geometryMap ) {
var geometry = relationships.children.reduce( function ( geo, child ) {
if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID );
return geo;
}, null );
// FBX does not list materials for Nurbs lines, so we'll just put our own in here.
var material = new LineBasicMaterial( { color: 0x3300ff, linewidth: 1 } );
return new Line( geometry, material );
},
// parse the model node for transform data
getTransformData: function ( model, modelNode ) {
var transformData = {};
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
else transformData.eulerOrder = 'ZYX';
if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value;
if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value;
if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value;
if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value;
if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value;
if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value;
if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value;
if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value;
if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value;
model.userData.transformData = transformData;
},
setLookAtProperties: function ( model, modelNode ) {
if ( 'LookAtProperty' in modelNode ) {
var children = connections.get( model.ID ).children;
children.forEach( function ( child ) {
if ( child.relationship === 'LookAtProperty' ) {
var lookAtTarget = fbxTree.Objects.Model[ child.ID ];
if ( 'Lcl_Translation' in lookAtTarget ) {
var pos = lookAtTarget.Lcl_Translation.value;
// DirectionalLight, SpotLight
if ( model.target !== undefined ) {
model.target.position.fromArray( pos );
sceneGraph.add( model.target );
} else { // Cameras and other Object3Ds
model.lookAt( new Vector3().fromArray( pos ) );
}
}
}
} );
}
},
bindSkeleton: function ( skeletons, geometryMap, modelMap ) {
var bindMatrices = this.parsePoseNodes();
for ( var ID in skeletons ) {
var skeleton = skeletons[ ID ];
var parents = connections.get( parseInt( skeleton.ID ) ).parents;
parents.forEach( function ( parent ) {
if ( geometryMap.has( parent.ID ) ) {
var geoID = parent.ID;
var geoRelationships = connections.get( geoID );
geoRelationships.parents.forEach( function ( geoConnParent ) {
if ( modelMap.has( geoConnParent.ID ) ) {
var model = modelMap.get( geoConnParent.ID );
model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] );
}
} );
}
} );
}
},
parsePoseNodes: function () {
var bindMatrices = {};
if ( 'Pose' in fbxTree.Objects ) {
var BindPoseNode = fbxTree.Objects.Pose;
for ( var nodeID in BindPoseNode ) {
if ( BindPoseNode[ nodeID ].attrType === 'BindPose' ) {
var poseNodes = BindPoseNode[ nodeID ].PoseNode;
if ( Array.isArray( poseNodes ) ) {
poseNodes.forEach( function ( poseNode ) {
bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a );
} );
} else {
bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a );
}
}
}
}
return bindMatrices;
},
// Parse ambient color in FBXTree.GlobalSettings - if it's not set to black (default), create an ambient light
createAmbientLight: function () {
if ( 'GlobalSettings' in fbxTree && 'AmbientColor' in fbxTree.GlobalSettings ) {
var ambientColor = fbxTree.GlobalSettings.AmbientColor.value;
var r = ambientColor[ 0 ];
var g = ambientColor[ 1 ];
var b = ambientColor[ 2 ];
if ( r !== 0 || g !== 0 || b !== 0 ) {
var color = new Color( r, g, b );
sceneGraph.add( new AmbientLight( color, 1 ) );
}
}
},
setupMorphMaterials: function () {
var scope = this;
sceneGraph.traverse( function ( child ) {
if ( child.isMesh ) {
if ( child.geometry.morphAttributes.position && child.geometry.morphAttributes.position.length ) {
if ( Array.isArray( child.material ) ) {
child.material.forEach( function ( material, i ) {
scope.setupMorphMaterial( child, material, i );
} );
} else {
scope.setupMorphMaterial( child, child.material );
}
}
}
} );
},
setupMorphMaterial: function ( child, material, index ) {
var uuid = child.uuid;
var matUuid = material.uuid;
// if a geometry has morph targets, it cannot share the material with other geometries
var sharedMat = false;
sceneGraph.traverse( function ( node ) {
if ( node.isMesh ) {
if ( Array.isArray( node.material ) ) {
node.material.forEach( function ( mat ) {
if ( mat.uuid === matUuid && node.uuid !== uuid ) sharedMat = true;
} );
} else if ( node.material.uuid === matUuid && node.uuid !== uuid ) sharedMat = true;
}
} );
if ( sharedMat === true ) {
var clonedMat = material.clone();
clonedMat.morphTargets = true;
if ( index === undefined ) child.material = clonedMat;
else child.material[ index ] = clonedMat;
} else material.morphTargets = true;
}
};
// parse Geometry data from FBXTree and return map of BufferGeometries
function GeometryParser() {}
GeometryParser.prototype = {
constructor: GeometryParser,
// Parse nodes in FBXTree.Objects.Geometry
parse: function ( deformers ) {
var geometryMap = new Map();
if ( 'Geometry' in fbxTree.Objects ) {
var geoNodes = fbxTree.Objects.Geometry;
for ( var nodeID in geoNodes ) {
var relationships = connections.get( parseInt( nodeID ) );
var geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers );
geometryMap.set( parseInt( nodeID ), geo );
}
}
return geometryMap;
},
// Parse single node in FBXTree.Objects.Geometry
parseGeometry: function ( relationships, geoNode, deformers ) {
switch ( geoNode.attrType ) {
case 'Mesh':
return this.parseMeshGeometry( relationships, geoNode, deformers );
break;
case 'NurbsCurve':
return this.parseNurbsGeometry( geoNode );
break;
}
},
// Parse single node mesh geometry in FBXTree.Objects.Geometry
parseMeshGeometry: function ( relationships, geoNode, deformers ) {
var skeletons = deformers.skeletons;
var morphTargets = [];
var modelNodes = relationships.parents.map( function ( parent ) {
return fbxTree.Objects.Model[ parent.ID ];
} );
// don't create geometry if it is not associated with any models
if ( modelNodes.length === 0 ) return;
var skeleton = relationships.children.reduce( function ( skeleton, child ) {
if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ];
return skeleton;
}, null );
relationships.children.forEach( function ( child ) {
if ( deformers.morphTargets[ child.ID ] !== undefined ) {
morphTargets.push( deformers.morphTargets[ child.ID ] );
}
} );
// Assume one model and get the preRotation from that
// if there is more than one model associated with the geometry this may cause problems
var modelNode = modelNodes[ 0 ];
var transformData = {};
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value;
if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value;
if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value;
var transform = generateTransform( transformData );
return this.genGeometry( geoNode, skeleton, morphTargets, transform );
},
// Generate a BufferGeometry from a node in FBXTree.Objects.Geometry
genGeometry: function ( geoNode, skeleton, morphTargets, preTransform ) {
var geo = new BufferGeometry();
if ( geoNode.attrName ) geo.name = geoNode.attrName;
var geoInfo = this.parseGeoNode( geoNode, skeleton );
var buffers = this.genBuffers( geoInfo );
var positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 );
positionAttribute.applyMatrix4( preTransform );
geo.setAttribute( 'position', positionAttribute );
if ( buffers.colors.length > 0 ) {
geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) );
}
if ( skeleton ) {
geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) );
geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) );
// used later to bind the skeleton to the model
geo.FBX_Deformer = skeleton;
}
if ( buffers.normal.length > 0 ) {
var normalMatrix = new Matrix3().getNormalMatrix( preTransform );
var normalAttribute = new Float32BufferAttribute( buffers.normal, 3 );
normalAttribute.applyNormalMatrix( normalMatrix );
geo.setAttribute( 'normal', normalAttribute );
}
buffers.uvs.forEach( function ( uvBuffer, i ) {
// subsequent uv buffers are called 'uv1', 'uv2', ...
var name = 'uv' + ( i + 1 ).toString();
// the first uv buffer is just called 'uv'
if ( i === 0 ) {
name = 'uv';
}
geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) );
} );
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
// Convert the material indices of each vertex into rendering groups on the geometry.
var prevMaterialIndex = buffers.materialIndex[ 0 ];
var startIndex = 0;
buffers.materialIndex.forEach( function ( currentIndex, i ) {
if ( currentIndex !== prevMaterialIndex ) {
geo.addGroup( startIndex, i - startIndex, prevMaterialIndex );
prevMaterialIndex = currentIndex;
startIndex = i;
}
} );
// the loop above doesn't add the last group, do that here.
if ( geo.groups.length > 0 ) {
var lastGroup = geo.groups[ geo.groups.length - 1 ];
var lastIndex = lastGroup.start + lastGroup.count;
if ( lastIndex !== buffers.materialIndex.length ) {
geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex );
}
}
// case where there are multiple materials but the whole geometry is only
// using one of them
if ( geo.groups.length === 0 ) {
geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] );
}
}
this.addMorphTargets( geo, geoNode, morphTargets, preTransform );
return geo;
},
parseGeoNode: function ( geoNode, skeleton ) {
var geoInfo = {};
geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : [];
geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : [];
if ( geoNode.LayerElementColor ) {
geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] );
}
if ( geoNode.LayerElementMaterial ) {
geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] );
}
if ( geoNode.LayerElementNormal ) {
geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] );
}
if ( geoNode.LayerElementUV ) {
geoInfo.uv = [];
var i = 0;
while ( geoNode.LayerElementUV[ i ] ) {
geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) );
i ++;
}
}
geoInfo.weightTable = {};
if ( skeleton !== null ) {
geoInfo.skeleton = skeleton;
skeleton.rawBones.forEach( function ( rawBone, i ) {
// loop over the bone's vertex indices and weights
rawBone.indices.forEach( function ( index, j ) {
if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = [];
geoInfo.weightTable[ index ].push( {
id: i,
weight: rawBone.weights[ j ],
} );
} );
} );
}
return geoInfo;
},
genBuffers: function ( geoInfo ) {
var buffers = {
vertex: [],
normal: [],
colors: [],
uvs: [],
materialIndex: [],
vertexWeights: [],
weightsIndices: [],
};
var polygonIndex = 0;
var faceLength = 0;
var displayedWeightsWarning = false;
// these will hold data for a single face
var facePositionIndexes = [];
var faceNormals = [];
var faceColors = [];
var faceUVs = [];
var faceWeights = [];
var faceWeightIndices = [];
var scope = this;
geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) {
var endOfFace = false;
// Face index and vertex index arrays are combined in a single array
// A cube with quad faces looks like this:
// PolygonVertexIndex: *24 {
// a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5
// }
// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3
// to find index of last vertex bit shift the index: ^ - 1
if ( vertexIndex < 0 ) {
vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1
endOfFace = true;
}
var weightIndices = [];
var weights = [];
facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 );
if ( geoInfo.color ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color );
faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.skeleton ) {
if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) {
geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) {
weights.push( wt.weight );
weightIndices.push( wt.id );
} );
}
if ( weights.length > 4 ) {
if ( ! displayedWeightsWarning ) {
console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' );
displayedWeightsWarning = true;
}
var wIndex = [ 0, 0, 0, 0 ];
var Weight = [ 0, 0, 0, 0 ];
weights.forEach( function ( weight, weightIndex ) {
var currentWeight = weight;
var currentIndex = weightIndices[ weightIndex ];
Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) {
if ( currentWeight > comparedWeight ) {
comparedWeightArray[ comparedWeightIndex ] = currentWeight;
currentWeight = comparedWeight;
var tmp = wIndex[ comparedWeightIndex ];
wIndex[ comparedWeightIndex ] = currentIndex;
currentIndex = tmp;
}
} );
} );
weightIndices = wIndex;
weights = Weight;
}
// if the weight array is shorter than 4 pad with 0s
while ( weights.length < 4 ) {
weights.push( 0 );
weightIndices.push( 0 );
}
for ( var i = 0; i < 4; ++ i ) {
faceWeights.push( weights[ i ] );
faceWeightIndices.push( weightIndices[ i ] );
}
}
if ( geoInfo.normal ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal );
faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ];
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, i ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv );
if ( faceUVs[ i ] === undefined ) {
faceUVs[ i ] = [];
}
faceUVs[ i ].push( data[ 0 ] );
faceUVs[ i ].push( data[ 1 ] );
} );
}
faceLength ++;
if ( endOfFace ) {
scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength );
polygonIndex ++;
faceLength = 0;
// reset arrays for the next face
facePositionIndexes = [];
faceNormals = [];
faceColors = [];
faceUVs = [];
faceWeights = [];
faceWeightIndices = [];
}
} );
return buffers;
},
// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris
genFace: function ( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) {
for ( var i = 2; i < faceLength; i ++ ) {
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 0 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 2 ] ] );
if ( geoInfo.skeleton ) {
buffers.vertexWeights.push( faceWeights[ 0 ] );
buffers.vertexWeights.push( faceWeights[ 1 ] );
buffers.vertexWeights.push( faceWeights[ 2 ] );
buffers.vertexWeights.push( faceWeights[ 3 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 3 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ 0 ] );
buffers.weightsIndices.push( faceWeightIndices[ 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 3 ] );
}
if ( geoInfo.color ) {
buffers.colors.push( faceColors[ 0 ] );
buffers.colors.push( faceColors[ 1 ] );
buffers.colors.push( faceColors[ 2 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 1 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 2 ] );
buffers.colors.push( faceColors[ i * 3 ] );
buffers.colors.push( faceColors[ i * 3 + 1 ] );
buffers.colors.push( faceColors[ i * 3 + 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
}
if ( geoInfo.normal ) {
buffers.normal.push( faceNormals[ 0 ] );
buffers.normal.push( faceNormals[ 1 ] );
buffers.normal.push( faceNormals[ 2 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 1 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 2 ] );
buffers.normal.push( faceNormals[ i * 3 ] );
buffers.normal.push( faceNormals[ i * 3 + 1 ] );
buffers.normal.push( faceNormals[ i * 3 + 2 ] );
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, j ) {
if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = [];
buffers.uvs[ j ].push( faceUVs[ j ][ 0 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 + 1 ] );
} );
}
}
},
addMorphTargets: function ( parentGeo, parentGeoNode, morphTargets, preTransform ) {
if ( morphTargets.length === 0 ) return;
parentGeo.morphTargetsRelative = true;
parentGeo.morphAttributes.position = [];
// parentGeo.morphAttributes.normal = []; // not implemented
var scope = this;
morphTargets.forEach( function ( morphTarget ) {
morphTarget.rawTargets.forEach( function ( rawTarget ) {
var morphGeoNode = fbxTree.Objects.Geometry[ rawTarget.geoID ];
if ( morphGeoNode !== undefined ) {
scope.genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name );
}
} );
} );
},
// a morph geometry node is similar to a standard node, and the node is also contained
// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal
// and a special attribute Index defining which vertices of the original geometry are affected
// Normal and position attributes only have data for the vertices that are affected by the morph
genMorphGeometry: function ( parentGeo, parentGeoNode, morphGeoNode, preTransform, name ) {
var vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : [];
var morphPositionsSparse = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : [];
var indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : [];
var length = parentGeo.attributes.position.count * 3;
var morphPositions = new Float32Array( length );
for ( var i = 0; i < indices.length; i ++ ) {
var morphIndex = indices[ i ] * 3;
morphPositions[ morphIndex ] = morphPositionsSparse[ i * 3 ];
morphPositions[ morphIndex + 1 ] = morphPositionsSparse[ i * 3 + 1 ];
morphPositions[ morphIndex + 2 ] = morphPositionsSparse[ i * 3 + 2 ];
}
// TODO: add morph normal support
var morphGeoInfo = {
vertexIndices: vertexIndices,
vertexPositions: morphPositions,
};
var morphBuffers = this.genBuffers( morphGeoInfo );
var positionAttribute = new Float32BufferAttribute( morphBuffers.vertex, 3 );
positionAttribute.name = name || morphGeoNode.attrName;
positionAttribute.applyMatrix4( preTransform );
parentGeo.morphAttributes.position.push( positionAttribute );
},
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
parseNormals: function ( NormalNode ) {
var mappingType = NormalNode.MappingInformationType;
var referenceType = NormalNode.ReferenceInformationType;
var buffer = NormalNode.Normals.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
if ( 'NormalIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalIndex.a;
} else if ( 'NormalsIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalsIndex.a;
}
}
return {
dataSize: 3,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
},
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
parseUVs: function ( UVNode ) {
var mappingType = UVNode.MappingInformationType;
var referenceType = UVNode.ReferenceInformationType;
var buffer = UVNode.UV.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = UVNode.UVIndex.a;
}
return {
dataSize: 2,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
},
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
parseVertexColors: function ( ColorNode ) {
var mappingType = ColorNode.MappingInformationType;
var referenceType = ColorNode.ReferenceInformationType;
var buffer = ColorNode.Colors.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = ColorNode.ColorIndex.a;
}
return {
dataSize: 4,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
},
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
parseMaterialIndices: function ( MaterialNode ) {
var mappingType = MaterialNode.MappingInformationType;
var referenceType = MaterialNode.ReferenceInformationType;
if ( mappingType === 'NoMappingInformation' ) {
return {
dataSize: 1,
buffer: [ 0 ],
indices: [ 0 ],
mappingType: 'AllSame',
referenceType: referenceType
};
}
var materialIndexBuffer = MaterialNode.Materials.a;
// Since materials are stored as indices, there's a bit of a mismatch between FBX and what
// we expect.So we create an intermediate buffer that points to the index in the buffer,
// for conforming with the other functions we've written for other data.
var materialIndices = [];
for ( var i = 0; i < materialIndexBuffer.length; ++ i ) {
materialIndices.push( i );
}
return {
dataSize: 1,
buffer: materialIndexBuffer,
indices: materialIndices,
mappingType: mappingType,
referenceType: referenceType
};
},
// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry
parseNurbsGeometry: function ( geoNode ) {
if ( NURBSCurve === undefined ) {
console.error( 'THREE.FBXLoader: The loader relies on NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.' );
return new BufferGeometry();
}
var order = parseInt( geoNode.Order );
if ( isNaN( order ) ) {
console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id );
return new BufferGeometry();
}
var degree = order - 1;
var knots = geoNode.KnotVector.a;
var controlPoints = [];
var pointsValues = geoNode.Points.a;
for ( var i = 0, l = pointsValues.length; i < l; i += 4 ) {
controlPoints.push( new Vector4().fromArray( pointsValues, i ) );
}
var startKnot, endKnot;
if ( geoNode.Form === 'Closed' ) {
controlPoints.push( controlPoints[ 0 ] );
} else if ( geoNode.Form === 'Periodic' ) {
startKnot = degree;
endKnot = knots.length - 1 - startKnot;
for ( var i = 0; i < degree; ++ i ) {
controlPoints.push( controlPoints[ i ] );
}
}
var curve = new NURBSCurve( degree, knots, controlPoints, startKnot, endKnot );
var vertices = curve.getPoints( controlPoints.length * 7 );
var positions = new Float32Array( vertices.length * 3 );
vertices.forEach( function ( vertex, i ) {
vertex.toArray( positions, i * 3 );
} );
var geometry = new BufferGeometry();
geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
return geometry;
},
};
// parse animation data from FBXTree
function AnimationParser() {}
AnimationParser.prototype = {
constructor: AnimationParser,
// take raw animation clips and turn them into three.js animation clips
parse: function () {
var animationClips = [];
var rawClips = this.parseClips();
if ( rawClips !== undefined ) {
for ( var key in rawClips ) {
var rawClip = rawClips[ key ];
var clip = this.addClip( rawClip );
animationClips.push( clip );
}
}
return animationClips;
},
parseClips: function () {
// since the actual transformation data is stored in FBXTree.Objects.AnimationCurve,
// if this is undefined we can safely assume there are no animations
if ( fbxTree.Objects.AnimationCurve === undefined ) return undefined;
var curveNodesMap = this.parseAnimationCurveNodes();
this.parseAnimationCurves( curveNodesMap );
var layersMap = this.parseAnimationLayers( curveNodesMap );
var rawClips = this.parseAnimStacks( layersMap );
return rawClips;
},
// parse nodes in FBXTree.Objects.AnimationCurveNode
// each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation )
// and is referenced by an AnimationLayer
parseAnimationCurveNodes: function () {
var rawCurveNodes = fbxTree.Objects.AnimationCurveNode;
var curveNodesMap = new Map();
for ( var nodeID in rawCurveNodes ) {
var rawCurveNode = rawCurveNodes[ nodeID ];
if ( rawCurveNode.attrName.match( /S|R|T|DeformPercent/ ) !== null ) {
var curveNode = {
id: rawCurveNode.id,
attr: rawCurveNode.attrName,
curves: {},
};
curveNodesMap.set( curveNode.id, curveNode );
}
}
return curveNodesMap;
},
// parse nodes in FBXTree.Objects.AnimationCurve and connect them up to
// previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated
// axis ( e.g. times and values of x rotation)
parseAnimationCurves: function ( curveNodesMap ) {
var rawCurves = fbxTree.Objects.AnimationCurve;
// TODO: Many values are identical up to roundoff error, but won't be optimised
// e.g. position times: [0, 0.4, 0. 8]
// position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809]
// clearly, this should be optimised to
// times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809]
// this shows up in nearly every FBX file, and generally time array is length > 100
for ( var nodeID in rawCurves ) {
var animationCurve = {
id: rawCurves[ nodeID ].id,
times: rawCurves[ nodeID ].KeyTime.a.map( convertFBXTimeToSeconds ),
values: rawCurves[ nodeID ].KeyValueFloat.a,
};
var relationships = connections.get( animationCurve.id );
if ( relationships !== undefined ) {
var animationCurveID = relationships.parents[ 0 ].ID;
var animationCurveRelationship = relationships.parents[ 0 ].relationship;
if ( animationCurveRelationship.match( /X/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'x' ] = animationCurve;
} else if ( animationCurveRelationship.match( /Y/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'y' ] = animationCurve;
} else if ( animationCurveRelationship.match( /Z/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'z' ] = animationCurve;
} else if ( animationCurveRelationship.match( /d|DeformPercent/ ) && curveNodesMap.has( animationCurveID ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'morph' ] = animationCurve;
}
}
}
},
// parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references
// to various AnimationCurveNodes and is referenced by an AnimationStack node
// note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack
parseAnimationLayers: function ( curveNodesMap ) {
var rawLayers = fbxTree.Objects.AnimationLayer;
var layersMap = new Map();
for ( var nodeID in rawLayers ) {
var layerCurveNodes = [];
var connection = connections.get( parseInt( nodeID ) );
if ( connection !== undefined ) {
// all the animationCurveNodes used in the layer
var children = connection.children;
children.forEach( function ( child, i ) {
if ( curveNodesMap.has( child.ID ) ) {
var curveNode = curveNodesMap.get( child.ID );
// check that the curves are defined for at least one axis, otherwise ignore the curveNode
if ( curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined ) {
if ( layerCurveNodes[ i ] === undefined ) {
var modelID = connections.get( child.ID ).parents.filter( function ( parent ) {
return parent.relationship !== undefined;
} )[ 0 ].ID;
if ( modelID !== undefined ) {
var rawModel = fbxTree.Objects.Model[ modelID.toString() ];
if ( rawModel === undefined ) {
console.warn( 'THREE.FBXLoader: Encountered a unused curve.', child );
return;
}
var node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
ID: rawModel.id,
initialPosition: [ 0, 0, 0 ],
initialRotation: [ 0, 0, 0 ],
initialScale: [ 1, 1, 1 ],
};
sceneGraph.traverse( function ( child ) {
if ( child.ID === rawModel.id ) {
node.transform = child.matrix;
if ( child.userData.transformData ) node.eulerOrder = child.userData.transformData.eulerOrder;
}
} );
if ( ! node.transform ) node.transform = new Matrix4();
// if the animated model is pre rotated, we'll have to apply the pre rotations to every
// animation value as well
if ( 'PreRotation' in rawModel ) node.preRotation = rawModel.PreRotation.value;
if ( 'PostRotation' in rawModel ) node.postRotation = rawModel.PostRotation.value;
layerCurveNodes[ i ] = node;
}
}
if ( layerCurveNodes[ i ] ) layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
} else if ( curveNode.curves.morph !== undefined ) {
if ( layerCurveNodes[ i ] === undefined ) {
var deformerID = connections.get( child.ID ).parents.filter( function ( parent ) {
return parent.relationship !== undefined;
} )[ 0 ].ID;
var morpherID = connections.get( deformerID ).parents[ 0 ].ID;
var geoID = connections.get( morpherID ).parents[ 0 ].ID;
// assuming geometry is not used in more than one model
var modelID = connections.get( geoID ).parents[ 0 ].ID;
var rawModel = fbxTree.Objects.Model[ modelID ];
var node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
morphName: fbxTree.Objects.Deformer[ deformerID ].attrName,
};
layerCurveNodes[ i ] = node;
}
layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
}
}
} );
layersMap.set( parseInt( nodeID ), layerCurveNodes );
}
}
return layersMap;
},
// parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation
// hierarchy. Each Stack node will be used to create a AnimationClip
parseAnimStacks: function ( layersMap ) {
var rawStacks = fbxTree.Objects.AnimationStack;
// connect the stacks (clips) up to the layers
var rawClips = {};
for ( var nodeID in rawStacks ) {
var children = connections.get( parseInt( nodeID ) ).children;
if ( children.length > 1 ) {
// it seems like stacks will always be associated with a single layer. But just in case there are files
// where there are multiple layers per stack, we'll display a warning
console.warn( 'THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.' );
}
var layer = layersMap.get( children[ 0 ].ID );
rawClips[ nodeID ] = {
name: rawStacks[ nodeID ].attrName,
layer: layer,
};
}
return rawClips;
},
addClip: function ( rawClip ) {
var tracks = [];
var scope = this;
rawClip.layer.forEach( function ( rawTracks ) {
tracks = tracks.concat( scope.generateTracks( rawTracks ) );
} );
return new AnimationClip( rawClip.name, - 1, tracks );
},
generateTracks: function ( rawTracks ) {
var tracks = [];
var initialPosition = new Vector3();
var initialRotation = new Quaternion();
var initialScale = new Vector3();
if ( rawTracks.transform ) rawTracks.transform.decompose( initialPosition, initialRotation, initialScale );
initialPosition = initialPosition.toArray();
initialRotation = new Euler().setFromQuaternion( initialRotation, rawTracks.eulerOrder ).toArray();
initialScale = initialScale.toArray();
if ( rawTracks.T !== undefined && Object.keys( rawTracks.T.curves ).length > 0 ) {
var positionTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position' );
if ( positionTrack !== undefined ) tracks.push( positionTrack );
}
if ( rawTracks.R !== undefined && Object.keys( rawTracks.R.curves ).length > 0 ) {
var rotationTrack = this.generateRotationTrack( rawTracks.modelName, rawTracks.R.curves, initialRotation, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder );
if ( rotationTrack !== undefined ) tracks.push( rotationTrack );
}
if ( rawTracks.S !== undefined && Object.keys( rawTracks.S.curves ).length > 0 ) {
var scaleTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale' );
if ( scaleTrack !== undefined ) tracks.push( scaleTrack );
}
if ( rawTracks.DeformPercent !== undefined ) {
var morphTrack = this.generateMorphTrack( rawTracks );
if ( morphTrack !== undefined ) tracks.push( morphTrack );
}
return tracks;
},
generateVectorTrack: function ( modelName, curves, initialValue, type ) {
var times = this.getTimesForAllAxes( curves );
var values = this.getKeyframeTrackValues( times, curves, initialValue );
return new VectorKeyframeTrack( modelName + '.' + type, times, values );
},
generateRotationTrack: function ( modelName, curves, initialValue, preRotation, postRotation, eulerOrder ) {
if ( curves.x !== undefined ) {
this.interpolateRotations( curves.x );
curves.x.values = curves.x.values.map( MathUtils.degToRad );
}
if ( curves.y !== undefined ) {
this.interpolateRotations( curves.y );
curves.y.values = curves.y.values.map( MathUtils.degToRad );
}
if ( curves.z !== undefined ) {
this.interpolateRotations( curves.z );
curves.z.values = curves.z.values.map( MathUtils.degToRad );
}
var times = this.getTimesForAllAxes( curves );
var values = this.getKeyframeTrackValues( times, curves, initialValue );
if ( preRotation !== undefined ) {
preRotation = preRotation.map( MathUtils.degToRad );
preRotation.push( eulerOrder );
preRotation = new Euler().fromArray( preRotation );
preRotation = new Quaternion().setFromEuler( preRotation );
}
if ( postRotation !== undefined ) {
postRotation = postRotation.map( MathUtils.degToRad );
postRotation.push( eulerOrder );
postRotation = new Euler().fromArray( postRotation );
postRotation = new Quaternion().setFromEuler( postRotation ).inverse();
}
var quaternion = new Quaternion();
var euler = new Euler();
var quaternionValues = [];
for ( var i = 0; i < values.length; i += 3 ) {
euler.set( values[ i ], values[ i + 1 ], values[ i + 2 ], eulerOrder );
quaternion.setFromEuler( euler );
if ( preRotation !== undefined ) quaternion.premultiply( preRotation );
if ( postRotation !== undefined ) quaternion.multiply( postRotation );
quaternion.toArray( quaternionValues, ( i / 3 ) * 4 );
}
return new QuaternionKeyframeTrack( modelName + '.quaternion', times, quaternionValues );
},
generateMorphTrack: function ( rawTracks ) {
var curves = rawTracks.DeformPercent.curves.morph;
var values = curves.values.map( function ( val ) {
return val / 100;
} );
var morphNum = sceneGraph.getObjectByName( rawTracks.modelName ).morphTargetDictionary[ rawTracks.morphName ];
return new NumberKeyframeTrack( rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values );
},
// For all animated objects, times are defined separately for each axis
// Here we'll combine the times into one sorted array without duplicates
getTimesForAllAxes: function ( curves ) {
var times = [];
// first join together the times for each axis, if defined
if ( curves.x !== undefined ) times = times.concat( curves.x.times );
if ( curves.y !== undefined ) times = times.concat( curves.y.times );
if ( curves.z !== undefined ) times = times.concat( curves.z.times );
// then sort them and remove duplicates
times = times.sort( function ( a, b ) {
return a - b;
} ).filter( function ( elem, index, array ) {
return array.indexOf( elem ) == index;
} );
return times;
},
getKeyframeTrackValues: function ( times, curves, initialValue ) {
var prevValue = initialValue;
var values = [];
var xIndex = - 1;
var yIndex = - 1;
var zIndex = - 1;
times.forEach( function ( time ) {
if ( curves.x ) xIndex = curves.x.times.indexOf( time );
if ( curves.y ) yIndex = curves.y.times.indexOf( time );
if ( curves.z ) zIndex = curves.z.times.indexOf( time );
// if there is an x value defined for this frame, use that
if ( xIndex !== - 1 ) {
var xValue = curves.x.values[ xIndex ];
values.push( xValue );
prevValue[ 0 ] = xValue;
} else {
// otherwise use the x value from the previous frame
values.push( prevValue[ 0 ] );
}
if ( yIndex !== - 1 ) {
var yValue = curves.y.values[ yIndex ];
values.push( yValue );
prevValue[ 1 ] = yValue;
} else {
values.push( prevValue[ 1 ] );
}
if ( zIndex !== - 1 ) {
var zValue = curves.z.values[ zIndex ];
values.push( zValue );
prevValue[ 2 ] = zValue;
} else {
values.push( prevValue[ 2 ] );
}
} );
return values;
},
// Rotations are defined as Euler angles which can have values of any size
// These will be converted to quaternions which don't support values greater than
// PI, so we'll interpolate large rotations
interpolateRotations: function ( curve ) {
for ( var i = 1; i < curve.values.length; i ++ ) {
var initialValue = curve.values[ i - 1 ];
var valuesSpan = curve.values[ i ] - initialValue;
var absoluteSpan = Math.abs( valuesSpan );
if ( absoluteSpan >= 180 ) {
var numSubIntervals = absoluteSpan / 180;
var step = valuesSpan / numSubIntervals;
var nextValue = initialValue + step;
var initialTime = curve.times[ i - 1 ];
var timeSpan = curve.times[ i ] - initialTime;
var interval = timeSpan / numSubIntervals;
var nextTime = initialTime + interval;
var interpolatedTimes = [];
var interpolatedValues = [];
while ( nextTime < curve.times[ i ] ) {
interpolatedTimes.push( nextTime );
nextTime += interval;
interpolatedValues.push( nextValue );
nextValue += step;
}
curve.times = inject( curve.times, i, interpolatedTimes );
curve.values = inject( curve.values, i, interpolatedValues );
}
}
},
};
// parse an FBX file in ASCII format
function TextParser() {}
TextParser.prototype = {
constructor: TextParser,
getPrevNode: function () {
return this.nodeStack[ this.currentIndent - 2 ];
},
getCurrentNode: function () {
return this.nodeStack[ this.currentIndent - 1 ];
},
getCurrentProp: function () {
return this.currentProp;
},
pushStack: function ( node ) {
this.nodeStack.push( node );
this.currentIndent += 1;
},
popStack: function () {
this.nodeStack.pop();
this.currentIndent -= 1;
},
setCurrentProp: function ( val, name ) {
this.currentProp = val;
this.currentPropName = name;
},
parse: function ( text ) {
this.currentIndent = 0;
this.allNodes = new FBXTree();
this.nodeStack = [];
this.currentProp = [];
this.currentPropName = '';
var scope = this;
var split = text.split( /[\r\n]+/ );
split.forEach( function ( line, i ) {
var matchComment = line.match( /^[\s\t]*;/ );
var matchEmpty = line.match( /^[\s\t]*$/ );
if ( matchComment || matchEmpty ) return;
var matchBeginning = line.match( '^\\t{' + scope.currentIndent + '}(\\w+):(.*){', '' );
var matchProperty = line.match( '^\\t{' + ( scope.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' );
var matchEnd = line.match( '^\\t{' + ( scope.currentIndent - 1 ) + '}}' );
if ( matchBeginning ) {
scope.parseNodeBegin( line, matchBeginning );
} else if ( matchProperty ) {
scope.parseNodeProperty( line, matchProperty, split[ ++ i ] );
} else if ( matchEnd ) {
scope.popStack();
} else if ( line.match( /^[^\s\t}]/ ) ) {
// large arrays are split over multiple lines terminated with a ',' character
// if this is encountered the line needs to be joined to the previous line
scope.parseNodePropertyContinued( line );
}
} );
return this.allNodes;
},
parseNodeBegin: function ( line, property ) {
var nodeName = property[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' );
var nodeAttrs = property[ 2 ].split( ',' ).map( function ( attr ) {
return attr.trim().replace( /^"/, '' ).replace( /"$/, '' );
} );
var node = { name: nodeName };
var attrs = this.parseNodeAttr( nodeAttrs );
var currentNode = this.getCurrentNode();
// a top node
if ( this.currentIndent === 0 ) {
this.allNodes.add( nodeName, node );
} else { // a subnode
// if the subnode already exists, append it
if ( nodeName in currentNode ) {
// special case Pose needs PoseNodes as an array
if ( nodeName === 'PoseNode' ) {
currentNode.PoseNode.push( node );
} else if ( currentNode[ nodeName ].id !== undefined ) {
currentNode[ nodeName ] = {};
currentNode[ nodeName ][ currentNode[ nodeName ].id ] = currentNode[ nodeName ];
}
if ( attrs.id !== '' ) currentNode[ nodeName ][ attrs.id ] = node;
} else if ( typeof attrs.id === 'number' ) {
currentNode[ nodeName ] = {};
currentNode[ nodeName ][ attrs.id ] = node;
} else if ( nodeName !== 'Properties70' ) {
if ( nodeName === 'PoseNode' ) currentNode[ nodeName ] = [ node ];
else currentNode[ nodeName ] = node;
}
}
if ( typeof attrs.id === 'number' ) node.id = attrs.id;
if ( attrs.name !== '' ) node.attrName = attrs.name;
if ( attrs.type !== '' ) node.attrType = attrs.type;
this.pushStack( node );
},
parseNodeAttr: function ( attrs ) {
var id = attrs[ 0 ];
if ( attrs[ 0 ] !== '' ) {
id = parseInt( attrs[ 0 ] );
if ( isNaN( id ) ) {
id = attrs[ 0 ];
}
}
var name = '', type = '';
if ( attrs.length > 1 ) {
name = attrs[ 1 ].replace( /^(\w+)::/, '' );
type = attrs[ 2 ];
}
return { id: id, name: name, type: type };
},
parseNodeProperty: function ( line, property, contentLine ) {
var propName = property[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
var propValue = property[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
// for special case: base64 image data follows "Content: ," line
// Content: ,
// "/9j/4RDaRXhpZgAATU0A..."
if ( propName === 'Content' && propValue === ',' ) {
propValue = contentLine.replace( /"/g, '' ).replace( /,$/, '' ).trim();
}
var currentNode = this.getCurrentNode();
var parentName = currentNode.name;
if ( parentName === 'Properties70' ) {
this.parseNodeSpecialProperty( line, propName, propValue );
return;
}
// Connections
if ( propName === 'C' ) {
var connProps = propValue.split( ',' ).slice( 1 );
var from = parseInt( connProps[ 0 ] );
var to = parseInt( connProps[ 1 ] );
var rest = propValue.split( ',' ).slice( 3 );
rest = rest.map( function ( elem ) {
return elem.trim().replace( /^"/, '' );
} );
propName = 'connections';
propValue = [ from, to ];
append( propValue, rest );
if ( currentNode[ propName ] === undefined ) {
currentNode[ propName ] = [];
}
}
// Node
if ( propName === 'Node' ) currentNode.id = propValue;
// connections
if ( propName in currentNode && Array.isArray( currentNode[ propName ] ) ) {
currentNode[ propName ].push( propValue );
} else {
if ( propName !== 'a' ) currentNode[ propName ] = propValue;
else currentNode.a = propValue;
}
this.setCurrentProp( currentNode, propName );
// convert string to array, unless it ends in ',' in which case more will be added to it
if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) {
currentNode.a = parseNumberArray( propValue );
}
},
parseNodePropertyContinued: function ( line ) {
var currentNode = this.getCurrentNode();
currentNode.a += line;
// if the line doesn't end in ',' we have reached the end of the property value
// so convert the string to an array
if ( line.slice( - 1 ) !== ',' ) {
currentNode.a = parseNumberArray( currentNode.a );
}
},
// parse "Property70"
parseNodeSpecialProperty: function ( line, propName, propValue ) {
// split this
// P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1
// into array like below
// ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ]
var props = propValue.split( '",' ).map( function ( prop ) {
return prop.trim().replace( /^\"/, '' ).replace( /\s/, '_' );
} );
var innerPropName = props[ 0 ];
var innerPropType1 = props[ 1 ];
var innerPropType2 = props[ 2 ];
var innerPropFlag = props[ 3 ];
var innerPropValue = props[ 4 ];
// cast values where needed, otherwise leave as strings
switch ( innerPropType1 ) {
case 'int':
case 'enum':
case 'bool':
case 'ULongLong':
case 'double':
case 'Number':
case 'FieldOfView':
innerPropValue = parseFloat( innerPropValue );
break;
case 'Color':
case 'ColorRGB':
case 'Vector3D':
case 'Lcl_Translation':
case 'Lcl_Rotation':
case 'Lcl_Scaling':
innerPropValue = parseNumberArray( innerPropValue );
break;
}
// CAUTION: these props must append to parent's parent
this.getPrevNode()[ innerPropName ] = {
'type': innerPropType1,
'type2': innerPropType2,
'flag': innerPropFlag,
'value': innerPropValue
};
this.setCurrentProp( this.getPrevNode(), innerPropName );
},
};
// Parse an FBX file in Binary format
function BinaryParser() {}
BinaryParser.prototype = {
constructor: BinaryParser,
parse: function ( buffer ) {
var reader = new BinaryReader( buffer );
reader.skip( 23 ); // skip magic 23 bytes
var version = reader.getUint32();
console.log( 'THREE.FBXLoader: FBX binary version: ' + version );
var allNodes = new FBXTree();
while ( ! this.endOfContent( reader ) ) {
var node = this.parseNode( reader, version );
if ( node !== null ) allNodes.add( node.name, node );
}
return allNodes;
},
// Check if reader has reached the end of content.
endOfContent: function ( reader ) {
// footer size: 160bytes + 16-byte alignment padding
// - 16bytes: magic
// - padding til 16-byte alignment (at least 1byte?)
// (seems like some exporters embed fixed 15 or 16bytes?)
// - 4bytes: magic
// - 4bytes: version
// - 120bytes: zero
// - 16bytes: magic
if ( reader.size() % 16 === 0 ) {
return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size();
} else {
return reader.getOffset() + 160 + 16 >= reader.size();
}
},
// recursively parse nodes until the end of the file is reached
parseNode: function ( reader, version ) {
var node = {};
// The first three data sizes depends on version.
var endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
var numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used
var nameLen = reader.getUint8();
var name = reader.getString( nameLen );
// Regards this node as NULL-record if endOffset is zero
if ( endOffset === 0 ) return null;
var propertyList = [];
for ( var i = 0; i < numProperties; i ++ ) {
propertyList.push( this.parseProperty( reader ) );
}
// Regards the first three elements in propertyList as id, attrName, and attrType
var id = propertyList.length > 0 ? propertyList[ 0 ] : '';
var attrName = propertyList.length > 1 ? propertyList[ 1 ] : '';
var attrType = propertyList.length > 2 ? propertyList[ 2 ] : '';
// check if this node represents just a single property
// like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]}
node.singleProperty = ( numProperties === 1 && reader.getOffset() === endOffset ) ? true : false;
while ( endOffset > reader.getOffset() ) {
var subNode = this.parseNode( reader, version );
if ( subNode !== null ) this.parseSubNode( name, node, subNode );
}
node.propertyList = propertyList; // raw property list used by parent
if ( typeof id === 'number' ) node.id = id;
if ( attrName !== '' ) node.attrName = attrName;
if ( attrType !== '' ) node.attrType = attrType;
if ( name !== '' ) node.name = name;
return node;
},
parseSubNode: function ( name, node, subNode ) {
// special case: child node is single property
if ( subNode.singleProperty === true ) {
var value = subNode.propertyList[ 0 ];
if ( Array.isArray( value ) ) {
node[ subNode.name ] = subNode;
subNode.a = value;
} else {
node[ subNode.name ] = value;
}
} else if ( name === 'Connections' && subNode.name === 'C' ) {
var array = [];
subNode.propertyList.forEach( function ( property, i ) {
// first Connection is FBX type (OO, OP, etc.). We'll discard these
if ( i !== 0 ) array.push( property );
} );
if ( node.connections === undefined ) {
node.connections = [];
}
node.connections.push( array );
} else if ( subNode.name === 'Properties70' ) {
var keys = Object.keys( subNode );
keys.forEach( function ( key ) {
node[ key ] = subNode[ key ];
} );
} else if ( name === 'Properties70' && subNode.name === 'P' ) {
var innerPropName = subNode.propertyList[ 0 ];
var innerPropType1 = subNode.propertyList[ 1 ];
var innerPropType2 = subNode.propertyList[ 2 ];
var innerPropFlag = subNode.propertyList[ 3 ];
var innerPropValue;
if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' );
if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' );
if ( innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) {
innerPropValue = [
subNode.propertyList[ 4 ],
subNode.propertyList[ 5 ],
subNode.propertyList[ 6 ]
];
} else {
innerPropValue = subNode.propertyList[ 4 ];
}
// this will be copied to parent, see above
node[ innerPropName ] = {
'type': innerPropType1,
'type2': innerPropType2,
'flag': innerPropFlag,
'value': innerPropValue
};
} else if ( node[ subNode.name ] === undefined ) {
if ( typeof subNode.id === 'number' ) {
node[ subNode.name ] = {};
node[ subNode.name ][ subNode.id ] = subNode;
} else {
node[ subNode.name ] = subNode;
}
} else {
if ( subNode.name === 'PoseNode' ) {
if ( ! Array.isArray( node[ subNode.name ] ) ) {
node[ subNode.name ] = [ node[ subNode.name ] ];
}
node[ subNode.name ].push( subNode );
} else if ( node[ subNode.name ][ subNode.id ] === undefined ) {
node[ subNode.name ][ subNode.id ] = subNode;
}
}
},
parseProperty: function ( reader ) {
var type = reader.getString( 1 );
switch ( type ) {
case 'C':
return reader.getBoolean();
case 'D':
return reader.getFloat64();
case 'F':
return reader.getFloat32();
case 'I':
return reader.getInt32();
case 'L':
return reader.getInt64();
case 'R':
var length = reader.getUint32();
return reader.getArrayBuffer( length );
case 'S':
var length = reader.getUint32();
return reader.getString( length );
case 'Y':
return reader.getInt16();
case 'b':
case 'c':
case 'd':
case 'f':
case 'i':
case 'l':
var arrayLength = reader.getUint32();
var encoding = reader.getUint32(); // 0: non-compressed, 1: compressed
var compressedLength = reader.getUint32();
if ( encoding === 0 ) {
switch ( type ) {
case 'b':
case 'c':
return reader.getBooleanArray( arrayLength );
case 'd':
return reader.getFloat64Array( arrayLength );
case 'f':
return reader.getFloat32Array( arrayLength );
case 'i':
return reader.getInt32Array( arrayLength );
case 'l':
return reader.getInt64Array( arrayLength );
}
}
if ( typeof Zlib === 'undefined' ) {
console.error( 'THREE.FBXLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
}
var inflate = new Zlib.Inflate( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) ); // eslint-disable-line no-undef
var reader2 = new BinaryReader( inflate.decompress().buffer );
switch ( type ) {
case 'b':
case 'c':
return reader2.getBooleanArray( arrayLength );
case 'd':
return reader2.getFloat64Array( arrayLength );
case 'f':
return reader2.getFloat32Array( arrayLength );
case 'i':
return reader2.getInt32Array( arrayLength );
case 'l':
return reader2.getInt64Array( arrayLength );
}
default:
throw new Error( 'THREE.FBXLoader: Unknown property type ' + type );
}
}
};
function BinaryReader( buffer, littleEndian ) {
this.dv = new DataView( buffer );
this.offset = 0;
this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true;
}
BinaryReader.prototype = {
constructor: BinaryReader,
getOffset: function () {
return this.offset;
},
size: function () {
return this.dv.buffer.byteLength;
},
skip: function ( length ) {
this.offset += length;
},
// seems like true/false representation depends on exporter.
// true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54)
// then sees LSB.
getBoolean: function () {
return ( this.getUint8() & 1 ) === 1;
},
getBooleanArray: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getBoolean() );
}
return a;
},
getUint8: function () {
var value = this.dv.getUint8( this.offset );
this.offset += 1;
return value;
},
getInt16: function () {
var value = this.dv.getInt16( this.offset, this.littleEndian );
this.offset += 2;
return value;
},
getInt32: function () {
var value = this.dv.getInt32( this.offset, this.littleEndian );
this.offset += 4;
return value;
},
getInt32Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getInt32() );
}
return a;
},
getUint32: function () {
var value = this.dv.getUint32( this.offset, this.littleEndian );
this.offset += 4;
return value;
},
// JavaScript doesn't support 64-bit integer so calculate this here
// 1 << 32 will return 1 so using multiply operation instead here.
// There's a possibility that this method returns wrong value if the value
// is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER.
// TODO: safely handle 64-bit integer
getInt64: function () {
var low, high;
if ( this.littleEndian ) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
// calculate negative value
if ( high & 0x80000000 ) {
high = ~ high & 0xFFFFFFFF;
low = ~ low & 0xFFFFFFFF;
if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF;
low = ( low + 1 ) & 0xFFFFFFFF;
return - ( high * 0x100000000 + low );
}
return high * 0x100000000 + low;
},
getInt64Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getInt64() );
}
return a;
},
// Note: see getInt64() comment
getUint64: function () {
var low, high;
if ( this.littleEndian ) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
return high * 0x100000000 + low;
},
getFloat32: function () {
var value = this.dv.getFloat32( this.offset, this.littleEndian );
this.offset += 4;
return value;
},
getFloat32Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getFloat32() );
}
return a;
},
getFloat64: function () {
var value = this.dv.getFloat64( this.offset, this.littleEndian );
this.offset += 8;
return value;
},
getFloat64Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getFloat64() );
}
return a;
},
getArrayBuffer: function ( size ) {
var value = this.dv.buffer.slice( this.offset, this.offset + size );
this.offset += size;
return value;
},
getString: function ( size ) {
// note: safari 9 doesn't support Uint8Array.indexOf; create intermediate array instead
var a = [];
for ( var i = 0; i < size; i ++ ) {
a[ i ] = this.getUint8();
}
var nullByte = a.indexOf( 0 );
if ( nullByte >= 0 ) a = a.slice( 0, nullByte );
return LoaderUtils.decodeText( new Uint8Array( a ) );
}
};
// FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format)
// and BinaryParser( FBX Binary format)
function FBXTree() {}
FBXTree.prototype = {
constructor: FBXTree,
add: function ( key, val ) {
this[ key ] = val;
},
};
// ************** UTILITY FUNCTIONS **************
function isFbxFormatBinary( buffer ) {
var CORRECT = 'Kaydara FBX Binary \0';
return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length );
}
function isFbxFormatASCII( text ) {
var CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ];
var cursor = 0;
function read( offset ) {
var result = text[ offset - 1 ];
text = text.slice( cursor + offset );
cursor ++;
return result;
}
for ( var i = 0; i < CORRECT.length; ++ i ) {
var num = read( 1 );
if ( num === CORRECT[ i ] ) {
return false;
}
}
return true;
}
function getFbxVersion( text ) {
var versionRegExp = /FBXVersion: (\d+)/;
var match = text.match( versionRegExp );
if ( match ) {
var version = parseInt( match[ 1 ] );
return version;
}
throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' );
}
// Converts FBX ticks into real time seconds.
function convertFBXTimeToSeconds( time ) {
return time / 46186158000;
}
var dataArray = [];
// extracts the data from the correct position in the FBX array based on indexing type
function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var index;
switch ( infoObject.mappingType ) {
case 'ByPolygonVertex' :
index = polygonVertexIndex;
break;
case 'ByPolygon' :
index = polygonIndex;
break;
case 'ByVertice' :
index = vertexIndex;
break;
case 'AllSame' :
index = infoObject.indices[ 0 ];
break;
default :
console.warn( 'THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType );
}
if ( infoObject.referenceType === 'IndexToDirect' ) index = infoObject.indices[ index ];
var from = index * infoObject.dataSize;
var to = from + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
var tempEuler = new Euler();
var tempVec = new Vector3();
// generate transformation from FBX transform data
// ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm
// ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e
function generateTransform( transformData ) {
var lTranslationM = new Matrix4();
var lPreRotationM = new Matrix4();
var lRotationM = new Matrix4();
var lPostRotationM = new Matrix4();
var lScalingM = new Matrix4();
var lScalingPivotM = new Matrix4();
var lScalingOffsetM = new Matrix4();
var lRotationOffsetM = new Matrix4();
var lRotationPivotM = new Matrix4();
var lParentGX = new Matrix4();
var lGlobalT = new Matrix4();
var inheritType = ( transformData.inheritType ) ? transformData.inheritType : 0;
if ( transformData.translation ) lTranslationM.setPosition( tempVec.fromArray( transformData.translation ) );
if ( transformData.preRotation ) {
var array = transformData.preRotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder );
lPreRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.rotation ) {
var array = transformData.rotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder );
lRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.postRotation ) {
var array = transformData.postRotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder );
lPostRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.scale ) lScalingM.scale( tempVec.fromArray( transformData.scale ) );
// Pivots and offsets
if ( transformData.scalingOffset ) lScalingOffsetM.setPosition( tempVec.fromArray( transformData.scalingOffset ) );
if ( transformData.scalingPivot ) lScalingPivotM.setPosition( tempVec.fromArray( transformData.scalingPivot ) );
if ( transformData.rotationOffset ) lRotationOffsetM.setPosition( tempVec.fromArray( transformData.rotationOffset ) );
if ( transformData.rotationPivot ) lRotationPivotM.setPosition( tempVec.fromArray( transformData.rotationPivot ) );
// parent transform
if ( transformData.parentMatrixWorld ) lParentGX = transformData.parentMatrixWorld;
// Global Rotation
var lLRM = lPreRotationM.multiply( lRotationM ).multiply( lPostRotationM );
var lParentGRM = new Matrix4();
lParentGX.extractRotation( lParentGRM );
// Global Shear*Scaling
var lParentTM = new Matrix4();
lParentTM.copyPosition( lParentGX );
var lParentGSM = new Matrix4();
lParentGSM.getInverse( lParentGRM ).multiply( lParentGX );
var lGlobalRS = new Matrix4();
if ( inheritType === 0 ) {
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM ).multiply( lScalingM );
} else if ( inheritType === 1 ) {
lGlobalRS.copy( lParentGRM ).multiply( lParentGSM ).multiply( lLRM ).multiply( lScalingM );
} else {
var lParentLSM_inv = new Matrix4().getInverse( lScalingM );
var lParentGSM_noLocal = new Matrix4().multiply( lParentGSM ).multiply( lParentLSM_inv );
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM_noLocal ).multiply( lScalingM );
}
var lRotationPivotM_inv = new Matrix4().getInverse( lRotationPivotM );
var lScalingPivotM_inv = new Matrix4().getInverse( lScalingPivotM );
// Calculate the local transform matrix
var lTransform = new Matrix4();
lTransform.copy( lTranslationM ).multiply( lRotationOffsetM ).multiply( lRotationPivotM ).multiply( lPreRotationM ).multiply( lRotationM ).multiply( lPostRotationM ).multiply( lRotationPivotM_inv ).multiply( lScalingOffsetM ).multiply( lScalingPivotM ).multiply( lScalingM ).multiply( lScalingPivotM_inv );
var lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition( lTransform );
var lGlobalTranslation = new Matrix4().copy( lParentGX ).multiply( lLocalTWithAllPivotAndOffsetInfo );
lGlobalT.copyPosition( lGlobalTranslation );
lTransform = new Matrix4().multiply( lGlobalT ).multiply( lGlobalRS );
return lTransform;
}
// Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order
// ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html
function getEulerOrder( order ) {
order = order || 0;
var enums = [
'ZYX', // -> XYZ extrinsic
'YZX', // -> XZY extrinsic
'XZY', // -> YZX extrinsic
'ZXY', // -> YXZ extrinsic
'YXZ', // -> ZXY extrinsic
'XYZ', // -> ZYX extrinsic
//'SphericXYZ', // not possible to support
];
if ( order === 6 ) {
console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' );
return enums[ 0 ];
}
return enums[ order ];
}
// Parses comma separated list of numbers and returns them an array.
// Used internally by the TextParser
function parseNumberArray( value ) {
var array = value.split( ',' ).map( function ( val ) {
return parseFloat( val );
} );
return array;
}
function convertArrayBufferToString( buffer, from, to ) {
if ( from === undefined ) from = 0;
if ( to === undefined ) to = buffer.byteLength;
return LoaderUtils.decodeText( new Uint8Array( buffer, from, to ) );
}
function append( a, b ) {
for ( var i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) {
a[ j ] = b[ i ];
}
}
function slice( a, b, from, to ) {
for ( var i = from, j = 0; i < to; i ++, j ++ ) {
a[ j ] = b[ i ];
}
return a;
}
// inject array a2 into array a1 at index
function inject( a1, index, a2 ) {
return a1.slice( 0, index ).concat( a2 ).concat( a1.slice( index ) );
}
return FBXLoader;
} )();
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-fbx.vue?vue&type=script&lang=js&
/* harmony default export */ var model_fbxvue_type_script_lang_js_ = ({
name: 'model-fbx',
mixins: [model_mixin],
props: {
lights: {
type: Array,
default: function _default() {
return [{
type: 'HemisphereLight',
position: {
x: 0,
y: 1,
z: 0
},
skyColor: 0xffffff,
groundColor: 0xffffff,
intensity: 0.8
}, {
type: 'DirectionalLight',
position: {
x: 1,
y: 1,
z: 1
},
color: 0xffffff,
intensity: 0.8
}];
}
}
},
data: function data() {
return {
loader: new FBXLoader_FBXLoader()
};
},
methods: {
getObject: function getObject(geometry) {
this.animations = geometry.animations;
return geometry;
}
}
});
// CONCATENATED MODULE: ./src/model-fbx.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_fbxvue_type_script_lang_js_ = (model_fbxvue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-fbx.vue
var model_fbx_render, model_fbx_staticRenderFns
/* normalize component */
var model_fbx_component = normalizeComponent(
src_model_fbxvue_type_script_lang_js_,
model_fbx_render,
model_fbx_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_fbx = (model_fbx_component.exports);
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-three.vue?vue&type=script&lang=js&
/* harmony default export */ var model_threevue_type_script_lang_js_ = ({
name: 'model-three',
mixins: [model_mixin],
data: function data() {
var loader = new ObjectLoader();
loader.setCrossOrigin(this.crossOrigin);
return {
loader: loader
};
}
});
// CONCATENATED MODULE: ./src/model-three.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_threevue_type_script_lang_js_ = (model_threevue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-three.vue
var model_three_render, model_three_staticRenderFns
/* normalize component */
var model_three_component = normalizeComponent(
src_model_threevue_type_script_lang_js_,
model_three_render,
model_three_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_three = (model_three_component.exports);
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/STLLoader.js
/**
* @author aleeper / http://adamleeper.com/
* @author mrdoob / http://mrdoob.com/
* @author gero3 / https://github.com/gero3
* @author Mugen87 / https://github.com/Mugen87
* @author neverhood311 / https://github.com/neverhood311
*
* Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs.
*
* Supports both binary and ASCII encoded files, with automatic detection of type.
*
* The loader returns a non-indexed buffer geometry.
*
* Limitations:
* Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL).
* There is perhaps some question as to how valid it is to always assume little-endian-ness.
* ASCII decoding assumes file is UTF-8.
*
* Usage:
* var loader = new STLLoader();
* loader.load( './models/stl/slotted_disk.stl', function ( geometry ) {
* scene.add( new THREE.Mesh( geometry ) );
* });
*
* For binary STLs geometry might contain colors for vertices. To use it:
* // use the same code to load STL as above
* if (geometry.hasColors) {
* material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: true });
* } else { .... }
* var mesh = new THREE.Mesh( geometry, material );
*
* For ASCII STLs containing multiple solids, each solid is assigned to a different group.
* Groups can be used to assign a different color by defining an array of materials with the same length of
* geometry.groups and passing it to the Mesh constructor:
*
* var mesh = new THREE.Mesh( geometry, material );
*
* For example:
*
* var materials = [];
* var nGeometryGroups = geometry.groups.length;
*
* var colorMap = ...; // Some logic to index colors.
*
* for (var i = 0; i < nGeometryGroups; i++) {
*
* var material = new THREE.MeshPhongMaterial({
* color: colorMap[i],
* wireframe: false
* });
*
* }
*
* materials.push(material);
* var mesh = new THREE.Mesh(geometry, materials);
*/
var STLLoader = function ( manager ) {
Loader.call( this, manager );
};
STLLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: STLLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
parse: function ( data ) {
function isBinary( data ) {
var expect, face_size, n_faces, reader;
reader = new DataView( data );
face_size = ( 32 / 8 * 3 ) + ( ( 32 / 8 * 3 ) * 3 ) + ( 16 / 8 );
n_faces = reader.getUint32( 80, true );
expect = 80 + ( 32 / 8 ) + ( n_faces * face_size );
if ( expect === reader.byteLength ) {
return true;
}
// An ASCII STL data must begin with 'solid ' as the first six bytes.
// However, ASCII STLs lacking the SPACE after the 'd' are known to be
// plentiful. So, check the first 5 bytes for 'solid'.
// Several encodings, such as UTF-8, precede the text with up to 5 bytes:
// https://en.wikipedia.org/wiki/Byte_order_mark#Byte_order_marks_by_encoding
// Search for "solid" to start anywhere after those prefixes.
// US-ASCII ordinal values for 's', 'o', 'l', 'i', 'd'
var solid = [ 115, 111, 108, 105, 100 ];
for ( var off = 0; off < 5; off ++ ) {
// If "solid" text is matched to the current offset, declare it to be an ASCII STL.
if ( matchDataViewAt( solid, reader, off ) ) return false;
}
// Couldn't find "solid" text at the beginning; it is binary STL.
return true;
}
function matchDataViewAt( query, reader, offset ) {
// Check if each byte in query matches the corresponding byte from the current offset
for ( var i = 0, il = query.length; i < il; i ++ ) {
if ( query[ i ] !== reader.getUint8( offset + i, false ) ) return false;
}
return true;
}
function parseBinary( data ) {
var reader = new DataView( data );
var faces = reader.getUint32( 80, true );
var r, g, b, hasColors = false, colors;
var defaultR, defaultG, defaultB, alpha;
// process STL header
// check for default color in header ("COLOR=rgba" sequence).
for ( var index = 0; index < 80 - 10; index ++ ) {
if ( ( reader.getUint32( index, false ) == 0x434F4C4F /*COLO*/ ) &&
( reader.getUint8( index + 4 ) == 0x52 /*'R'*/ ) &&
( reader.getUint8( index + 5 ) == 0x3D /*'='*/ ) ) {
hasColors = true;
colors = new Float32Array( faces * 3 * 3 );
defaultR = reader.getUint8( index + 6 ) / 255;
defaultG = reader.getUint8( index + 7 ) / 255;
defaultB = reader.getUint8( index + 8 ) / 255;
alpha = reader.getUint8( index + 9 ) / 255;
}
}
var dataOffset = 84;
var faceLength = 12 * 4 + 2;
var geometry = new BufferGeometry();
var vertices = new Float32Array( faces * 3 * 3 );
var normals = new Float32Array( faces * 3 * 3 );
for ( var face = 0; face < faces; face ++ ) {
var start = dataOffset + face * faceLength;
var normalX = reader.getFloat32( start, true );
var normalY = reader.getFloat32( start + 4, true );
var normalZ = reader.getFloat32( start + 8, true );
if ( hasColors ) {
var packedColor = reader.getUint16( start + 48, true );
if ( ( packedColor & 0x8000 ) === 0 ) {
// facet has its own unique color
r = ( packedColor & 0x1F ) / 31;
g = ( ( packedColor >> 5 ) & 0x1F ) / 31;
b = ( ( packedColor >> 10 ) & 0x1F ) / 31;
} else {
r = defaultR;
g = defaultG;
b = defaultB;
}
}
for ( var i = 1; i <= 3; i ++ ) {
var vertexstart = start + i * 12;
var componentIdx = ( face * 3 * 3 ) + ( ( i - 1 ) * 3 );
vertices[ componentIdx ] = reader.getFloat32( vertexstart, true );
vertices[ componentIdx + 1 ] = reader.getFloat32( vertexstart + 4, true );
vertices[ componentIdx + 2 ] = reader.getFloat32( vertexstart + 8, true );
normals[ componentIdx ] = normalX;
normals[ componentIdx + 1 ] = normalY;
normals[ componentIdx + 2 ] = normalZ;
if ( hasColors ) {
colors[ componentIdx ] = r;
colors[ componentIdx + 1 ] = g;
colors[ componentIdx + 2 ] = b;
}
}
}
geometry.setAttribute( 'position', new BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
if ( hasColors ) {
geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) );
geometry.hasColors = true;
geometry.alpha = alpha;
}
return geometry;
}
function parseASCII( data ) {
var geometry = new BufferGeometry();
var patternSolid = /solid([\s\S]*?)endsolid/g;
var patternFace = /facet([\s\S]*?)endfacet/g;
var faceCounter = 0;
var patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source;
var patternVertex = new RegExp( 'vertex' + patternFloat + patternFloat + patternFloat, 'g' );
var patternNormal = new RegExp( 'normal' + patternFloat + patternFloat + patternFloat, 'g' );
var vertices = [];
var normals = [];
var normal = new Vector3();
var result;
var groupCount = 0;
var startVertex = 0;
var endVertex = 0;
while ( ( result = patternSolid.exec( data ) ) !== null ) {
startVertex = endVertex;
var solid = result[ 0 ];
while ( ( result = patternFace.exec( solid ) ) !== null ) {
var vertexCountPerFace = 0;
var normalCountPerFace = 0;
var text = result[ 0 ];
while ( ( result = patternNormal.exec( text ) ) !== null ) {
normal.x = parseFloat( result[ 1 ] );
normal.y = parseFloat( result[ 2 ] );
normal.z = parseFloat( result[ 3 ] );
normalCountPerFace ++;
}
while ( ( result = patternVertex.exec( text ) ) !== null ) {
vertices.push( parseFloat( result[ 1 ] ), parseFloat( result[ 2 ] ), parseFloat( result[ 3 ] ) );
normals.push( normal.x, normal.y, normal.z );
vertexCountPerFace ++;
endVertex ++;
}
// every face have to own ONE valid normal
if ( normalCountPerFace !== 1 ) {
console.error( 'THREE.STLLoader: Something isn\'t right with the normal of face number ' + faceCounter );
}
// each face have to own THREE valid vertices
if ( vertexCountPerFace !== 3 ) {
console.error( 'THREE.STLLoader: Something isn\'t right with the vertices of face number ' + faceCounter );
}
faceCounter ++;
}
var start = startVertex;
var count = endVertex - startVertex;
geometry.addGroup( start, count, groupCount );
groupCount ++;
}
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
return geometry;
}
function ensureString( buffer ) {
if ( typeof buffer !== 'string' ) {
return LoaderUtils.decodeText( new Uint8Array( buffer ) );
}
return buffer;
}
function ensureBinary( buffer ) {
if ( typeof buffer === 'string' ) {
var array_buffer = new Uint8Array( buffer.length );
for ( var i = 0; i < buffer.length; i ++ ) {
array_buffer[ i ] = buffer.charCodeAt( i ) & 0xff; // implicitly assumes little-endian
}
return array_buffer.buffer || array_buffer;
} else {
return buffer;
}
}
// start
var binData = ensureBinary( data );
return isBinary( binData ) ? parseBinary( binData ) : parseASCII( ensureString( data ) );
}
} );
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-stl.vue?vue&type=script&lang=js&
/* harmony default export */ var model_stlvue_type_script_lang_js_ = ({
name: 'model-stl',
mixins: [model_mixin],
props: {
lights: {
type: Array,
default: function _default() {
return [{
type: 'HemisphereLight',
position: {
x: 0,
y: 1,
z: 0
},
skyColor: 0xaaaaff,
groundColor: 0x806060,
intensity: 0.2
}, {
type: 'DirectionalLight',
position: {
x: 1,
y: 1,
z: 1
},
color: 0xffffff,
intensity: 0.8
}];
}
}
},
data: function data() {
return {
loader: new STLLoader()
};
},
methods: {
getObject: function getObject(geometry) {
return new Mesh(geometry, new MeshPhongMaterial());
}
}
});
// CONCATENATED MODULE: ./src/model-stl.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_stlvue_type_script_lang_js_ = (model_stlvue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-stl.vue
var model_stl_render, model_stl_staticRenderFns
/* normalize component */
var model_stl_component = normalizeComponent(
src_model_stlvue_type_script_lang_js_,
model_stl_render,
model_stl_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_stl = (model_stl_component.exports);
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/PLYLoader.js
/**
* @author Wei Meng / http://about.me/menway
*
* Description: A THREE loader for PLY ASCII files (known as the Polygon
* File Format or the Stanford Triangle Format).
*
* Limitations: ASCII decoding assumes file is UTF-8.
*
* Usage:
* var loader = new PLYLoader();
* loader.load('./models/ply/ascii/dolphins.ply', function (geometry) {
*
* scene.add( new THREE.Mesh( geometry ) );
*
* } );
*
* If the PLY file uses non standard property names, they can be mapped while
* loading. For example, the following maps the properties
* “diffuse_(red|green|blue)” in the file to standard color names.
*
* loader.setPropertyNameMapping( {
* diffuse_red: 'red',
* diffuse_green: 'green',
* diffuse_blue: 'blue'
* } );
*
*/
var PLYLoader = function ( manager ) {
Loader.call( this, manager );
this.propertyNameMapping = {};
};
PLYLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: PLYLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
setPropertyNameMapping: function ( mapping ) {
this.propertyNameMapping = mapping;
},
parse: function ( data ) {
function parseHeader( data ) {
var patternHeader = /ply([\s\S]*)end_header\r?\n/;
var headerText = '';
var headerLength = 0;
var result = patternHeader.exec( data );
if ( result !== null ) {
headerText = result[ 1 ];
headerLength = result[ 0 ].length;
}
var header = {
comments: [],
elements: [],
headerLength: headerLength
};
var lines = headerText.split( '\n' );
var currentElement;
var lineType, lineValues;
function make_ply_element_property( propertValues, propertyNameMapping ) {
var property = { type: propertValues[ 0 ] };
if ( property.type === 'list' ) {
property.name = propertValues[ 3 ];
property.countType = propertValues[ 1 ];
property.itemType = propertValues[ 2 ];
} else {
property.name = propertValues[ 1 ];
}
if ( property.name in propertyNameMapping ) {
property.name = propertyNameMapping[ property.name ];
}
return property;
}
for ( var i = 0; i < lines.length; i ++ ) {
var line = lines[ i ];
line = line.trim();
if ( line === '' ) continue;
lineValues = line.split( /\s+/ );
lineType = lineValues.shift();
line = lineValues.join( ' ' );
switch ( lineType ) {
case 'format':
header.format = lineValues[ 0 ];
header.version = lineValues[ 1 ];
break;
case 'comment':
header.comments.push( line );
break;
case 'element':
if ( currentElement !== undefined ) {
header.elements.push( currentElement );
}
currentElement = {};
currentElement.name = lineValues[ 0 ];
currentElement.count = parseInt( lineValues[ 1 ] );
currentElement.properties = [];
break;
case 'property':
currentElement.properties.push( make_ply_element_property( lineValues, scope.propertyNameMapping ) );
break;
default:
console.log( 'unhandled', lineType, lineValues );
}
}
if ( currentElement !== undefined ) {
header.elements.push( currentElement );
}
return header;
}
function parseASCIINumber( n, type ) {
switch ( type ) {
case 'char': case 'uchar': case 'short': case 'ushort': case 'int': case 'uint':
case 'int8': case 'uint8': case 'int16': case 'uint16': case 'int32': case 'uint32':
return parseInt( n );
case 'float': case 'double': case 'float32': case 'float64':
return parseFloat( n );
}
}
function parseASCIIElement( properties, line ) {
var values = line.split( /\s+/ );
var element = {};
for ( var i = 0; i < properties.length; i ++ ) {
if ( properties[ i ].type === 'list' ) {
var list = [];
var n = parseASCIINumber( values.shift(), properties[ i ].countType );
for ( var j = 0; j < n; j ++ ) {
list.push( parseASCIINumber( values.shift(), properties[ i ].itemType ) );
}
element[ properties[ i ].name ] = list;
} else {
element[ properties[ i ].name ] = parseASCIINumber( values.shift(), properties[ i ].type );
}
}
return element;
}
function parseASCII( data, header ) {
// PLY ascii format specification, as per http://en.wikipedia.org/wiki/PLY_(file_format)
var buffer = {
indices: [],
vertices: [],
normals: [],
uvs: [],
faceVertexUvs: [],
colors: []
};
var result;
var patternBody = /end_header\s([\s\S]*)$/;
var body = '';
if ( ( result = patternBody.exec( data ) ) !== null ) {
body = result[ 1 ];
}
var lines = body.split( '\n' );
var currentElement = 0;
var currentElementCount = 0;
for ( var i = 0; i < lines.length; i ++ ) {
var line = lines[ i ];
line = line.trim();
if ( line === '' ) {
continue;
}
if ( currentElementCount >= header.elements[ currentElement ].count ) {
currentElement ++;
currentElementCount = 0;
}
var element = parseASCIIElement( header.elements[ currentElement ].properties, line );
handleElement( buffer, header.elements[ currentElement ].name, element );
currentElementCount ++;
}
return postProcess( buffer );
}
function postProcess( buffer ) {
var geometry = new BufferGeometry();
// mandatory buffer data
if ( buffer.indices.length > 0 ) {
geometry.setIndex( buffer.indices );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( buffer.vertices, 3 ) );
// optional buffer data
if ( buffer.normals.length > 0 ) {
geometry.setAttribute( 'normal', new Float32BufferAttribute( buffer.normals, 3 ) );
}
if ( buffer.uvs.length > 0 ) {
geometry.setAttribute( 'uv', new Float32BufferAttribute( buffer.uvs, 2 ) );
}
if ( buffer.colors.length > 0 ) {
geometry.setAttribute( 'color', new Float32BufferAttribute( buffer.colors, 3 ) );
}
if ( buffer.faceVertexUvs.length > 0 ) {
geometry = geometry.toNonIndexed();
geometry.setAttribute( 'uv', new Float32BufferAttribute( buffer.faceVertexUvs, 2 ) );
}
geometry.computeBoundingSphere();
return geometry;
}
function handleElement( buffer, elementName, element ) {
if ( elementName === 'vertex' ) {
buffer.vertices.push( element.x, element.y, element.z );
if ( 'nx' in element && 'ny' in element && 'nz' in element ) {
buffer.normals.push( element.nx, element.ny, element.nz );
}
if ( 's' in element && 't' in element ) {
buffer.uvs.push( element.s, element.t );
}
if ( 'red' in element && 'green' in element && 'blue' in element ) {
buffer.colors.push( element.red / 255.0, element.green / 255.0, element.blue / 255.0 );
}
} else if ( elementName === 'face' ) {
var vertex_indices = element.vertex_indices || element.vertex_index; // issue #9338
var texcoord = element.texcoord;
if ( vertex_indices.length === 3 ) {
buffer.indices.push( vertex_indices[ 0 ], vertex_indices[ 1 ], vertex_indices[ 2 ] );
if ( texcoord && texcoord.length === 6 ) {
buffer.faceVertexUvs.push( texcoord[ 0 ], texcoord[ 1 ] );
buffer.faceVertexUvs.push( texcoord[ 2 ], texcoord[ 3 ] );
buffer.faceVertexUvs.push( texcoord[ 4 ], texcoord[ 5 ] );
}
} else if ( vertex_indices.length === 4 ) {
buffer.indices.push( vertex_indices[ 0 ], vertex_indices[ 1 ], vertex_indices[ 3 ] );
buffer.indices.push( vertex_indices[ 1 ], vertex_indices[ 2 ], vertex_indices[ 3 ] );
}
}
}
function binaryRead( dataview, at, type, little_endian ) {
switch ( type ) {
// corespondences for non-specific length types here match rply:
case 'int8': case 'char': return [ dataview.getInt8( at ), 1 ];
case 'uint8': case 'uchar': return [ dataview.getUint8( at ), 1 ];
case 'int16': case 'short': return [ dataview.getInt16( at, little_endian ), 2 ];
case 'uint16': case 'ushort': return [ dataview.getUint16( at, little_endian ), 2 ];
case 'int32': case 'int': return [ dataview.getInt32( at, little_endian ), 4 ];
case 'uint32': case 'uint': return [ dataview.getUint32( at, little_endian ), 4 ];
case 'float32': case 'float': return [ dataview.getFloat32( at, little_endian ), 4 ];
case 'float64': case 'double': return [ dataview.getFloat64( at, little_endian ), 8 ];
}
}
function binaryReadElement( dataview, at, properties, little_endian ) {
var element = {};
var result, read = 0;
for ( var i = 0; i < properties.length; i ++ ) {
if ( properties[ i ].type === 'list' ) {
var list = [];
result = binaryRead( dataview, at + read, properties[ i ].countType, little_endian );
var n = result[ 0 ];
read += result[ 1 ];
for ( var j = 0; j < n; j ++ ) {
result = binaryRead( dataview, at + read, properties[ i ].itemType, little_endian );
list.push( result[ 0 ] );
read += result[ 1 ];
}
element[ properties[ i ].name ] = list;
} else {
result = binaryRead( dataview, at + read, properties[ i ].type, little_endian );
element[ properties[ i ].name ] = result[ 0 ];
read += result[ 1 ];
}
}
return [ element, read ];
}
function parseBinary( data, header ) {
var buffer = {
indices: [],
vertices: [],
normals: [],
uvs: [],
faceVertexUvs: [],
colors: []
};
var little_endian = ( header.format === 'binary_little_endian' );
var body = new DataView( data, header.headerLength );
var result, loc = 0;
for ( var currentElement = 0; currentElement < header.elements.length; currentElement ++ ) {
for ( var currentElementCount = 0; currentElementCount < header.elements[ currentElement ].count; currentElementCount ++ ) {
result = binaryReadElement( body, loc, header.elements[ currentElement ].properties, little_endian );
loc += result[ 1 ];
var element = result[ 0 ];
handleElement( buffer, header.elements[ currentElement ].name, element );
}
}
return postProcess( buffer );
}
//
var geometry;
var scope = this;
if ( data instanceof ArrayBuffer ) {
var text = LoaderUtils.decodeText( new Uint8Array( data ) );
var header = parseHeader( text );
geometry = header.format === 'ascii' ? parseASCII( text, header ) : parseBinary( data, header );
} else {
geometry = parseASCII( data, parseHeader( data ) );
}
return geometry;
}
} );
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-ply.vue?vue&type=script&lang=js&
/* harmony default export */ var model_plyvue_type_script_lang_js_ = ({
name: 'model-ply',
mixins: [model_mixin],
props: {
lights: {
type: Array,
default: function _default() {
return [{
type: 'HemisphereLight',
position: {
x: 0,
y: 1,
z: 0
},
skyColor: 0xaaaaff,
groundColor: 0x806060,
intensity: 0.2
}, {
type: 'DirectionalLight',
position: {
x: 1,
y: 1,
z: 1
},
color: 0xffffff,
intensity: 0.8
}];
}
}
},
data: function data() {
return {
loader: new PLYLoader()
};
},
methods: {
getObject: function getObject(geometry) {
geometry.computeVertexNormals();
return new Mesh(geometry, new MeshStandardMaterial());
}
}
});
// CONCATENATED MODULE: ./src/model-ply.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_plyvue_type_script_lang_js_ = (model_plyvue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-ply.vue
var model_ply_render, model_ply_staticRenderFns
/* normalize component */
var model_ply_component = normalizeComponent(
src_model_plyvue_type_script_lang_js_,
model_ply_render,
model_ply_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_ply = (model_ply_component.exports);
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/TGALoader.js
/**
* @author Daosheng Mu / https://github.com/DaoshengMu/
* @author mrdoob / http://mrdoob.com/
* @author takahirox / https://github.com/takahirox/
*/
var TGALoader = function ( manager ) {
Loader.call( this, manager );
};
TGALoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: TGALoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var texture = new Texture();
var loader = new FileLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.setPath( this.path );
loader.load( url, function ( buffer ) {
texture.image = scope.parse( buffer );
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
},
parse: function ( buffer ) {
// reference from vthibault, https://github.com/vthibault/roBrowser/blob/master/src/Loaders/Targa.js
function tgaCheckHeader( header ) {
switch ( header.image_type ) {
// check indexed type
case TGA_TYPE_INDEXED:
case TGA_TYPE_RLE_INDEXED:
if ( header.colormap_length > 256 || header.colormap_size !== 24 || header.colormap_type !== 1 ) {
console.error( 'THREE.TGALoader: Invalid type colormap data for indexed type.' );
}
break;
// check colormap type
case TGA_TYPE_RGB:
case TGA_TYPE_GREY:
case TGA_TYPE_RLE_RGB:
case TGA_TYPE_RLE_GREY:
if ( header.colormap_type ) {
console.error( 'THREE.TGALoader: Invalid type colormap data for colormap type.' );
}
break;
// What the need of a file without data ?
case TGA_TYPE_NO_DATA:
console.error( 'THREE.TGALoader: No data.' );
// Invalid type ?
default:
console.error( 'THREE.TGALoader: Invalid type "%s".', header.image_type );
}
// check image width and height
if ( header.width <= 0 || header.height <= 0 ) {
console.error( 'THREE.TGALoader: Invalid image size.' );
}
// check image pixel size
if ( header.pixel_size !== 8 && header.pixel_size !== 16 &&
header.pixel_size !== 24 && header.pixel_size !== 32 ) {
console.error( 'THREE.TGALoader: Invalid pixel size "%s".', header.pixel_size );
}
}
// parse tga image buffer
function tgaParse( use_rle, use_pal, header, offset, data ) {
var pixel_data,
pixel_size,
pixel_total,
palettes;
pixel_size = header.pixel_size >> 3;
pixel_total = header.width * header.height * pixel_size;
// read palettes
if ( use_pal ) {
palettes = data.subarray( offset, offset += header.colormap_length * ( header.colormap_size >> 3 ) );
}
// read RLE
if ( use_rle ) {
pixel_data = new Uint8Array( pixel_total );
var c, count, i;
var shift = 0;
var pixels = new Uint8Array( pixel_size );
while ( shift < pixel_total ) {
c = data[ offset ++ ];
count = ( c & 0x7f ) + 1;
// RLE pixels
if ( c & 0x80 ) {
// bind pixel tmp array
for ( i = 0; i < pixel_size; ++ i ) {
pixels[ i ] = data[ offset ++ ];
}
// copy pixel array
for ( i = 0; i < count; ++ i ) {
pixel_data.set( pixels, shift + i * pixel_size );
}
shift += pixel_size * count;
} else {
// raw pixels
count *= pixel_size;
for ( i = 0; i < count; ++ i ) {
pixel_data[ shift + i ] = data[ offset ++ ];
}
shift += count;
}
}
} else {
// raw pixels
pixel_data = data.subarray(
offset, offset += ( use_pal ? header.width * header.height : pixel_total )
);
}
return {
pixel_data: pixel_data,
palettes: palettes
};
}
function tgaGetImageData8bits( imageData, y_start, y_step, y_end, x_start, x_step, x_end, image, palettes ) {
var colormap = palettes;
var color, i = 0, x, y;
var width = header.width;
for ( y = y_start; y !== y_end; y += y_step ) {
for ( x = x_start; x !== x_end; x += x_step, i ++ ) {
color = image[ i ];
imageData[ ( x + width * y ) * 4 + 3 ] = 255;
imageData[ ( x + width * y ) * 4 + 2 ] = colormap[ ( color * 3 ) + 0 ];
imageData[ ( x + width * y ) * 4 + 1 ] = colormap[ ( color * 3 ) + 1 ];
imageData[ ( x + width * y ) * 4 + 0 ] = colormap[ ( color * 3 ) + 2 ];
}
}
return imageData;
}
function tgaGetImageData16bits( imageData, y_start, y_step, y_end, x_start, x_step, x_end, image ) {
var color, i = 0, x, y;
var width = header.width;
for ( y = y_start; y !== y_end; y += y_step ) {
for ( x = x_start; x !== x_end; x += x_step, i += 2 ) {
color = image[ i + 0 ] + ( image[ i + 1 ] << 8 ); // Inversed ?
imageData[ ( x + width * y ) * 4 + 0 ] = ( color & 0x7C00 ) >> 7;
imageData[ ( x + width * y ) * 4 + 1 ] = ( color & 0x03E0 ) >> 2;
imageData[ ( x + width * y ) * 4 + 2 ] = ( color & 0x001F ) >> 3;
imageData[ ( x + width * y ) * 4 + 3 ] = ( color & 0x8000 ) ? 0 : 255;
}
}
return imageData;
}
function tgaGetImageData24bits( imageData, y_start, y_step, y_end, x_start, x_step, x_end, image ) {
var i = 0, x, y;
var width = header.width;
for ( y = y_start; y !== y_end; y += y_step ) {
for ( x = x_start; x !== x_end; x += x_step, i += 3 ) {
imageData[ ( x + width * y ) * 4 + 3 ] = 255;
imageData[ ( x + width * y ) * 4 + 2 ] = image[ i + 0 ];
imageData[ ( x + width * y ) * 4 + 1 ] = image[ i + 1 ];
imageData[ ( x + width * y ) * 4 + 0 ] = image[ i + 2 ];
}
}
return imageData;
}
function tgaGetImageData32bits( imageData, y_start, y_step, y_end, x_start, x_step, x_end, image ) {
var i = 0, x, y;
var width = header.width;
for ( y = y_start; y !== y_end; y += y_step ) {
for ( x = x_start; x !== x_end; x += x_step, i += 4 ) {
imageData[ ( x + width * y ) * 4 + 2 ] = image[ i + 0 ];
imageData[ ( x + width * y ) * 4 + 1 ] = image[ i + 1 ];
imageData[ ( x + width * y ) * 4 + 0 ] = image[ i + 2 ];
imageData[ ( x + width * y ) * 4 + 3 ] = image[ i + 3 ];
}
}
return imageData;
}
function tgaGetImageDataGrey8bits( imageData, y_start, y_step, y_end, x_start, x_step, x_end, image ) {
var color, i = 0, x, y;
var width = header.width;
for ( y = y_start; y !== y_end; y += y_step ) {
for ( x = x_start; x !== x_end; x += x_step, i ++ ) {
color = image[ i ];
imageData[ ( x + width * y ) * 4 + 0 ] = color;
imageData[ ( x + width * y ) * 4 + 1 ] = color;
imageData[ ( x + width * y ) * 4 + 2 ] = color;
imageData[ ( x + width * y ) * 4 + 3 ] = 255;
}
}
return imageData;
}
function tgaGetImageDataGrey16bits( imageData, y_start, y_step, y_end, x_start, x_step, x_end, image ) {
var i = 0, x, y;
var width = header.width;
for ( y = y_start; y !== y_end; y += y_step ) {
for ( x = x_start; x !== x_end; x += x_step, i += 2 ) {
imageData[ ( x + width * y ) * 4 + 0 ] = image[ i + 0 ];
imageData[ ( x + width * y ) * 4 + 1 ] = image[ i + 0 ];
imageData[ ( x + width * y ) * 4 + 2 ] = image[ i + 0 ];
imageData[ ( x + width * y ) * 4 + 3 ] = image[ i + 1 ];
}
}
return imageData;
}
function getTgaRGBA( data, width, height, image, palette ) {
var x_start,
y_start,
x_step,
y_step,
x_end,
y_end;
switch ( ( header.flags & TGA_ORIGIN_MASK ) >> TGA_ORIGIN_SHIFT ) {
default:
case TGA_ORIGIN_UL:
x_start = 0;
x_step = 1;
x_end = width;
y_start = 0;
y_step = 1;
y_end = height;
break;
case TGA_ORIGIN_BL:
x_start = 0;
x_step = 1;
x_end = width;
y_start = height - 1;
y_step = - 1;
y_end = - 1;
break;
case TGA_ORIGIN_UR:
x_start = width - 1;
x_step = - 1;
x_end = - 1;
y_start = 0;
y_step = 1;
y_end = height;
break;
case TGA_ORIGIN_BR:
x_start = width - 1;
x_step = - 1;
x_end = - 1;
y_start = height - 1;
y_step = - 1;
y_end = - 1;
break;
}
if ( use_grey ) {
switch ( header.pixel_size ) {
case 8:
tgaGetImageDataGrey8bits( data, y_start, y_step, y_end, x_start, x_step, x_end, image );
break;
case 16:
tgaGetImageDataGrey16bits( data, y_start, y_step, y_end, x_start, x_step, x_end, image );
break;
default:
console.error( 'THREE.TGALoader: Format not supported.' );
break;
}
} else {
switch ( header.pixel_size ) {
case 8:
tgaGetImageData8bits( data, y_start, y_step, y_end, x_start, x_step, x_end, image, palette );
break;
case 16:
tgaGetImageData16bits( data, y_start, y_step, y_end, x_start, x_step, x_end, image );
break;
case 24:
tgaGetImageData24bits( data, y_start, y_step, y_end, x_start, x_step, x_end, image );
break;
case 32:
tgaGetImageData32bits( data, y_start, y_step, y_end, x_start, x_step, x_end, image );
break;
default:
console.error( 'THREE.TGALoader: Format not supported.' );
break;
}
}
// Load image data according to specific method
// var func = 'tgaGetImageData' + (use_grey ? 'Grey' : '') + (header.pixel_size) + 'bits';
// func(data, y_start, y_step, y_end, x_start, x_step, x_end, width, image, palette );
return data;
}
// TGA constants
var TGA_TYPE_NO_DATA = 0,
TGA_TYPE_INDEXED = 1,
TGA_TYPE_RGB = 2,
TGA_TYPE_GREY = 3,
TGA_TYPE_RLE_INDEXED = 9,
TGA_TYPE_RLE_RGB = 10,
TGA_TYPE_RLE_GREY = 11,
TGA_ORIGIN_MASK = 0x30,
TGA_ORIGIN_SHIFT = 0x04,
TGA_ORIGIN_BL = 0x00,
TGA_ORIGIN_BR = 0x01,
TGA_ORIGIN_UL = 0x02,
TGA_ORIGIN_UR = 0x03;
if ( buffer.length < 19 ) console.error( 'THREE.TGALoader: Not enough data to contain header.' );
var content = new Uint8Array( buffer ),
offset = 0,
header = {
id_length: content[ offset ++ ],
colormap_type: content[ offset ++ ],
image_type: content[ offset ++ ],
colormap_index: content[ offset ++ ] | content[ offset ++ ] << 8,
colormap_length: content[ offset ++ ] | content[ offset ++ ] << 8,
colormap_size: content[ offset ++ ],
origin: [
content[ offset ++ ] | content[ offset ++ ] << 8,
content[ offset ++ ] | content[ offset ++ ] << 8
],
width: content[ offset ++ ] | content[ offset ++ ] << 8,
height: content[ offset ++ ] | content[ offset ++ ] << 8,
pixel_size: content[ offset ++ ],
flags: content[ offset ++ ]
};
// check tga if it is valid format
tgaCheckHeader( header );
if ( header.id_length + offset > buffer.length ) {
console.error( 'THREE.TGALoader: No data.' );
}
// skip the needn't data
offset += header.id_length;
// get targa information about RLE compression and palette
var use_rle = false,
use_pal = false,
use_grey = false;
switch ( header.image_type ) {
case TGA_TYPE_RLE_INDEXED:
use_rle = true;
use_pal = true;
break;
case TGA_TYPE_INDEXED:
use_pal = true;
break;
case TGA_TYPE_RLE_RGB:
use_rle = true;
break;
case TGA_TYPE_RGB:
break;
case TGA_TYPE_RLE_GREY:
use_rle = true;
use_grey = true;
break;
case TGA_TYPE_GREY:
use_grey = true;
break;
}
//
var useOffscreen = typeof OffscreenCanvas !== 'undefined';
var canvas = useOffscreen ? new OffscreenCanvas( header.width, header.height ) : document.createElement( 'canvas' );
canvas.width = header.width;
canvas.height = header.height;
var context = canvas.getContext( '2d' );
var imageData = context.createImageData( header.width, header.height );
var result = tgaParse( use_rle, use_pal, header, offset, content );
getTgaRGBA( imageData.data, header.width, header.height, result.pixel_data, result.palettes );
context.putImageData( imageData, 0, 0 );
return useOffscreen ? canvas.transferToImageBitmap() : canvas;
}
} );
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/ColladaLoader.js
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
var ColladaLoader = function ( manager ) {
Loader.call( this, manager );
};
ColladaLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: ColladaLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
var loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text, path ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
options: {
set convertUpAxis( value ) {
console.warn( 'THREE.ColladaLoader: options.convertUpAxis() has been removed. Up axis is converted automatically.' );
}
},
parse: function ( text, path ) {
function getElementsByTagName( xml, name ) {
// Non recursive xml.getElementsByTagName() ...
var array = [];
var childNodes = xml.childNodes;
for ( var i = 0, l = childNodes.length; i < l; i ++ ) {
var child = childNodes[ i ];
if ( child.nodeName === name ) {
array.push( child );
}
}
return array;
}
function parseStrings( text ) {
if ( text.length === 0 ) return [];
var parts = text.trim().split( /\s+/ );
var array = new Array( parts.length );
for ( var i = 0, l = parts.length; i < l; i ++ ) {
array[ i ] = parts[ i ];
}
return array;
}
function parseFloats( text ) {
if ( text.length === 0 ) return [];
var parts = text.trim().split( /\s+/ );
var array = new Array( parts.length );
for ( var i = 0, l = parts.length; i < l; i ++ ) {
array[ i ] = parseFloat( parts[ i ] );
}
return array;
}
function parseInts( text ) {
if ( text.length === 0 ) return [];
var parts = text.trim().split( /\s+/ );
var array = new Array( parts.length );
for ( var i = 0, l = parts.length; i < l; i ++ ) {
array[ i ] = parseInt( parts[ i ] );
}
return array;
}
function parseId( text ) {
return text.substring( 1 );
}
function generateId() {
return 'three_default_' + ( count ++ );
}
function isEmpty( object ) {
return Object.keys( object ).length === 0;
}
// asset
function parseAsset( xml ) {
return {
unit: parseAssetUnit( getElementsByTagName( xml, 'unit' )[ 0 ] ),
upAxis: parseAssetUpAxis( getElementsByTagName( xml, 'up_axis' )[ 0 ] )
};
}
function parseAssetUnit( xml ) {
if ( ( xml !== undefined ) && ( xml.hasAttribute( 'meter' ) === true ) ) {
return parseFloat( xml.getAttribute( 'meter' ) );
} else {
return 1; // default 1 meter
}
}
function parseAssetUpAxis( xml ) {
return xml !== undefined ? xml.textContent : 'Y_UP';
}
// library
function parseLibrary( xml, libraryName, nodeName, parser ) {
var library = getElementsByTagName( xml, libraryName )[ 0 ];
if ( library !== undefined ) {
var elements = getElementsByTagName( library, nodeName );
for ( var i = 0; i < elements.length; i ++ ) {
parser( elements[ i ] );
}
}
}
function buildLibrary( data, builder ) {
for ( var name in data ) {
var object = data[ name ];
object.build = builder( data[ name ] );
}
}
// get
function getBuild( data, builder ) {
if ( data.build !== undefined ) return data.build;
data.build = builder( data );
return data.build;
}
// animation
function parseAnimation( xml ) {
var data = {
sources: {},
samplers: {},
channels: {}
};
var hasChildren = false;
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
var id;
switch ( child.nodeName ) {
case 'source':
id = child.getAttribute( 'id' );
data.sources[ id ] = parseSource( child );
break;
case 'sampler':
id = child.getAttribute( 'id' );
data.samplers[ id ] = parseAnimationSampler( child );
break;
case 'channel':
id = child.getAttribute( 'target' );
data.channels[ id ] = parseAnimationChannel( child );
break;
case 'animation':
// hierarchy of related animations
parseAnimation( child );
hasChildren = true;
break;
default:
console.log( child );
}
}
if ( hasChildren === false ) {
// since 'id' attributes can be optional, it's necessary to generate a UUID for unqiue assignment
library.animations[ xml.getAttribute( 'id' ) || MathUtils.generateUUID() ] = data;
}
}
function parseAnimationSampler( xml ) {
var data = {
inputs: {},
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
var id = parseId( child.getAttribute( 'source' ) );
var semantic = child.getAttribute( 'semantic' );
data.inputs[ semantic ] = id;
break;
}
}
return data;
}
function parseAnimationChannel( xml ) {
var data = {};
var target = xml.getAttribute( 'target' );
// parsing SID Addressing Syntax
var parts = target.split( '/' );
var id = parts.shift();
var sid = parts.shift();
// check selection syntax
var arraySyntax = ( sid.indexOf( '(' ) !== - 1 );
var memberSyntax = ( sid.indexOf( '.' ) !== - 1 );
if ( memberSyntax ) {
// member selection access
parts = sid.split( '.' );
sid = parts.shift();
data.member = parts.shift();
} else if ( arraySyntax ) {
// array-access syntax. can be used to express fields in one-dimensional vectors or two-dimensional matrices.
var indices = sid.split( '(' );
sid = indices.shift();
for ( var i = 0; i < indices.length; i ++ ) {
indices[ i ] = parseInt( indices[ i ].replace( /\)/, '' ) );
}
data.indices = indices;
}
data.id = id;
data.sid = sid;
data.arraySyntax = arraySyntax;
data.memberSyntax = memberSyntax;
data.sampler = parseId( xml.getAttribute( 'source' ) );
return data;
}
function buildAnimation( data ) {
var tracks = [];
var channels = data.channels;
var samplers = data.samplers;
var sources = data.sources;
for ( var target in channels ) {
if ( channels.hasOwnProperty( target ) ) {
var channel = channels[ target ];
var sampler = samplers[ channel.sampler ];
var inputId = sampler.inputs.INPUT;
var outputId = sampler.inputs.OUTPUT;
var inputSource = sources[ inputId ];
var outputSource = sources[ outputId ];
var animation = buildAnimationChannel( channel, inputSource, outputSource );
createKeyframeTracks( animation, tracks );
}
}
return tracks;
}
function getAnimation( id ) {
return getBuild( library.animations[ id ], buildAnimation );
}
function buildAnimationChannel( channel, inputSource, outputSource ) {
var node = library.nodes[ channel.id ];
var object3D = getNode( node.id );
var transform = node.transforms[ channel.sid ];
var defaultMatrix = node.matrix.clone().transpose();
var time, stride;
var i, il, j, jl;
var data = {};
// the collada spec allows the animation of data in various ways.
// depending on the transform type (matrix, translate, rotate, scale), we execute different logic
switch ( transform ) {
case 'matrix':
for ( i = 0, il = inputSource.array.length; i < il; i ++ ) {
time = inputSource.array[ i ];
stride = i * outputSource.stride;
if ( data[ time ] === undefined ) data[ time ] = {};
if ( channel.arraySyntax === true ) {
var value = outputSource.array[ stride ];
var index = channel.indices[ 0 ] + 4 * channel.indices[ 1 ];
data[ time ][ index ] = value;
} else {
for ( j = 0, jl = outputSource.stride; j < jl; j ++ ) {
data[ time ][ j ] = outputSource.array[ stride + j ];
}
}
}
break;
case 'translate':
console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
break;
case 'rotate':
console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
break;
case 'scale':
console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
break;
}
var keyframes = prepareAnimationData( data, defaultMatrix );
var animation = {
name: object3D.uuid,
keyframes: keyframes
};
return animation;
}
function prepareAnimationData( data, defaultMatrix ) {
var keyframes = [];
// transfer data into a sortable array
for ( var time in data ) {
keyframes.push( { time: parseFloat( time ), value: data[ time ] } );
}
// ensure keyframes are sorted by time
keyframes.sort( ascending );
// now we clean up all animation data, so we can use them for keyframe tracks
for ( var i = 0; i < 16; i ++ ) {
transformAnimationData( keyframes, i, defaultMatrix.elements[ i ] );
}
return keyframes;
// array sort function
function ascending( a, b ) {
return a.time - b.time;
}
}
var position = new Vector3();
var scale = new Vector3();
var quaternion = new Quaternion();
function createKeyframeTracks( animation, tracks ) {
var keyframes = animation.keyframes;
var name = animation.name;
var times = [];
var positionData = [];
var quaternionData = [];
var scaleData = [];
for ( var i = 0, l = keyframes.length; i < l; i ++ ) {
var keyframe = keyframes[ i ];
var time = keyframe.time;
var value = keyframe.value;
matrix.fromArray( value ).transpose();
matrix.decompose( position, quaternion, scale );
times.push( time );
positionData.push( position.x, position.y, position.z );
quaternionData.push( quaternion.x, quaternion.y, quaternion.z, quaternion.w );
scaleData.push( scale.x, scale.y, scale.z );
}
if ( positionData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.position', times, positionData ) );
if ( quaternionData.length > 0 ) tracks.push( new QuaternionKeyframeTrack( name + '.quaternion', times, quaternionData ) );
if ( scaleData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.scale', times, scaleData ) );
return tracks;
}
function transformAnimationData( keyframes, property, defaultValue ) {
var keyframe;
var empty = true;
var i, l;
// check, if values of a property are missing in our keyframes
for ( i = 0, l = keyframes.length; i < l; i ++ ) {
keyframe = keyframes[ i ];
if ( keyframe.value[ property ] === undefined ) {
keyframe.value[ property ] = null; // mark as missing
} else {
empty = false;
}
}
if ( empty === true ) {
// no values at all, so we set a default value
for ( i = 0, l = keyframes.length; i < l; i ++ ) {
keyframe = keyframes[ i ];
keyframe.value[ property ] = defaultValue;
}
} else {
// filling gaps
createMissingKeyframes( keyframes, property );
}
}
function createMissingKeyframes( keyframes, property ) {
var prev, next;
for ( var i = 0, l = keyframes.length; i < l; i ++ ) {
var keyframe = keyframes[ i ];
if ( keyframe.value[ property ] === null ) {
prev = getPrev( keyframes, i, property );
next = getNext( keyframes, i, property );
if ( prev === null ) {
keyframe.value[ property ] = next.value[ property ];
continue;
}
if ( next === null ) {
keyframe.value[ property ] = prev.value[ property ];
continue;
}
interpolate( keyframe, prev, next, property );
}
}
}
function getPrev( keyframes, i, property ) {
while ( i >= 0 ) {
var keyframe = keyframes[ i ];
if ( keyframe.value[ property ] !== null ) return keyframe;
i --;
}
return null;
}
function getNext( keyframes, i, property ) {
while ( i < keyframes.length ) {
var keyframe = keyframes[ i ];
if ( keyframe.value[ property ] !== null ) return keyframe;
i ++;
}
return null;
}
function interpolate( key, prev, next, property ) {
if ( ( next.time - prev.time ) === 0 ) {
key.value[ property ] = prev.value[ property ];
return;
}
key.value[ property ] = ( ( key.time - prev.time ) * ( next.value[ property ] - prev.value[ property ] ) / ( next.time - prev.time ) ) + prev.value[ property ];
}
// animation clips
function parseAnimationClip( xml ) {
var data = {
name: xml.getAttribute( 'id' ) || 'default',
start: parseFloat( xml.getAttribute( 'start' ) || 0 ),
end: parseFloat( xml.getAttribute( 'end' ) || 0 ),
animations: []
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'instance_animation':
data.animations.push( parseId( child.getAttribute( 'url' ) ) );
break;
}
}
library.clips[ xml.getAttribute( 'id' ) ] = data;
}
function buildAnimationClip( data ) {
var tracks = [];
var name = data.name;
var duration = ( data.end - data.start ) || - 1;
var animations = data.animations;
for ( var i = 0, il = animations.length; i < il; i ++ ) {
var animationTracks = getAnimation( animations[ i ] );
for ( var j = 0, jl = animationTracks.length; j < jl; j ++ ) {
tracks.push( animationTracks[ j ] );
}
}
return new AnimationClip( name, duration, tracks );
}
function getAnimationClip( id ) {
return getBuild( library.clips[ id ], buildAnimationClip );
}
// controller
function parseController( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'skin':
// there is exactly one skin per controller
data.id = parseId( child.getAttribute( 'source' ) );
data.skin = parseSkin( child );
break;
case 'morph':
data.id = parseId( child.getAttribute( 'source' ) );
console.warn( 'THREE.ColladaLoader: Morph target animation not supported yet.' );
break;
}
}
library.controllers[ xml.getAttribute( 'id' ) ] = data;
}
function parseSkin( xml ) {
var data = {
sources: {}
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'bind_shape_matrix':
data.bindShapeMatrix = parseFloats( child.textContent );
break;
case 'source':
var id = child.getAttribute( 'id' );
data.sources[ id ] = parseSource( child );
break;
case 'joints':
data.joints = parseJoints( child );
break;
case 'vertex_weights':
data.vertexWeights = parseVertexWeights( child );
break;
}
}
return data;
}
function parseJoints( xml ) {
var data = {
inputs: {}
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
var semantic = child.getAttribute( 'semantic' );
var id = parseId( child.getAttribute( 'source' ) );
data.inputs[ semantic ] = id;
break;
}
}
return data;
}
function parseVertexWeights( xml ) {
var data = {
inputs: {}
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
var semantic = child.getAttribute( 'semantic' );
var id = parseId( child.getAttribute( 'source' ) );
var offset = parseInt( child.getAttribute( 'offset' ) );
data.inputs[ semantic ] = { id: id, offset: offset };
break;
case 'vcount':
data.vcount = parseInts( child.textContent );
break;
case 'v':
data.v = parseInts( child.textContent );
break;
}
}
return data;
}
function buildController( data ) {
var build = {
id: data.id
};
var geometry = library.geometries[ build.id ];
if ( data.skin !== undefined ) {
build.skin = buildSkin( data.skin );
// we enhance the 'sources' property of the corresponding geometry with our skin data
geometry.sources.skinIndices = build.skin.indices;
geometry.sources.skinWeights = build.skin.weights;
}
return build;
}
function buildSkin( data ) {
var BONE_LIMIT = 4;
var build = {
joints: [], // this must be an array to preserve the joint order
indices: {
array: [],
stride: BONE_LIMIT
},
weights: {
array: [],
stride: BONE_LIMIT
}
};
var sources = data.sources;
var vertexWeights = data.vertexWeights;
var vcount = vertexWeights.vcount;
var v = vertexWeights.v;
var jointOffset = vertexWeights.inputs.JOINT.offset;
var weightOffset = vertexWeights.inputs.WEIGHT.offset;
var jointSource = data.sources[ data.joints.inputs.JOINT ];
var inverseSource = data.sources[ data.joints.inputs.INV_BIND_MATRIX ];
var weights = sources[ vertexWeights.inputs.WEIGHT.id ].array;
var stride = 0;
var i, j, l;
// procces skin data for each vertex
for ( i = 0, l = vcount.length; i < l; i ++ ) {
var jointCount = vcount[ i ]; // this is the amount of joints that affect a single vertex
var vertexSkinData = [];
for ( j = 0; j < jointCount; j ++ ) {
var skinIndex = v[ stride + jointOffset ];
var weightId = v[ stride + weightOffset ];
var skinWeight = weights[ weightId ];
vertexSkinData.push( { index: skinIndex, weight: skinWeight } );
stride += 2;
}
// we sort the joints in descending order based on the weights.
// this ensures, we only procced the most important joints of the vertex
vertexSkinData.sort( descending );
// now we provide for each vertex a set of four index and weight values.
// the order of the skin data matches the order of vertices
for ( j = 0; j < BONE_LIMIT; j ++ ) {
var d = vertexSkinData[ j ];
if ( d !== undefined ) {
build.indices.array.push( d.index );
build.weights.array.push( d.weight );
} else {
build.indices.array.push( 0 );
build.weights.array.push( 0 );
}
}
}
// setup bind matrix
if ( data.bindShapeMatrix ) {
build.bindMatrix = new Matrix4().fromArray( data.bindShapeMatrix ).transpose();
} else {
build.bindMatrix = new Matrix4().identity();
}
// process bones and inverse bind matrix data
for ( i = 0, l = jointSource.array.length; i < l; i ++ ) {
var name = jointSource.array[ i ];
var boneInverse = new Matrix4().fromArray( inverseSource.array, i * inverseSource.stride ).transpose();
build.joints.push( { name: name, boneInverse: boneInverse } );
}
return build;
// array sort function
function descending( a, b ) {
return b.weight - a.weight;
}
}
function getController( id ) {
return getBuild( library.controllers[ id ], buildController );
}
// image
function parseImage( xml ) {
var data = {
init_from: getElementsByTagName( xml, 'init_from' )[ 0 ].textContent
};
library.images[ xml.getAttribute( 'id' ) ] = data;
}
function buildImage( data ) {
if ( data.build !== undefined ) return data.build;
return data.init_from;
}
function getImage( id ) {
var data = library.images[ id ];
if ( data !== undefined ) {
return getBuild( data, buildImage );
}
console.warn( 'THREE.ColladaLoader: Couldn\'t find image with ID:', id );
return null;
}
// effect
function parseEffect( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'profile_COMMON':
data.profile = parseEffectProfileCOMMON( child );
break;
}
}
library.effects[ xml.getAttribute( 'id' ) ] = data;
}
function parseEffectProfileCOMMON( xml ) {
var data = {
surfaces: {},
samplers: {}
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'newparam':
parseEffectNewparam( child, data );
break;
case 'technique':
data.technique = parseEffectTechnique( child );
break;
case 'extra':
data.extra = parseEffectExtra( child );
break;
}
}
return data;
}
function parseEffectNewparam( xml, data ) {
var sid = xml.getAttribute( 'sid' );
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'surface':
data.surfaces[ sid ] = parseEffectSurface( child );
break;
case 'sampler2D':
data.samplers[ sid ] = parseEffectSampler( child );
break;
}
}
}
function parseEffectSurface( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'init_from':
data.init_from = child.textContent;
break;
}
}
return data;
}
function parseEffectSampler( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'source':
data.source = child.textContent;
break;
}
}
return data;
}
function parseEffectTechnique( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'constant':
case 'lambert':
case 'blinn':
case 'phong':
data.type = child.nodeName;
data.parameters = parseEffectParameters( child );
break;
}
}
return data;
}
function parseEffectParameters( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'emission':
case 'diffuse':
case 'specular':
case 'bump':
case 'ambient':
case 'shininess':
case 'transparency':
data[ child.nodeName ] = parseEffectParameter( child );
break;
case 'transparent':
data[ child.nodeName ] = {
opaque: child.getAttribute( 'opaque' ),
data: parseEffectParameter( child )
};
break;
}
}
return data;
}
function parseEffectParameter( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'color':
data[ child.nodeName ] = parseFloats( child.textContent );
break;
case 'float':
data[ child.nodeName ] = parseFloat( child.textContent );
break;
case 'texture':
data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), extra: parseEffectParameterTexture( child ) };
break;
}
}
return data;
}
function parseEffectParameterTexture( xml ) {
var data = {
technique: {}
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'extra':
parseEffectParameterTextureExtra( child, data );
break;
}
}
return data;
}
function parseEffectParameterTextureExtra( xml, data ) {
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique':
parseEffectParameterTextureExtraTechnique( child, data );
break;
}
}
}
function parseEffectParameterTextureExtraTechnique( xml, data ) {
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'repeatU':
case 'repeatV':
case 'offsetU':
case 'offsetV':
data.technique[ child.nodeName ] = parseFloat( child.textContent );
break;
case 'wrapU':
case 'wrapV':
// some files have values for wrapU/wrapV which become NaN via parseInt
if ( child.textContent.toUpperCase() === 'TRUE' ) {
data.technique[ child.nodeName ] = 1;
} else if ( child.textContent.toUpperCase() === 'FALSE' ) {
data.technique[ child.nodeName ] = 0;
} else {
data.technique[ child.nodeName ] = parseInt( child.textContent );
}
break;
}
}
}
function parseEffectExtra( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique':
data.technique = parseEffectExtraTechnique( child );
break;
}
}
return data;
}
function parseEffectExtraTechnique( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'double_sided':
data[ child.nodeName ] = parseInt( child.textContent );
break;
}
}
return data;
}
function buildEffect( data ) {
return data;
}
function getEffect( id ) {
return getBuild( library.effects[ id ], buildEffect );
}
// material
function parseMaterial( xml ) {
var data = {
name: xml.getAttribute( 'name' )
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'instance_effect':
data.url = parseId( child.getAttribute( 'url' ) );
break;
}
}
library.materials[ xml.getAttribute( 'id' ) ] = data;
}
function getTextureLoader( image ) {
var loader;
var extension = image.slice( ( image.lastIndexOf( '.' ) - 1 >>> 0 ) + 2 ); // http://www.jstips.co/en/javascript/get-file-extension/
extension = extension.toLowerCase();
switch ( extension ) {
case 'tga':
loader = tgaLoader;
break;
default:
loader = textureLoader;
}
return loader;
}
function buildMaterial( data ) {
var effect = getEffect( data.url );
var technique = effect.profile.technique;
var extra = effect.profile.extra;
var material;
switch ( technique.type ) {
case 'phong':
case 'blinn':
material = new MeshPhongMaterial();
break;
case 'lambert':
material = new MeshLambertMaterial();
break;
default:
material = new MeshBasicMaterial();
break;
}
material.name = data.name || '';
function getTexture( textureObject ) {
var sampler = effect.profile.samplers[ textureObject.id ];
var image = null;
// get image
if ( sampler !== undefined ) {
var surface = effect.profile.surfaces[ sampler.source ];
image = getImage( surface.init_from );
} else {
console.warn( 'THREE.ColladaLoader: Undefined sampler. Access image directly (see #12530).' );
image = getImage( textureObject.id );
}
// create texture if image is avaiable
if ( image !== null ) {
var loader = getTextureLoader( image );
if ( loader !== undefined ) {
var texture = loader.load( image );
var extra = textureObject.extra;
if ( extra !== undefined && extra.technique !== undefined && isEmpty( extra.technique ) === false ) {
var technique = extra.technique;
texture.wrapS = technique.wrapU ? RepeatWrapping : ClampToEdgeWrapping;
texture.wrapT = technique.wrapV ? RepeatWrapping : ClampToEdgeWrapping;
texture.offset.set( technique.offsetU || 0, technique.offsetV || 0 );
texture.repeat.set( technique.repeatU || 1, technique.repeatV || 1 );
} else {
texture.wrapS = RepeatWrapping;
texture.wrapT = RepeatWrapping;
}
return texture;
} else {
console.warn( 'THREE.ColladaLoader: Loader for texture %s not found.', image );
return null;
}
} else {
console.warn( 'THREE.ColladaLoader: Couldn\'t create texture with ID:', textureObject.id );
return null;
}
}
var parameters = technique.parameters;
for ( var key in parameters ) {
var parameter = parameters[ key ];
switch ( key ) {
case 'diffuse':
if ( parameter.color ) material.color.fromArray( parameter.color );
if ( parameter.texture ) material.map = getTexture( parameter.texture );
break;
case 'specular':
if ( parameter.color && material.specular ) material.specular.fromArray( parameter.color );
if ( parameter.texture ) material.specularMap = getTexture( parameter.texture );
break;
case 'bump':
if ( parameter.texture ) material.normalMap = getTexture( parameter.texture );
break;
case 'ambient':
if ( parameter.texture ) material.lightMap = getTexture( parameter.texture );
break;
case 'shininess':
if ( parameter.float && material.shininess ) material.shininess = parameter.float;
break;
case 'emission':
if ( parameter.color && material.emissive ) material.emissive.fromArray( parameter.color );
if ( parameter.texture ) material.emissiveMap = getTexture( parameter.texture );
break;
}
}
//
var transparent = parameters[ 'transparent' ];
var transparency = parameters[ 'transparency' ];
// <transparency> does not exist but <transparent>
if ( transparency === undefined && transparent ) {
transparency = {
float: 1
};
}
// <transparent> does not exist but <transparency>
if ( transparent === undefined && transparency ) {
transparent = {
opaque: 'A_ONE',
data: {
color: [ 1, 1, 1, 1 ]
} };
}
if ( transparent && transparency ) {
// handle case if a texture exists but no color
if ( transparent.data.texture ) {
// we do not set an alpha map (see #13792)
material.transparent = true;
} else {
var color = transparent.data.color;
switch ( transparent.opaque ) {
case 'A_ONE':
material.opacity = color[ 3 ] * transparency.float;
break;
case 'RGB_ZERO':
material.opacity = 1 - ( color[ 0 ] * transparency.float );
break;
case 'A_ZERO':
material.opacity = 1 - ( color[ 3 ] * transparency.float );
break;
case 'RGB_ONE':
material.opacity = color[ 0 ] * transparency.float;
break;
default:
console.warn( 'THREE.ColladaLoader: Invalid opaque type "%s" of transparent tag.', transparent.opaque );
}
if ( material.opacity < 1 ) material.transparent = true;
}
}
//
if ( extra !== undefined && extra.technique !== undefined && extra.technique.double_sided === 1 ) {
material.side = DoubleSide;
}
return material;
}
function getMaterial( id ) {
return getBuild( library.materials[ id ], buildMaterial );
}
// camera
function parseCamera( xml ) {
var data = {
name: xml.getAttribute( 'name' )
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'optics':
data.optics = parseCameraOptics( child );
break;
}
}
library.cameras[ xml.getAttribute( 'id' ) ] = data;
}
function parseCameraOptics( xml ) {
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'technique_common':
return parseCameraTechnique( child );
}
}
return {};
}
function parseCameraTechnique( xml ) {
var data = {};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'perspective':
case 'orthographic':
data.technique = child.nodeName;
data.parameters = parseCameraParameters( child );
break;
}
}
return data;
}
function parseCameraParameters( xml ) {
var data = {};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'xfov':
case 'yfov':
case 'xmag':
case 'ymag':
case 'znear':
case 'zfar':
case 'aspect_ratio':
data[ child.nodeName ] = parseFloat( child.textContent );
break;
}
}
return data;
}
function buildCamera( data ) {
var camera;
switch ( data.optics.technique ) {
case 'perspective':
camera = new PerspectiveCamera(
data.optics.parameters.yfov,
data.optics.parameters.aspect_ratio,
data.optics.parameters.znear,
data.optics.parameters.zfar
);
break;
case 'orthographic':
var ymag = data.optics.parameters.ymag;
var xmag = data.optics.parameters.xmag;
var aspectRatio = data.optics.parameters.aspect_ratio;
xmag = ( xmag === undefined ) ? ( ymag * aspectRatio ) : xmag;
ymag = ( ymag === undefined ) ? ( xmag / aspectRatio ) : ymag;
xmag *= 0.5;
ymag *= 0.5;
camera = new OrthographicCamera(
- xmag, xmag, ymag, - ymag, // left, right, top, bottom
data.optics.parameters.znear,
data.optics.parameters.zfar
);
break;
default:
camera = new PerspectiveCamera();
break;
}
camera.name = data.name || '';
return camera;
}
function getCamera( id ) {
var data = library.cameras[ id ];
if ( data !== undefined ) {
return getBuild( data, buildCamera );
}
console.warn( 'THREE.ColladaLoader: Couldn\'t find camera with ID:', id );
return null;
}
// light
function parseLight( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique_common':
data = parseLightTechnique( child );
break;
}
}
library.lights[ xml.getAttribute( 'id' ) ] = data;
}
function parseLightTechnique( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'directional':
case 'point':
case 'spot':
case 'ambient':
data.technique = child.nodeName;
data.parameters = parseLightParameters( child );
}
}
return data;
}
function parseLightParameters( xml ) {
var data = {};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'color':
var array = parseFloats( child.textContent );
data.color = new Color().fromArray( array );
break;
case 'falloff_angle':
data.falloffAngle = parseFloat( child.textContent );
break;
case 'quadratic_attenuation':
var f = parseFloat( child.textContent );
data.distance = f ? Math.sqrt( 1 / f ) : 0;
break;
}
}
return data;
}
function buildLight( data ) {
var light;
switch ( data.technique ) {
case 'directional':
light = new DirectionalLight();
break;
case 'point':
light = new PointLight();
break;
case 'spot':
light = new SpotLight();
break;
case 'ambient':
light = new AmbientLight();
break;
}
if ( data.parameters.color ) light.color.copy( data.parameters.color );
if ( data.parameters.distance ) light.distance = data.parameters.distance;
return light;
}
function getLight( id ) {
var data = library.lights[ id ];
if ( data !== undefined ) {
return getBuild( data, buildLight );
}
console.warn( 'THREE.ColladaLoader: Couldn\'t find light with ID:', id );
return null;
}
// geometry
function parseGeometry( xml ) {
var data = {
name: xml.getAttribute( 'name' ),
sources: {},
vertices: {},
primitives: []
};
var mesh = getElementsByTagName( xml, 'mesh' )[ 0 ];
// the following tags inside geometry are not supported yet (see https://github.com/mrdoob/three.js/pull/12606): convex_mesh, spline, brep
if ( mesh === undefined ) return;
for ( var i = 0; i < mesh.childNodes.length; i ++ ) {
var child = mesh.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
var id = child.getAttribute( 'id' );
switch ( child.nodeName ) {
case 'source':
data.sources[ id ] = parseSource( child );
break;
case 'vertices':
// data.sources[ id ] = data.sources[ parseId( getElementsByTagName( child, 'input' )[ 0 ].getAttribute( 'source' ) ) ];
data.vertices = parseGeometryVertices( child );
break;
case 'polygons':
console.warn( 'THREE.ColladaLoader: Unsupported primitive type: ', child.nodeName );
break;
case 'lines':
case 'linestrips':
case 'polylist':
case 'triangles':
data.primitives.push( parseGeometryPrimitive( child ) );
break;
default:
console.log( child );
}
}
library.geometries[ xml.getAttribute( 'id' ) ] = data;
}
function parseSource( xml ) {
var data = {
array: [],
stride: 3
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'float_array':
data.array = parseFloats( child.textContent );
break;
case 'Name_array':
data.array = parseStrings( child.textContent );
break;
case 'technique_common':
var accessor = getElementsByTagName( child, 'accessor' )[ 0 ];
if ( accessor !== undefined ) {
data.stride = parseInt( accessor.getAttribute( 'stride' ) );
}
break;
}
}
return data;
}
function parseGeometryVertices( xml ) {
var data = {};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
data[ child.getAttribute( 'semantic' ) ] = parseId( child.getAttribute( 'source' ) );
}
return data;
}
function parseGeometryPrimitive( xml ) {
var primitive = {
type: xml.nodeName,
material: xml.getAttribute( 'material' ),
count: parseInt( xml.getAttribute( 'count' ) ),
inputs: {},
stride: 0,
hasUV: false
};
for ( var i = 0, l = xml.childNodes.length; i < l; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
var id = parseId( child.getAttribute( 'source' ) );
var semantic = child.getAttribute( 'semantic' );
var offset = parseInt( child.getAttribute( 'offset' ) );
var set = parseInt( child.getAttribute( 'set' ) );
var inputname = ( set > 0 ? semantic + set : semantic );
primitive.inputs[ inputname ] = { id: id, offset: offset };
primitive.stride = Math.max( primitive.stride, offset + 1 );
if ( semantic === 'TEXCOORD' ) primitive.hasUV = true;
break;
case 'vcount':
primitive.vcount = parseInts( child.textContent );
break;
case 'p':
primitive.p = parseInts( child.textContent );
break;
}
}
return primitive;
}
function groupPrimitives( primitives ) {
var build = {};
for ( var i = 0; i < primitives.length; i ++ ) {
var primitive = primitives[ i ];
if ( build[ primitive.type ] === undefined ) build[ primitive.type ] = [];
build[ primitive.type ].push( primitive );
}
return build;
}
function checkUVCoordinates( primitives ) {
var count = 0;
for ( var i = 0, l = primitives.length; i < l; i ++ ) {
var primitive = primitives[ i ];
if ( primitive.hasUV === true ) {
count ++;
}
}
if ( count > 0 && count < primitives.length ) {
primitives.uvsNeedsFix = true;
}
}
function buildGeometry( data ) {
var build = {};
var sources = data.sources;
var vertices = data.vertices;
var primitives = data.primitives;
if ( primitives.length === 0 ) return {};
// our goal is to create one buffer geometry for a single type of primitives
// first, we group all primitives by their type
var groupedPrimitives = groupPrimitives( primitives );
for ( var type in groupedPrimitives ) {
var primitiveType = groupedPrimitives[ type ];
// second, ensure consistent uv coordinates for each type of primitives (polylist,triangles or lines)
checkUVCoordinates( primitiveType );
// third, create a buffer geometry for each type of primitives
build[ type ] = buildGeometryType( primitiveType, sources, vertices );
}
return build;
}
function buildGeometryType( primitives, sources, vertices ) {
var build = {};
var position = { array: [], stride: 0 };
var normal = { array: [], stride: 0 };
var uv = { array: [], stride: 0 };
var uv2 = { array: [], stride: 0 };
var color = { array: [], stride: 0 };
var skinIndex = { array: [], stride: 4 };
var skinWeight = { array: [], stride: 4 };
var geometry = new BufferGeometry();
var materialKeys = [];
var start = 0;
for ( var p = 0; p < primitives.length; p ++ ) {
var primitive = primitives[ p ];
var inputs = primitive.inputs;
// groups
var count = 0;
switch ( primitive.type ) {
case 'lines':
case 'linestrips':
count = primitive.count * 2;
break;
case 'triangles':
count = primitive.count * 3;
break;
case 'polylist':
for ( var g = 0; g < primitive.count; g ++ ) {
var vc = primitive.vcount[ g ];
switch ( vc ) {
case 3:
count += 3; // single triangle
break;
case 4:
count += 6; // quad, subdivided into two triangles
break;
default:
count += ( vc - 2 ) * 3; // polylist with more than four vertices
break;
}
}
break;
default:
console.warn( 'THREE.ColladaLoader: Unknow primitive type:', primitive.type );
}
geometry.addGroup( start, count, p );
start += count;
// material
if ( primitive.material ) {
materialKeys.push( primitive.material );
}
// geometry data
for ( var name in inputs ) {
var input = inputs[ name ];
switch ( name ) {
case 'VERTEX':
for ( var key in vertices ) {
var id = vertices[ key ];
switch ( key ) {
case 'POSITION':
var prevLength = position.array.length;
buildGeometryData( primitive, sources[ id ], input.offset, position.array );
position.stride = sources[ id ].stride;
if ( sources.skinWeights && sources.skinIndices ) {
buildGeometryData( primitive, sources.skinIndices, input.offset, skinIndex.array );
buildGeometryData( primitive, sources.skinWeights, input.offset, skinWeight.array );
}
// see #3803
if ( primitive.hasUV === false && primitives.uvsNeedsFix === true ) {
var count = ( position.array.length - prevLength ) / position.stride;
for ( var i = 0; i < count; i ++ ) {
// fill missing uv coordinates
uv.array.push( 0, 0 );
}
}
break;
case 'NORMAL':
buildGeometryData( primitive, sources[ id ], input.offset, normal.array );
normal.stride = sources[ id ].stride;
break;
case 'COLOR':
buildGeometryData( primitive, sources[ id ], input.offset, color.array );
color.stride = sources[ id ].stride;
break;
case 'TEXCOORD':
buildGeometryData( primitive, sources[ id ], input.offset, uv.array );
uv.stride = sources[ id ].stride;
break;
case 'TEXCOORD1':
buildGeometryData( primitive, sources[ id ], input.offset, uv2.array );
uv.stride = sources[ id ].stride;
break;
default:
console.warn( 'THREE.ColladaLoader: Semantic "%s" not handled in geometry build process.', key );
}
}
break;
case 'NORMAL':
buildGeometryData( primitive, sources[ input.id ], input.offset, normal.array );
normal.stride = sources[ input.id ].stride;
break;
case 'COLOR':
buildGeometryData( primitive, sources[ input.id ], input.offset, color.array );
color.stride = sources[ input.id ].stride;
break;
case 'TEXCOORD':
buildGeometryData( primitive, sources[ input.id ], input.offset, uv.array );
uv.stride = sources[ input.id ].stride;
break;
case 'TEXCOORD1':
buildGeometryData( primitive, sources[ input.id ], input.offset, uv2.array );
uv2.stride = sources[ input.id ].stride;
break;
}
}
}
// build geometry
if ( position.array.length > 0 ) geometry.setAttribute( 'position', new Float32BufferAttribute( position.array, position.stride ) );
if ( normal.array.length > 0 ) geometry.setAttribute( 'normal', new Float32BufferAttribute( normal.array, normal.stride ) );
if ( color.array.length > 0 ) geometry.setAttribute( 'color', new Float32BufferAttribute( color.array, color.stride ) );
if ( uv.array.length > 0 ) geometry.setAttribute( 'uv', new Float32BufferAttribute( uv.array, uv.stride ) );
if ( uv2.array.length > 0 ) geometry.setAttribute( 'uv2', new Float32BufferAttribute( uv2.array, uv2.stride ) );
if ( skinIndex.array.length > 0 ) geometry.setAttribute( 'skinIndex', new Float32BufferAttribute( skinIndex.array, skinIndex.stride ) );
if ( skinWeight.array.length > 0 ) geometry.setAttribute( 'skinWeight', new Float32BufferAttribute( skinWeight.array, skinWeight.stride ) );
build.data = geometry;
build.type = primitives[ 0 ].type;
build.materialKeys = materialKeys;
return build;
}
function buildGeometryData( primitive, source, offset, array ) {
var indices = primitive.p;
var stride = primitive.stride;
var vcount = primitive.vcount;
function pushVector( i ) {
var index = indices[ i + offset ] * sourceStride;
var length = index + sourceStride;
for ( ; index < length; index ++ ) {
array.push( sourceArray[ index ] );
}
}
var sourceArray = source.array;
var sourceStride = source.stride;
if ( primitive.vcount !== undefined ) {
var index = 0;
for ( var i = 0, l = vcount.length; i < l; i ++ ) {
var count = vcount[ i ];
if ( count === 4 ) {
var a = index + stride * 0;
var b = index + stride * 1;
var c = index + stride * 2;
var d = index + stride * 3;
pushVector( a ); pushVector( b ); pushVector( d );
pushVector( b ); pushVector( c ); pushVector( d );
} else if ( count === 3 ) {
var a = index + stride * 0;
var b = index + stride * 1;
var c = index + stride * 2;
pushVector( a ); pushVector( b ); pushVector( c );
} else if ( count > 4 ) {
for ( var k = 1, kl = ( count - 2 ); k <= kl; k ++ ) {
var a = index + stride * 0;
var b = index + stride * k;
var c = index + stride * ( k + 1 );
pushVector( a ); pushVector( b ); pushVector( c );
}
}
index += stride * count;
}
} else {
for ( var i = 0, l = indices.length; i < l; i += stride ) {
pushVector( i );
}
}
}
function getGeometry( id ) {
return getBuild( library.geometries[ id ], buildGeometry );
}
// kinematics
function parseKinematicsModel( xml ) {
var data = {
name: xml.getAttribute( 'name' ) || '',
joints: {},
links: []
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique_common':
parseKinematicsTechniqueCommon( child, data );
break;
}
}
library.kinematicsModels[ xml.getAttribute( 'id' ) ] = data;
}
function buildKinematicsModel( data ) {
if ( data.build !== undefined ) return data.build;
return data;
}
function getKinematicsModel( id ) {
return getBuild( library.kinematicsModels[ id ], buildKinematicsModel );
}
function parseKinematicsTechniqueCommon( xml, data ) {
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'joint':
data.joints[ child.getAttribute( 'sid' ) ] = parseKinematicsJoint( child );
break;
case 'link':
data.links.push( parseKinematicsLink( child ) );
break;
}
}
}
function parseKinematicsJoint( xml ) {
var data;
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'prismatic':
case 'revolute':
data = parseKinematicsJointParameter( child );
break;
}
}
return data;
}
function parseKinematicsJointParameter( xml, data ) {
var data = {
sid: xml.getAttribute( 'sid' ),
name: xml.getAttribute( 'name' ) || '',
axis: new Vector3(),
limits: {
min: 0,
max: 0
},
type: xml.nodeName,
static: false,
zeroPosition: 0,
middlePosition: 0
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'axis':
var array = parseFloats( child.textContent );
data.axis.fromArray( array );
break;
case 'limits':
var max = child.getElementsByTagName( 'max' )[ 0 ];
var min = child.getElementsByTagName( 'min' )[ 0 ];
data.limits.max = parseFloat( max.textContent );
data.limits.min = parseFloat( min.textContent );
break;
}
}
// if min is equal to or greater than max, consider the joint static
if ( data.limits.min >= data.limits.max ) {
data.static = true;
}
// calculate middle position
data.middlePosition = ( data.limits.min + data.limits.max ) / 2.0;
return data;
}
function parseKinematicsLink( xml ) {
var data = {
sid: xml.getAttribute( 'sid' ),
name: xml.getAttribute( 'name' ) || '',
attachments: [],
transforms: []
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'attachment_full':
data.attachments.push( parseKinematicsAttachment( child ) );
break;
case 'matrix':
case 'translate':
case 'rotate':
data.transforms.push( parseKinematicsTransform( child ) );
break;
}
}
return data;
}
function parseKinematicsAttachment( xml ) {
var data = {
joint: xml.getAttribute( 'joint' ).split( '/' ).pop(),
transforms: [],
links: []
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'link':
data.links.push( parseKinematicsLink( child ) );
break;
case 'matrix':
case 'translate':
case 'rotate':
data.transforms.push( parseKinematicsTransform( child ) );
break;
}
}
return data;
}
function parseKinematicsTransform( xml ) {
var data = {
type: xml.nodeName
};
var array = parseFloats( xml.textContent );
switch ( data.type ) {
case 'matrix':
data.obj = new Matrix4();
data.obj.fromArray( array ).transpose();
break;
case 'translate':
data.obj = new Vector3();
data.obj.fromArray( array );
break;
case 'rotate':
data.obj = new Vector3();
data.obj.fromArray( array );
data.angle = MathUtils.degToRad( array[ 3 ] );
break;
}
return data;
}
// physics
function parsePhysicsModel( xml ) {
var data = {
name: xml.getAttribute( 'name' ) || '',
rigidBodies: {}
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'rigid_body':
data.rigidBodies[ child.getAttribute( 'name' ) ] = {};
parsePhysicsRigidBody( child, data.rigidBodies[ child.getAttribute( 'name' ) ] );
break;
}
}
library.physicsModels[ xml.getAttribute( 'id' ) ] = data;
}
function parsePhysicsRigidBody( xml, data ) {
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique_common':
parsePhysicsTechniqueCommon( child, data );
break;
}
}
}
function parsePhysicsTechniqueCommon( xml, data ) {
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'inertia':
data.inertia = parseFloats( child.textContent );
break;
case 'mass':
data.mass = parseFloats( child.textContent )[ 0 ];
break;
}
}
}
// scene
function parseKinematicsScene( xml ) {
var data = {
bindJointAxis: []
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'bind_joint_axis':
data.bindJointAxis.push( parseKinematicsBindJointAxis( child ) );
break;
}
}
library.kinematicsScenes[ parseId( xml.getAttribute( 'url' ) ) ] = data;
}
function parseKinematicsBindJointAxis( xml ) {
var data = {
target: xml.getAttribute( 'target' ).split( '/' ).pop()
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'axis':
var param = child.getElementsByTagName( 'param' )[ 0 ];
data.axis = param.textContent;
var tmpJointIndex = data.axis.split( 'inst_' ).pop().split( 'axis' )[ 0 ];
data.jointIndex = tmpJointIndex.substr( 0, tmpJointIndex.length - 1 );
break;
}
}
return data;
}
function buildKinematicsScene( data ) {
if ( data.build !== undefined ) return data.build;
return data;
}
function getKinematicsScene( id ) {
return getBuild( library.kinematicsScenes[ id ], buildKinematicsScene );
}
function setupKinematics() {
var kinematicsModelId = Object.keys( library.kinematicsModels )[ 0 ];
var kinematicsSceneId = Object.keys( library.kinematicsScenes )[ 0 ];
var visualSceneId = Object.keys( library.visualScenes )[ 0 ];
if ( kinematicsModelId === undefined || kinematicsSceneId === undefined ) return;
var kinematicsModel = getKinematicsModel( kinematicsModelId );
var kinematicsScene = getKinematicsScene( kinematicsSceneId );
var visualScene = getVisualScene( visualSceneId );
var bindJointAxis = kinematicsScene.bindJointAxis;
var jointMap = {};
for ( var i = 0, l = bindJointAxis.length; i < l; i ++ ) {
var axis = bindJointAxis[ i ];
// the result of the following query is an element of type 'translate', 'rotate','scale' or 'matrix'
var targetElement = collada.querySelector( '[sid="' + axis.target + '"]' );
if ( targetElement ) {
// get the parent of the transform element
var parentVisualElement = targetElement.parentElement;
// connect the joint of the kinematics model with the element in the visual scene
connect( axis.jointIndex, parentVisualElement );
}
}
function connect( jointIndex, visualElement ) {
var visualElementName = visualElement.getAttribute( 'name' );
var joint = kinematicsModel.joints[ jointIndex ];
visualScene.traverse( function ( object ) {
if ( object.name === visualElementName ) {
jointMap[ jointIndex ] = {
object: object,
transforms: buildTransformList( visualElement ),
joint: joint,
position: joint.zeroPosition
};
}
} );
}
var m0 = new Matrix4();
kinematics = {
joints: kinematicsModel && kinematicsModel.joints,
getJointValue: function ( jointIndex ) {
var jointData = jointMap[ jointIndex ];
if ( jointData ) {
return jointData.position;
} else {
console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' doesn\'t exist.' );
}
},
setJointValue: function ( jointIndex, value ) {
var jointData = jointMap[ jointIndex ];
if ( jointData ) {
var joint = jointData.joint;
if ( value > joint.limits.max || value < joint.limits.min ) {
console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' value ' + value + ' outside of limits (min: ' + joint.limits.min + ', max: ' + joint.limits.max + ').' );
} else if ( joint.static ) {
console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' is static.' );
} else {
var object = jointData.object;
var axis = joint.axis;
var transforms = jointData.transforms;
matrix.identity();
// each update, we have to apply all transforms in the correct order
for ( var i = 0; i < transforms.length; i ++ ) {
var transform = transforms[ i ];
// if there is a connection of the transform node with a joint, apply the joint value
if ( transform.sid && transform.sid.indexOf( jointIndex ) !== - 1 ) {
switch ( joint.type ) {
case 'revolute':
matrix.multiply( m0.makeRotationAxis( axis, MathUtils.degToRad( value ) ) );
break;
case 'prismatic':
matrix.multiply( m0.makeTranslation( axis.x * value, axis.y * value, axis.z * value ) );
break;
default:
console.warn( 'THREE.ColladaLoader: Unknown joint type: ' + joint.type );
break;
}
} else {
switch ( transform.type ) {
case 'matrix':
matrix.multiply( transform.obj );
break;
case 'translate':
matrix.multiply( m0.makeTranslation( transform.obj.x, transform.obj.y, transform.obj.z ) );
break;
case 'scale':
matrix.scale( transform.obj );
break;
case 'rotate':
matrix.multiply( m0.makeRotationAxis( transform.obj, transform.angle ) );
break;
}
}
}
object.matrix.copy( matrix );
object.matrix.decompose( object.position, object.quaternion, object.scale );
jointMap[ jointIndex ].position = value;
}
} else {
console.log( 'THREE.ColladaLoader: ' + jointIndex + ' does not exist.' );
}
}
};
}
function buildTransformList( node ) {
var transforms = [];
var xml = collada.querySelector( '[id="' + node.id + '"]' );
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'matrix':
var array = parseFloats( child.textContent );
var matrix = new Matrix4().fromArray( array ).transpose();
transforms.push( {
sid: child.getAttribute( 'sid' ),
type: child.nodeName,
obj: matrix
} );
break;
case 'translate':
case 'scale':
var array = parseFloats( child.textContent );
var vector = new Vector3().fromArray( array );
transforms.push( {
sid: child.getAttribute( 'sid' ),
type: child.nodeName,
obj: vector
} );
break;
case 'rotate':
var array = parseFloats( child.textContent );
var vector = new Vector3().fromArray( array );
var angle = MathUtils.degToRad( array[ 3 ] );
transforms.push( {
sid: child.getAttribute( 'sid' ),
type: child.nodeName,
obj: vector,
angle: angle
} );
break;
}
}
return transforms;
}
// nodes
function prepareNodes( xml ) {
var elements = xml.getElementsByTagName( 'node' );
// ensure all node elements have id attributes
for ( var i = 0; i < elements.length; i ++ ) {
var element = elements[ i ];
if ( element.hasAttribute( 'id' ) === false ) {
element.setAttribute( 'id', generateId() );
}
}
}
var matrix = new Matrix4();
var vector = new Vector3();
function parseNode( xml ) {
var data = {
name: xml.getAttribute( 'name' ) || '',
type: xml.getAttribute( 'type' ),
id: xml.getAttribute( 'id' ),
sid: xml.getAttribute( 'sid' ),
matrix: new Matrix4(),
nodes: [],
instanceCameras: [],
instanceControllers: [],
instanceLights: [],
instanceGeometries: [],
instanceNodes: [],
transforms: {}
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'node':
data.nodes.push( child.getAttribute( 'id' ) );
parseNode( child );
break;
case 'instance_camera':
data.instanceCameras.push( parseId( child.getAttribute( 'url' ) ) );
break;
case 'instance_controller':
data.instanceControllers.push( parseNodeInstance( child ) );
break;
case 'instance_light':
data.instanceLights.push( parseId( child.getAttribute( 'url' ) ) );
break;
case 'instance_geometry':
data.instanceGeometries.push( parseNodeInstance( child ) );
break;
case 'instance_node':
data.instanceNodes.push( parseId( child.getAttribute( 'url' ) ) );
break;
case 'matrix':
var array = parseFloats( child.textContent );
data.matrix.multiply( matrix.fromArray( array ).transpose() );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'translate':
var array = parseFloats( child.textContent );
vector.fromArray( array );
data.matrix.multiply( matrix.makeTranslation( vector.x, vector.y, vector.z ) );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'rotate':
var array = parseFloats( child.textContent );
var angle = MathUtils.degToRad( array[ 3 ] );
data.matrix.multiply( matrix.makeRotationAxis( vector.fromArray( array ), angle ) );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'scale':
var array = parseFloats( child.textContent );
data.matrix.scale( vector.fromArray( array ) );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'extra':
break;
default:
console.log( child );
}
}
if ( hasNode( data.id ) ) {
console.warn( 'THREE.ColladaLoader: There is already a node with ID %s. Exclude current node from further processing.', data.id );
} else {
library.nodes[ data.id ] = data;
}
return data;
}
function parseNodeInstance( xml ) {
var data = {
id: parseId( xml.getAttribute( 'url' ) ),
materials: {},
skeletons: []
};
for ( var i = 0; i < xml.childNodes.length; i ++ ) {
var child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'bind_material':
var instances = child.getElementsByTagName( 'instance_material' );
for ( var j = 0; j < instances.length; j ++ ) {
var instance = instances[ j ];
var symbol = instance.getAttribute( 'symbol' );
var target = instance.getAttribute( 'target' );
data.materials[ symbol ] = parseId( target );
}
break;
case 'skeleton':
data.skeletons.push( parseId( child.textContent ) );
break;
default:
break;
}
}
return data;
}
function buildSkeleton( skeletons, joints ) {
var boneData = [];
var sortedBoneData = [];
var i, j, data;
// a skeleton can have multiple root bones. collada expresses this
// situtation with multiple "skeleton" tags per controller instance
for ( i = 0; i < skeletons.length; i ++ ) {
var skeleton = skeletons[ i ];
var root;
if ( hasNode( skeleton ) ) {
root = getNode( skeleton );
buildBoneHierarchy( root, joints, boneData );
} else if ( hasVisualScene( skeleton ) ) {
// handle case where the skeleton refers to the visual scene (#13335)
var visualScene = library.visualScenes[ skeleton ];
var children = visualScene.children;
for ( var j = 0; j < children.length; j ++ ) {
var child = children[ j ];
if ( child.type === 'JOINT' ) {
var root = getNode( child.id );
buildBoneHierarchy( root, joints, boneData );
}
}
} else {
console.error( 'THREE.ColladaLoader: Unable to find root bone of skeleton with ID:', skeleton );
}
}
// sort bone data (the order is defined in the corresponding controller)
for ( i = 0; i < joints.length; i ++ ) {
for ( j = 0; j < boneData.length; j ++ ) {
data = boneData[ j ];
if ( data.bone.name === joints[ i ].name ) {
sortedBoneData[ i ] = data;
data.processed = true;
break;
}
}
}
// add unprocessed bone data at the end of the list
for ( i = 0; i < boneData.length; i ++ ) {
data = boneData[ i ];
if ( data.processed === false ) {
sortedBoneData.push( data );
data.processed = true;
}
}
// setup arrays for skeleton creation
var bones = [];
var boneInverses = [];
for ( i = 0; i < sortedBoneData.length; i ++ ) {
data = sortedBoneData[ i ];
bones.push( data.bone );
boneInverses.push( data.boneInverse );
}
return new Skeleton( bones, boneInverses );
}
function buildBoneHierarchy( root, joints, boneData ) {
// setup bone data from visual scene
root.traverse( function ( object ) {
if ( object.isBone === true ) {
var boneInverse;
// retrieve the boneInverse from the controller data
for ( var i = 0; i < joints.length; i ++ ) {
var joint = joints[ i ];
if ( joint.name === object.name ) {
boneInverse = joint.boneInverse;
break;
}
}
if ( boneInverse === undefined ) {
// Unfortunately, there can be joints in the visual scene that are not part of the
// corresponding controller. In this case, we have to create a dummy boneInverse matrix
// for the respective bone. This bone won't affect any vertices, because there are no skin indices
// and weights defined for it. But we still have to add the bone to the sorted bone list in order to
// ensure a correct animation of the model.
boneInverse = new Matrix4();
}
boneData.push( { bone: object, boneInverse: boneInverse, processed: false } );
}
} );
}
function buildNode( data ) {
var objects = [];
var matrix = data.matrix;
var nodes = data.nodes;
var type = data.type;
var instanceCameras = data.instanceCameras;
var instanceControllers = data.instanceControllers;
var instanceLights = data.instanceLights;
var instanceGeometries = data.instanceGeometries;
var instanceNodes = data.instanceNodes;
// nodes
for ( var i = 0, l = nodes.length; i < l; i ++ ) {
objects.push( getNode( nodes[ i ] ) );
}
// instance cameras
for ( var i = 0, l = instanceCameras.length; i < l; i ++ ) {
var instanceCamera = getCamera( instanceCameras[ i ] );
if ( instanceCamera !== null ) {
objects.push( instanceCamera.clone() );
}
}
// instance controllers
for ( var i = 0, l = instanceControllers.length; i < l; i ++ ) {
var instance = instanceControllers[ i ];
var controller = getController( instance.id );
var geometries = getGeometry( controller.id );
var newObjects = buildObjects( geometries, instance.materials );
var skeletons = instance.skeletons;
var joints = controller.skin.joints;
var skeleton = buildSkeleton( skeletons, joints );
for ( var j = 0, jl = newObjects.length; j < jl; j ++ ) {
var object = newObjects[ j ];
if ( object.isSkinnedMesh ) {
object.bind( skeleton, controller.skin.bindMatrix );
object.normalizeSkinWeights();
}
objects.push( object );
}
}
// instance lights
for ( var i = 0, l = instanceLights.length; i < l; i ++ ) {
var instanceLight = getLight( instanceLights[ i ] );
if ( instanceLight !== null ) {
objects.push( instanceLight.clone() );
}
}
// instance geometries
for ( var i = 0, l = instanceGeometries.length; i < l; i ++ ) {
var instance = instanceGeometries[ i ];
// a single geometry instance in collada can lead to multiple object3Ds.
// this is the case when primitives are combined like triangles and lines
var geometries = getGeometry( instance.id );
var newObjects = buildObjects( geometries, instance.materials );
for ( var j = 0, jl = newObjects.length; j < jl; j ++ ) {
objects.push( newObjects[ j ] );
}
}
// instance nodes
for ( var i = 0, l = instanceNodes.length; i < l; i ++ ) {
objects.push( getNode( instanceNodes[ i ] ).clone() );
}
var object;
if ( nodes.length === 0 && objects.length === 1 ) {
object = objects[ 0 ];
} else {
object = ( type === 'JOINT' ) ? new Bone() : new Group();
for ( var i = 0; i < objects.length; i ++ ) {
object.add( objects[ i ] );
}
}
object.name = ( type === 'JOINT' ) ? data.sid : data.name;
object.matrix.copy( matrix );
object.matrix.decompose( object.position, object.quaternion, object.scale );
return object;
}
var fallbackMaterial = new MeshBasicMaterial( { color: 0xff00ff } );
function resolveMaterialBinding( keys, instanceMaterials ) {
var materials = [];
for ( var i = 0, l = keys.length; i < l; i ++ ) {
var id = instanceMaterials[ keys[ i ] ];
if ( id === undefined ) {
console.warn( 'THREE.ColladaLoader: Material with key %s not found. Apply fallback material.', keys[ i ] );
materials.push( fallbackMaterial );
} else {
materials.push( getMaterial( id ) );
}
}
return materials;
}
function buildObjects( geometries, instanceMaterials ) {
var objects = [];
for ( var type in geometries ) {
var geometry = geometries[ type ];
var materials = resolveMaterialBinding( geometry.materialKeys, instanceMaterials );
// handle case if no materials are defined
if ( materials.length === 0 ) {
if ( type === 'lines' || type === 'linestrips' ) {
materials.push( new LineBasicMaterial() );
} else {
materials.push( new MeshPhongMaterial() );
}
}
// regard skinning
var skinning = ( geometry.data.attributes.skinIndex !== undefined );
if ( skinning ) {
for ( var i = 0, l = materials.length; i < l; i ++ ) {
materials[ i ].skinning = true;
}
}
// choose between a single or multi materials (material array)
var material = ( materials.length === 1 ) ? materials[ 0 ] : materials;
// now create a specific 3D object
var object;
switch ( type ) {
case 'lines':
object = new LineSegments( geometry.data, material );
break;
case 'linestrips':
object = new Line( geometry.data, material );
break;
case 'triangles':
case 'polylist':
if ( skinning ) {
object = new SkinnedMesh( geometry.data, material );
} else {
object = new Mesh( geometry.data, material );
}
break;
}
objects.push( object );
}
return objects;
}
function hasNode( id ) {
return library.nodes[ id ] !== undefined;
}
function getNode( id ) {
return getBuild( library.nodes[ id ], buildNode );
}
// visual scenes
function parseVisualScene( xml ) {
var data = {
name: xml.getAttribute( 'name' ),
children: []
};
prepareNodes( xml );
var elements = getElementsByTagName( xml, 'node' );
for ( var i = 0; i < elements.length; i ++ ) {
data.children.push( parseNode( elements[ i ] ) );
}
library.visualScenes[ xml.getAttribute( 'id' ) ] = data;
}
function buildVisualScene( data ) {
var group = new Group();
group.name = data.name;
var children = data.children;
for ( var i = 0; i < children.length; i ++ ) {
var child = children[ i ];
group.add( getNode( child.id ) );
}
return group;
}
function hasVisualScene( id ) {
return library.visualScenes[ id ] !== undefined;
}
function getVisualScene( id ) {
return getBuild( library.visualScenes[ id ], buildVisualScene );
}
// scenes
function parseScene( xml ) {
var instance = getElementsByTagName( xml, 'instance_visual_scene' )[ 0 ];
return getVisualScene( parseId( instance.getAttribute( 'url' ) ) );
}
function setupAnimations() {
var clips = library.clips;
if ( isEmpty( clips ) === true ) {
if ( isEmpty( library.animations ) === false ) {
// if there are animations but no clips, we create a default clip for playback
var tracks = [];
for ( var id in library.animations ) {
var animationTracks = getAnimation( id );
for ( var i = 0, l = animationTracks.length; i < l; i ++ ) {
tracks.push( animationTracks[ i ] );
}
}
animations.push( new AnimationClip( 'default', - 1, tracks ) );
}
} else {
for ( var id in clips ) {
animations.push( getAnimationClip( id ) );
}
}
}
// convert the parser error element into text with each child elements text
// separated by new lines.
function parserErrorToText( parserError ) {
var result = '';
var stack = [ parserError ];
while ( stack.length ) {
var node = stack.shift();
if ( node.nodeType === Node.TEXT_NODE ) {
result += node.textContent;
} else {
result += '\n';
stack.push.apply( stack, node.childNodes );
}
}
return result.trim();
}
if ( text.length === 0 ) {
return { scene: new Scene() };
}
var xml = new DOMParser().parseFromString( text, 'application/xml' );
var collada = getElementsByTagName( xml, 'COLLADA' )[ 0 ];
var parserError = xml.getElementsByTagName( 'parsererror' )[ 0 ];
if ( parserError !== undefined ) {
// Chrome will return parser error with a div in it
var errorElement = getElementsByTagName( parserError, 'div' )[ 0 ];
var errorText;
if ( errorElement ) {
errorText = errorElement.textContent;
} else {
errorText = parserErrorToText( parserError );
}
console.error( 'THREE.ColladaLoader: Failed to parse collada file.\n', errorText );
return null;
}
// metadata
var version = collada.getAttribute( 'version' );
console.log( 'THREE.ColladaLoader: File version', version );
var asset = parseAsset( getElementsByTagName( collada, 'asset' )[ 0 ] );
var textureLoader = new TextureLoader( this.manager );
textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
var tgaLoader;
if ( TGALoader ) {
tgaLoader = new TGALoader( this.manager );
tgaLoader.setPath( this.resourcePath || path );
}
//
var animations = [];
var kinematics = {};
var count = 0;
//
var library = {
animations: {},
clips: {},
controllers: {},
images: {},
effects: {},
materials: {},
cameras: {},
lights: {},
geometries: {},
nodes: {},
visualScenes: {},
kinematicsModels: {},
physicsModels: {},
kinematicsScenes: {}
};
parseLibrary( collada, 'library_animations', 'animation', parseAnimation );
parseLibrary( collada, 'library_animation_clips', 'animation_clip', parseAnimationClip );
parseLibrary( collada, 'library_controllers', 'controller', parseController );
parseLibrary( collada, 'library_images', 'image', parseImage );
parseLibrary( collada, 'library_effects', 'effect', parseEffect );
parseLibrary( collada, 'library_materials', 'material', parseMaterial );
parseLibrary( collada, 'library_cameras', 'camera', parseCamera );
parseLibrary( collada, 'library_lights', 'light', parseLight );
parseLibrary( collada, 'library_geometries', 'geometry', parseGeometry );
parseLibrary( collada, 'library_nodes', 'node', parseNode );
parseLibrary( collada, 'library_visual_scenes', 'visual_scene', parseVisualScene );
parseLibrary( collada, 'library_kinematics_models', 'kinematics_model', parseKinematicsModel );
parseLibrary( collada, 'library_physics_models', 'physics_model', parsePhysicsModel );
parseLibrary( collada, 'scene', 'instance_kinematics_scene', parseKinematicsScene );
buildLibrary( library.animations, buildAnimation );
buildLibrary( library.clips, buildAnimationClip );
buildLibrary( library.controllers, buildController );
buildLibrary( library.images, buildImage );
buildLibrary( library.effects, buildEffect );
buildLibrary( library.materials, buildMaterial );
buildLibrary( library.cameras, buildCamera );
buildLibrary( library.lights, buildLight );
buildLibrary( library.geometries, buildGeometry );
buildLibrary( library.visualScenes, buildVisualScene );
setupAnimations();
setupKinematics();
var scene = parseScene( getElementsByTagName( collada, 'scene' )[ 0 ] );
if ( asset.upAxis === 'Z_UP' ) {
scene.quaternion.setFromEuler( new Euler( - Math.PI / 2, 0, 0 ) );
}
scene.scale.multiplyScalar( asset.unit );
return {
animations: animations,
kinematics: kinematics,
library: library,
scene: scene
};
}
} );
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-collada.vue?vue&type=script&lang=js&
/* harmony default export */ var model_colladavue_type_script_lang_js_ = ({
name: 'model-collada',
mixins: [model_mixin],
props: {
lights: {
type: Array,
default: function _default() {
return [{
type: 'HemisphereLight',
position: {
x: 0,
y: 1,
z: 0
},
skyColor: 0xaaaaff,
groundColor: 0x806060,
intensity: 0.2
}, {
type: 'DirectionalLight',
position: {
x: 1,
y: 1,
z: 1
},
color: 0xffffff,
intensity: 0.8
}];
}
},
smoothing: {
type: Boolean,
default: false
}
},
data: function data() {
var loader = new ColladaLoader();
loader.setCrossOrigin(this.crossOrigin);
return {
loader: loader
};
},
methods: {
getObject: function getObject(collada) {
return collada.scene;
}
}
});
// CONCATENATED MODULE: ./src/model-collada.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_colladavue_type_script_lang_js_ = (model_colladavue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-collada.vue
var model_collada_render, model_collada_staticRenderFns
/* normalize component */
var model_collada_component = normalizeComponent(
src_model_colladavue_type_script_lang_js_,
model_collada_render,
model_collada_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_collada = (model_collada_component.exports);
// CONCATENATED MODULE: ./node_modules/_three@0.118.3@three/examples/jsm/loaders/GLTFLoader.js
/**
* @author Rich Tibbett / https://github.com/richtr
* @author mrdoob / http://mrdoob.com/
* @author Tony Parisi / http://www.tonyparisi.com/
* @author Takahiro / https://github.com/takahirox
* @author Don McCurdy / https://www.donmccurdy.com
*/
var GLTFLoader_GLTFLoader = ( function () {
function GLTFLoader( manager ) {
Loader.call( this, manager );
this.dracoLoader = null;
this.ddsLoader = null;
this.pluginCallbacks = [];
this.register( function ( parser ) {
return new GLTFMaterialsClearcoatExtension( parser );
} );
}
GLTFLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: GLTFLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var resourcePath;
if ( this.resourcePath !== '' ) {
resourcePath = this.resourcePath;
} else if ( this.path !== '' ) {
resourcePath = this.path;
} else {
resourcePath = LoaderUtils.extractUrlBase( url );
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
scope.manager.itemStart( url );
var _onError = function ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
};
var loader = new FileLoader( scope.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
if ( scope.crossOrigin === 'use-credentials' ) {
loader.setWithCredentials( true );
}
loader.load( url, function ( data ) {
try {
scope.parse( data, resourcePath, function ( gltf ) {
onLoad( gltf );
scope.manager.itemEnd( url );
}, _onError );
} catch ( e ) {
_onError( e );
}
}, onProgress, _onError );
},
setDRACOLoader: function ( dracoLoader ) {
this.dracoLoader = dracoLoader;
return this;
},
setDDSLoader: function ( ddsLoader ) {
this.ddsLoader = ddsLoader;
return this;
},
register: function ( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) {
this.pluginCallbacks.push( callback );
}
return this;
},
unregister: function ( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) {
this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 );
}
return this;
},
parse: function ( data, path, onLoad, onError ) {
var content;
var extensions = {};
var plugins = {};
if ( typeof data === 'string' ) {
content = data;
} else {
var magic = LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content;
} else {
content = LoaderUtils.decodeText( new Uint8Array( data ) );
}
}
var json = JSON.parse( content );
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
return;
}
var parser = new GLTFParser( json, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
manager: this.manager
} );
parser.fileLoader.setRequestHeader( this.requestHeader );
for ( var i = 0; i < this.pluginCallbacks.length; i ++ ) {
var plugin = this.pluginCallbacks[ i ]( parser );
plugins[ plugin.name ] = plugin;
// Workaround to avoid determining as unknown extension
// in addUnknownExtensionsToUserData().
// Remove this workaround if we move all the existing
// extension handlers to plugin system
extensions[ plugin.name ] = true;
}
if ( json.extensionsUsed ) {
for ( var i = 0; i < json.extensionsUsed.length; ++ i ) {
var extensionName = json.extensionsUsed[ i ];
var extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
extensions[ extensionName ] = new GLTFLightsExtension( json );
break;
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.MSFT_TEXTURE_DDS:
extensions[ extensionName ] = new GLTFTextureDDSExtension( this.ddsLoader );
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[ extensionName ] = new GLTFTextureTransformExtension();
break;
case EXTENSIONS.KHR_MESH_QUANTIZATION:
extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
parser.setExtensions( extensions );
parser.setPlugins( plugins );
parser.parse( onLoad, onError );
}
} );
/* GLTFREGISTRY */
function GLTFRegistry() {
var objects = {};
return {
get: function ( key ) {
return objects[ key ];
},
add: function ( key, object ) {
objects[ key ] = object;
},
remove: function ( key ) {
delete objects[ key ];
},
removeAll: function () {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
var EXTENSIONS = {
KHR_BINARY_GLTF: 'KHR_binary_glTF',
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat',
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization',
MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
};
/**
* DDS Texture Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
*
*/
function GLTFTextureDDSExtension( ddsLoader ) {
if ( ! ddsLoader ) {
throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing DDSLoader' );
}
this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
this.ddsLoader = ddsLoader;
}
/**
* Punctual Lights Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
*/
function GLTFLightsExtension( json ) {
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] ) || {};
this.lightDefs = extension.lights || [];
}
GLTFLightsExtension.prototype.loadLight = function ( lightIndex ) {
var lightDef = this.lightDefs[ lightIndex ];
var lightNode;
var color = new Color( 0xffffff );
if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );
var range = lightDef.range !== undefined ? lightDef.range : 0;
switch ( lightDef.type ) {
case 'directional':
lightNode = new DirectionalLight( color );
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new PointLight( color );
lightNode.distance = range;
break;
case 'spot':
lightNode = new SpotLight( color );
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
default:
throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' );
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set( 0, 0, 0 );
lightNode.decay = 2;
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
lightNode.name = lightDef.name || ( 'light_' + lightIndex );
return Promise.resolve( lightNode );
};
/**
* Unlit Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
*/
function GLTFMaterialsUnlitExtension() {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () {
return MeshBasicMaterial;
};
GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) {
var pending = [];
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
var metallicRoughness = materialDef.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );
}
}
return Promise.all( pending );
};
/**
* Clearcoat Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
*/
function GLTFMaterialsClearcoatExtension( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;
}
GLTFMaterialsClearcoatExtension.prototype.getMaterialType = function ( /* materialIndex */ ) {
return MeshPhysicalMaterial;
};
GLTFMaterialsClearcoatExtension.prototype.extendMaterialParams = function ( materialIndex, materialParams ) {
var parser = this.parser;
var materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
var pending = [];
var extension = materialDef.extensions[ this.name ];
if ( extension.clearcoatFactor !== undefined ) {
materialParams.clearcoat = extension.clearcoatFactor;
}
if ( extension.clearcoatTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
}
if ( extension.clearcoatRoughnessFactor !== undefined ) {
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
}
if ( extension.clearcoatRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
}
if ( extension.clearcoatNormalTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
if ( extension.clearcoatNormalTexture.scale !== undefined ) {
var scale = extension.clearcoatNormalTexture.scale;
materialParams.clearcoatNormalScale = new Vector2( scale, scale );
}
}
return Promise.all( pending );
};
/* BINARY EXTENSION */
var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };
function GLTFBinaryExtension( data ) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
this.header = {
magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
version: headerView.getUint32( 4, true ),
length: headerView.getUint32( 8, true )
};
if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
} else if ( this.header.version < 2.0 ) {
throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );
}
var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
var chunkIndex = 0;
while ( chunkIndex < chunkView.byteLength ) {
var chunkLength = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
var chunkType = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
this.content = LoaderUtils.decodeText( contentArray );
} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice( byteOffset, byteOffset + chunkLength );
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if ( this.content === null ) {
throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
}
}
/**
* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
*/
function GLTFDracoMeshCompressionExtension( json, dracoLoader ) {
if ( ! dracoLoader ) {
throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
this.dracoLoader.preload();
}
GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) {
var json = this.json;
var dracoLoader = this.dracoLoader;
var bufferViewIndex = primitive.extensions[ this.name ].bufferView;
var gltfAttributeMap = primitive.extensions[ this.name ].attributes;
var threeAttributeMap = {};
var attributeNormalizedMap = {};
var attributeTypeMap = {};
for ( var attributeName in gltfAttributeMap ) {
var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
}
for ( attributeName in primitive.attributes ) {
var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ threeAttributeName ] = componentType;
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( var attributeName in geometry.attributes ) {
var attribute = geometry.attributes[ attributeName ];
var normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap );
} );
} );
};
/**
* Texture Transform Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
*/
function GLTFTextureTransformExtension() {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
GLTFTextureTransformExtension.prototype.extendTexture = function ( texture, transform ) {
texture = texture.clone();
if ( transform.offset !== undefined ) {
texture.offset.fromArray( transform.offset );
}
if ( transform.rotation !== undefined ) {
texture.rotation = transform.rotation;
}
if ( transform.scale !== undefined ) {
texture.repeat.fromArray( transform.scale );
}
if ( transform.texCoord !== undefined ) {
console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );
}
texture.needsUpdate = true;
return texture;
};
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/
/**
* A sub class of StandardMaterial with some of the functionality
* changed via the `onBeforeCompile` callback
* @pailhead
*/
function GLTFMeshStandardSGMaterial( params ) {
MeshStandardMaterial.call( this );
this.isGLTFSpecularGlossinessMaterial = true;
//various chunks that need replacing
var specularMapParsFragmentChunk = [
'#ifdef USE_SPECULARMAP',
' uniform sampler2D specularMap;',
'#endif'
].join( '\n' );
var glossinessMapParsFragmentChunk = [
'#ifdef USE_GLOSSINESSMAP',
' uniform sampler2D glossinessMap;',
'#endif'
].join( '\n' );
var specularMapFragmentChunk = [
'vec3 specularFactor = specular;',
'#ifdef USE_SPECULARMAP',
' vec4 texelSpecular = texture2D( specularMap, vUv );',
' texelSpecular = sRGBToLinear( texelSpecular );',
' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
' specularFactor *= texelSpecular.rgb;',
'#endif'
].join( '\n' );
var glossinessMapFragmentChunk = [
'float glossinessFactor = glossiness;',
'#ifdef USE_GLOSSINESSMAP',
' vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
' glossinessFactor *= texelGlossiness.a;',
'#endif'
].join( '\n' );
var lightPhysicalFragmentChunk = [
'PhysicalMaterial material;',
'material.diffuseColor = diffuseColor.rgb;',
'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );',
'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );',
'material.specularRoughness = max( 1.0 - glossinessFactor, 0.0525 );// 0.0525 corresponds to the base mip of a 256 cubemap.',
'material.specularRoughness += geometryRoughness;',
'material.specularRoughness = min( material.specularRoughness, 1.0 );',
'material.specularColor = specularFactor.rgb;',
].join( '\n' );
var uniforms = {
specular: { value: new Color().setHex( 0xffffff ) },
glossiness: { value: 1 },
specularMap: { value: null },
glossinessMap: { value: null }
};
this._extraUniforms = uniforms;
// please see #14031 or #13198 for an alternate approach
this.onBeforeCompile = function ( shader ) {
for ( var uniformName in uniforms ) {
shader.uniforms[ uniformName ] = uniforms[ uniformName ];
}
shader.fragmentShader = shader.fragmentShader.replace( 'uniform float roughness;', 'uniform vec3 specular;' );
shader.fragmentShader = shader.fragmentShader.replace( 'uniform float metalness;', 'uniform float glossiness;' );
shader.fragmentShader = shader.fragmentShader.replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk );
shader.fragmentShader = shader.fragmentShader.replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk );
shader.fragmentShader = shader.fragmentShader.replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk );
shader.fragmentShader = shader.fragmentShader.replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk );
shader.fragmentShader = shader.fragmentShader.replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );
};
/*eslint-disable*/
Object.defineProperties(
this,
{
specular: {
get: function () { return uniforms.specular.value; },
set: function ( v ) { uniforms.specular.value = v; }
},
specularMap: {
get: function () { return uniforms.specularMap.value; },
set: function ( v ) { uniforms.specularMap.value = v; }
},
glossiness: {
get: function () { return uniforms.glossiness.value; },
set: function ( v ) { uniforms.glossiness.value = v; }
},
glossinessMap: {
get: function () { return uniforms.glossinessMap.value; },
set: function ( v ) {
uniforms.glossinessMap.value = v;
//how about something like this - @pailhead
if ( v ) {
this.defines.USE_GLOSSINESSMAP = '';
// set USE_ROUGHNESSMAP to enable vUv
this.defines.USE_ROUGHNESSMAP = '';
} else {
delete this.defines.USE_ROUGHNESSMAP;
delete this.defines.USE_GLOSSINESSMAP;
}
}
}
}
);
/*eslint-enable*/
delete this.metalness;
delete this.roughness;
delete this.metalnessMap;
delete this.roughnessMap;
this.setValues( params );
}
GLTFMeshStandardSGMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
GLTFMeshStandardSGMaterial.prototype.constructor = GLTFMeshStandardSGMaterial;
GLTFMeshStandardSGMaterial.prototype.copy = function ( source ) {
MeshStandardMaterial.prototype.copy.call( this, source );
this.specularMap = source.specularMap;
this.specular.copy( source.specular );
this.glossinessMap = source.glossinessMap;
this.glossiness = source.glossiness;
delete this.metalness;
delete this.roughness;
delete this.metalnessMap;
delete this.roughnessMap;
return this;
};
function GLTFMaterialsPbrSpecularGlossinessExtension() {
return {
name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,
specularGlossinessParams: [
'color',
'map',
'lightMap',
'lightMapIntensity',
'aoMap',
'aoMapIntensity',
'emissive',
'emissiveIntensity',
'emissiveMap',
'bumpMap',
'bumpScale',
'normalMap',
'normalMapType',
'displacementMap',
'displacementScale',
'displacementBias',
'specularMap',
'specular',
'glossinessMap',
'glossiness',
'alphaMap',
'envMap',
'envMapIntensity',
'refractionRatio',
],
getMaterialType: function () {
return GLTFMeshStandardSGMaterial;
},
extendParams: function ( materialParams, materialDef, parser ) {
var pbrSpecularGlossiness = materialDef.extensions[ this.name ];
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
var pending = [];
if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {
var array = pbrSpecularGlossiness.diffuseFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) );
}
materialParams.emissive = new Color( 0.0, 0.0, 0.0 );
materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
materialParams.specular = new Color( 1.0, 1.0, 1.0 );
if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {
materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );
}
if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {
var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) );
pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) );
}
return Promise.all( pending );
},
createMaterial: function ( materialParams ) {
var material = new GLTFMeshStandardSGMaterial( materialParams );
material.fog = true;
material.color = materialParams.color;
material.map = materialParams.map === undefined ? null : materialParams.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = materialParams.emissive;
material.emissiveIntensity = 1.0;
material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap;
material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap;
material.bumpScale = 1;
material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap;
material.normalMapType = TangentSpaceNormalMap;
if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap;
material.specular = materialParams.specular;
material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap;
material.glossiness = materialParams.glossiness;
material.alphaMap = null;
material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap;
material.envMapIntensity = 1.0;
material.refractionRatio = 0.98;
return material;
},
};
}
/**
* Mesh Quantization Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
*/
function GLTFMeshQuantizationExtension() {
this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
GLTFCubicSplineInterpolant.prototype = Object.create( Interpolant.prototype );
GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;
GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function ( index ) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
var result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for ( var i = 0; i !== valueSize; i ++ ) {
result[ i ] = values[ offset + i ];
}
return result;
};
GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {
var result = this.resultBuffer;
var values = this.sampleValues;
var stride = this.valueSize;
var stride2 = stride * 2;
var stride3 = stride * 3;
var td = t1 - t0;
var p = ( t - t0 ) / td;
var pp = p * p;
var ppp = pp * p;
var offset1 = i1 * stride3;
var offset0 = offset1 - stride3;
var s2 = - 2 * ppp + 3 * pp;
var s3 = ppp - pp;
var s0 = 1 - s2;
var s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( var i = 0; i !== stride; i ++ ) {
var p0 = values[ offset0 + i + stride ]; // splineVertex_k
var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
};
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: NearestFilter,
9729: LinearFilter,
9984: NearestMipmapNearestFilter,
9985: LinearMipmapNearestFilter,
9986: NearestMipmapLinearFilter,
9987: LinearMipmapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: ClampToEdgeWrapping,
33648: MirroredRepeatWrapping,
10497: RepeatWrapping
};
var WEBGL_TYPE_SIZES = {
'SCALAR': 1,
'VEC2': 2,
'VEC3': 3,
'VEC4': 4,
'MAT2': 4,
'MAT3': 9,
'MAT4': 16
};
var ATTRIBUTES = {
POSITION: 'position',
NORMAL: 'normal',
TANGENT: 'tangent',
TEXCOORD_0: 'uv',
TEXCOORD_1: 'uv2',
COLOR_0: 'color',
WEIGHTS_0: 'skinWeight',
JOINTS_0: 'skinIndex',
};
var PATH_PROPERTIES = {
scale: 'scale',
translation: 'position',
rotation: 'quaternion',
weights: 'morphTargetInfluences'
};
var INTERPOLATION = {
CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
// keyframe track will be initialized with a default interpolation type, then modified.
LINEAR: InterpolateLinear,
STEP: InterpolateDiscrete
};
var ALPHA_MODES = {
OPAQUE: 'OPAQUE',
MASK: 'MASK',
BLEND: 'BLEND'
};
var MIME_TYPE_FORMATS = {
'image/png': RGBAFormat,
'image/jpeg': RGBFormat
};
/* UTILITY FUNCTIONS */
function resolveURL( url, path ) {
// Invalid URL
if ( typeof url !== 'string' || url === '' ) return '';
// Host Relative URL
if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) {
path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' );
}
// Absolute URL http://,https://,//
if ( /^(https?:)?\/\//i.test( url ) ) return url;
// Data URI
if ( /^data:.*,.*$/i.test( url ) ) return url;
// Blob URL
if ( /^blob:.*$/i.test( url ) ) return url;
// Relative URL
return path + url;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial( cache ) {
if ( cache[ 'DefaultMaterial' ] === undefined ) {
cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( {
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: FrontSide
} );
}
return cache[ 'DefaultMaterial' ];
}
function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
// Add unknown glTF extensions to an object's userData.
for ( var name in objectDef.extensions ) {
if ( knownExtensions[ name ] === undefined ) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
}
}
}
/**
* @param {Object3D|Material|BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/
function assignExtrasToUserData( object, gltfDef ) {
if ( gltfDef.extras !== undefined ) {
if ( typeof gltfDef.extras === 'object' ) {
Object.assign( object.userData, gltfDef.extras );
} else {
console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {BufferGeometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/
function addMorphTargets( geometry, targets, parser ) {
var hasMorphPosition = false;
var hasMorphNormal = false;
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
if ( target.POSITION !== undefined ) hasMorphPosition = true;
if ( target.NORMAL !== undefined ) hasMorphNormal = true;
if ( hasMorphPosition && hasMorphNormal ) break;
}
if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry );
var pendingPositionAccessors = [];
var pendingNormalAccessors = [];
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
if ( hasMorphPosition ) {
var pendingAccessor = target.POSITION !== undefined
? parser.getDependency( 'accessor', target.POSITION )
: geometry.attributes.position;
pendingPositionAccessors.push( pendingAccessor );
}
if ( hasMorphNormal ) {
var pendingAccessor = target.NORMAL !== undefined
? parser.getDependency( 'accessor', target.NORMAL )
: geometry.attributes.normal;
pendingNormalAccessors.push( pendingAccessor );
}
}
return Promise.all( [
Promise.all( pendingPositionAccessors ),
Promise.all( pendingNormalAccessors )
] ).then( function ( accessors ) {
var morphPositions = accessors[ 0 ];
var morphNormals = accessors[ 1 ];
if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
geometry.morphTargetsRelative = true;
return geometry;
} );
}
/**
* @param {Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets( mesh, meshDef ) {
mesh.updateMorphTargets();
if ( meshDef.weights !== undefined ) {
for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) {
mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
var targetNames = meshDef.extras.targetNames;
if ( mesh.morphTargetInfluences.length === targetNames.length ) {
mesh.morphTargetDictionary = {};
for ( var i = 0, il = targetNames.length; i < il; i ++ ) {
mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
}
} else {
console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
}
}
}
function createPrimitiveKey( primitiveDef ) {
var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
var geometryKey;
if ( dracoExtension ) {
geometryKey = 'draco:' + dracoExtension.bufferView
+ ':' + dracoExtension.indices
+ ':' + createAttributesKey( dracoExtension.attributes );
} else {
geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;
}
return geometryKey;
}
function createAttributesKey( attributes ) {
var attributesKey = '';
var keys = Object.keys( attributes ).sort();
for ( var i = 0, il = keys.length; i < il; i ++ ) {
attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';
}
return attributesKey;
}
/* GLTF PARSER */
function GLTFParser( json, options ) {
this.json = json || {};
this.extensions = {};
this.plugins = {};
this.options = options || {};
// loader object cache
this.cache = new GLTFRegistry();
// associations between Three.js objects and glTF elements
this.associations = new Map();
// BufferGeometry caching
this.primitiveCache = {};
// Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the
// expensive work of uploading a texture to the GPU off the main thread.
if ( typeof createImageBitmap !== 'undefined' && /Firefox/.test( navigator.userAgent ) === false ) {
this.textureLoader = new ImageBitmapLoader( this.options.manager );
} else {
this.textureLoader = new TextureLoader( this.options.manager );
}
this.textureLoader.setCrossOrigin( this.options.crossOrigin );
this.fileLoader = new FileLoader( this.options.manager );
this.fileLoader.setResponseType( 'arraybuffer' );
if ( this.options.crossOrigin === 'use-credentials' ) {
this.fileLoader.setWithCredentials( true );
}
}
GLTFParser.prototype.setExtensions = function ( extensions ) {
this.extensions = extensions;
};
GLTFParser.prototype.setPlugins = function ( plugins ) {
this.plugins = plugins;
};
GLTFParser.prototype.parse = function ( onLoad, onError ) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this.markDefs();
Promise.all( [
this.getDependencies( 'scene' ),
this.getDependencies( 'animation' ),
this.getDependencies( 'camera' ),
] ).then( function ( dependencies ) {
var result = {
scene: dependencies[ 0 ][ json.scene || 0 ],
scenes: dependencies[ 0 ],
animations: dependencies[ 1 ],
cameras: dependencies[ 2 ],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, result, json );
assignExtrasToUserData( result, json );
onLoad( result );
} ).catch( onError );
};
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
GLTFParser.prototype.markDefs = function () {
var nodeDefs = this.json.nodes || [];
var skinDefs = this.json.skins || [];
var meshDefs = this.json.meshes || [];
var meshReferences = {};
var meshUses = {};
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
var joints = skinDefs[ skinIndex ].joints;
for ( var i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
// avoid having more than one Mesh with the same name, count
// references and rename instances below.
//
// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
var nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
if ( meshReferences[ nodeDef.mesh ] === undefined ) {
meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0;
}
meshReferences[ nodeDef.mesh ] ++;
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
}
this.json.meshReferences = meshReferences;
this.json.meshUses = meshUses;
};
GLTFParser.prototype._invokeOne = function ( func ) {
var extensions = Object.values( this.plugins );
extensions.push( this );
for ( var i = 0; i < extensions.length; i ++ ) {
var result = func( extensions[ i ] );
if ( result ) return result;
}
};
GLTFParser.prototype._invokeAll = function ( func ) {
var extensions = Object.values( this.plugins );
extensions.unshift( this );
var pending = [];
for ( var i = 0; i < extensions.length; i ++ ) {
pending.push( func( extensions[ i ] ) );
}
return Promise.all( pending );
};
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
*/
GLTFParser.prototype.getDependency = function ( type, index ) {
var cacheKey = type + ':' + index;
var dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this.loadNode( index );
break;
case 'mesh':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMesh && ext.loadMesh( index );
} );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this._invokeOne( function ( ext ) {
return ext.loadBufferView && ext.loadBufferView( index );
} );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMaterial && ext.loadMaterial( index );
} );
break;
case 'texture':
dependency = this.loadTexture( index );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this.loadAnimation( index );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
case 'light':
dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight( index );
break;
default:
throw new Error( 'Unknown type: ' + type );
}
this.cache.add( cacheKey, dependency );
}
return dependency;
};
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise<Array<Object>>}
*/
GLTFParser.prototype.getDependencies = function ( type ) {
var dependencies = this.cache.get( type );
if ( ! dependencies ) {
var parser = this;
var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
GLTFParser.prototype.loadBuffer = function ( bufferIndex ) {
var bufferDef = this.json.buffers[ bufferIndex ];
var loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
var options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) {
var bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
var byteLength = bufferViewDef.byteLength || 0;
var byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
*/
GLTFParser.prototype.loadAccessor = function ( accessorIndex ) {
var parser = this;
var json = this.json;
var accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
// Ignore empty accessors, which may be used to declare runtime
// information about attributes coming from another source (e.g. Draco
// compression extension).
return Promise.resolve( null );
}
var pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
var bufferView = bufferViews[ 0 ];
var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
var elementBytes = TypedArray.BYTES_PER_ELEMENT;
var itemBytes = elementBytes * itemSize;
var byteOffset = accessorDef.byteOffset || 0;
var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
var normalized = accessorDef.normalized === true;
var array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
// This makes sure that IBA.count reflects accessor.count properly
var ibSlice = Math.floor( byteOffset / byteStride );
var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
var ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
}
for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) {
var index = sparseIndices[ i ];
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
}
}
return bufferAttribute;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
* @param {number} textureIndex
* @return {Promise<THREE.Texture>}
*/
GLTFParser.prototype.loadTexture = function ( textureIndex ) {
var parser = this;
var json = this.json;
var options = this.options;
var textureLoader = this.textureLoader;
var URL = self.URL || self.webkitURL;
var textureDef = json.textures[ textureIndex ];
var textureExtensions = textureDef.extensions || {};
var source;
if ( textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) {
source = json.images[ textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].source ];
} else {
source = json.images[ textureDef.source ];
}
var sourceURI = source.uri;
var isObjectURL = false;
if ( source.bufferView !== undefined ) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) {
isObjectURL = true;
var blob = new Blob( [ bufferView ], { type: source.mimeType } );
sourceURI = URL.createObjectURL( blob );
return sourceURI;
} );
}
return Promise.resolve( sourceURI ).then( function ( sourceURI ) {
// Load Texture resource.
var loader = options.manager.getHandler( sourceURI );
if ( ! loader ) {
loader = textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ]
? parser.extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].ddsLoader
: textureLoader;
}
return new Promise( function ( resolve, reject ) {
var onLoad = resolve;
if ( loader.isImageBitmapLoader === true ) {
onLoad = function ( imageBitmap ) {
resolve( new CanvasTexture( imageBitmap ) );
};
}
loader.load( resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
} );
} ).then( function ( texture ) {
// Clean up resources and configure Texture.
if ( isObjectURL === true ) {
URL.revokeObjectURL( sourceURI );
}
texture.flipY = false;
if ( textureDef.name ) texture.name = textureDef.name;
// Ignore unknown mime types, like DDS files.
if ( source.mimeType in MIME_TYPE_FORMATS ) {
texture.format = MIME_TYPE_FORMATS[ source.mimeType ];
}
var samplers = json.samplers || {};
var sampler = samplers[ textureDef.sampler ] || {};
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;
parser.associations.set( texture, {
type: 'textures',
index: textureIndex
} );
return texture;
} );
};
/**
* Asynchronously assigns a texture to the given material parameters.
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @return {Promise}
*/
GLTFParser.prototype.assignTexture = function ( materialParams, mapName, mapDef ) {
var parser = this;
return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
if ( ! texture.isCompressedTexture ) {
switch ( mapName ) {
case 'aoMap':
case 'emissiveMap':
case 'metalnessMap':
case 'normalMap':
case 'roughnessMap':
texture.format = RGBFormat;
break;
}
}
// Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured
// However, we will copy UV set 0 to UV set 1 on demand for aoMap
if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) {
console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' );
}
if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
var transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
if ( transform ) {
var gltfReference = parser.associations.get( texture );
texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
parser.associations.set( texture, gltfReference );
}
}
materialParams[ mapName ] = texture;
} );
};
/**
* Assigns final material to a Mesh, Line, or Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accomodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
* @param {Object3D} mesh Mesh, Line, or Points instance.
*/
GLTFParser.prototype.assignFinalMaterial = function ( mesh ) {
var geometry = mesh.geometry;
var material = mesh.material;
var useVertexTangents = geometry.attributes.tangent !== undefined;
var useVertexColors = geometry.attributes.color !== undefined;
var useFlatShading = geometry.attributes.normal === undefined;
var useSkinning = mesh.isSkinnedMesh === true;
var useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0;
var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;
if ( mesh.isPoints ) {
var cacheKey = 'PointsMaterial:' + material.uuid;
var pointsMaterial = this.cache.get( cacheKey );
if ( ! pointsMaterial ) {
pointsMaterial = new PointsMaterial();
Material.prototype.copy.call( pointsMaterial, material );
pointsMaterial.color.copy( material.color );
pointsMaterial.map = material.map;
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
this.cache.add( cacheKey, pointsMaterial );
}
material = pointsMaterial;
} else if ( mesh.isLine ) {
var cacheKey = 'LineBasicMaterial:' + material.uuid;
var lineMaterial = this.cache.get( cacheKey );
if ( ! lineMaterial ) {
lineMaterial = new LineBasicMaterial();
Material.prototype.copy.call( lineMaterial, material );
lineMaterial.color.copy( material.color );
this.cache.add( cacheKey, lineMaterial );
}
material = lineMaterial;
}
// Clone the material if it will be modified
if ( useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets ) {
var cacheKey = 'ClonedMaterial:' + material.uuid + ':';
if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:';
if ( useSkinning ) cacheKey += 'skinning:';
if ( useVertexTangents ) cacheKey += 'vertex-tangents:';
if ( useVertexColors ) cacheKey += 'vertex-colors:';
if ( useFlatShading ) cacheKey += 'flat-shading:';
if ( useMorphTargets ) cacheKey += 'morph-targets:';
if ( useMorphNormals ) cacheKey += 'morph-normals:';
var cachedMaterial = this.cache.get( cacheKey );
if ( ! cachedMaterial ) {
cachedMaterial = material.clone();
if ( useSkinning ) cachedMaterial.skinning = true;
if ( useVertexTangents ) cachedMaterial.vertexTangents = true;
if ( useVertexColors ) cachedMaterial.vertexColors = true;
if ( useFlatShading ) cachedMaterial.flatShading = true;
if ( useMorphTargets ) cachedMaterial.morphTargets = true;
if ( useMorphNormals ) cachedMaterial.morphNormals = true;
this.cache.add( cacheKey, cachedMaterial );
this.associations.set( cachedMaterial, this.associations.get( material ) );
}
material = cachedMaterial;
}
// workarounds for mesh and geometry
if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {
geometry.setAttribute( 'uv2', geometry.attributes.uv );
}
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
if ( material.normalScale && ! useVertexTangents ) {
material.normalScale.y = - material.normalScale.y;
}
if ( material.clearcoatNormalScale && ! useVertexTangents ) {
material.clearcoatNormalScale.y = - material.clearcoatNormalScale.y;
}
mesh.material = material;
};
GLTFParser.prototype.getMaterialType = function ( /* materialIndex */ ) {
return MeshStandardMaterial;
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
* @param {number} materialIndex
* @return {Promise<Material>}
*/
GLTFParser.prototype.loadMaterial = function ( materialIndex ) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
var materialDef = json.materials[ materialIndex ];
var materialType;
var materialParams = {};
var materialExtensions = materialDef.extensions || {};
var pending = [];
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {
var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ];
materialType = sgExtension.getMaterialType();
pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );
} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
materialType = kmuExtension.getMaterialType();
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
var metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
}
materialType = this._invokeOne( function ( ext ) {
return ext.getMaterialType && ext.getMaterialType( materialIndex );
} );
pending.push( this._invokeAll( function ( ext ) {
return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
} ) );
}
if ( materialDef.doubleSided === true ) {
materialParams.side = DoubleSide;
}
var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if ( alphaMode === ALPHA_MODES.BLEND ) {
materialParams.transparent = true;
// See: https://github.com/mrdoob/three.js/issues/17706
materialParams.depthWrite = false;
} else {
materialParams.transparent = false;
if ( alphaMode === ALPHA_MODES.MASK ) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
materialParams.normalScale = new Vector2( 1, 1 );
if ( materialDef.normalTexture.scale !== undefined ) {
materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale );
}
}
if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
if ( materialDef.occlusionTexture.strength !== undefined ) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {
materialParams.emissive = new Color().fromArray( materialDef.emissiveFactor );
}
if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture ) );
}
return Promise.all( pending ).then( function () {
var material;
if ( materialType === GLTFMeshStandardSGMaterial ) {
material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );
} else {
material = new materialType( materialParams );
}
if ( materialDef.name ) material.name = materialDef.name;
// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
if ( material.map ) material.map.encoding = sRGBEncoding;
if ( material.emissiveMap ) material.emissiveMap.encoding = sRGBEncoding;
assignExtrasToUserData( material, materialDef );
parser.associations.set( material, { type: 'materials', index: materialIndex } );
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
return material;
} );
};
/**
* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
*/
function computeBounds( geometry, primitiveDef, parser ) {
var attributes = primitiveDef.attributes;
var box = new Box3();
if ( attributes.POSITION !== undefined ) {
var accessor = parser.json.accessors[ attributes.POSITION ];
var min = accessor.min;
var max = accessor.max;
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
if ( min !== undefined && max !== undefined ) {
box.set(
new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ),
new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) );
} else {
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
return;
}
} else {
return;
}
var targets = primitiveDef.targets;
if ( targets !== undefined ) {
var maxDisplacement = new Vector3();
var vector = new Vector3();
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
if ( target.POSITION !== undefined ) {
var accessor = parser.json.accessors[ target.POSITION ];
var min = accessor.min;
var max = accessor.max;
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
if ( min !== undefined && max !== undefined ) {
// we need to get max of absolute components because target weight is [-1,1]
vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );
// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
// are used to implement key-frame animations and as such only two are active at a time - this results in very large
// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
maxDisplacement.max( vector );
} else {
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
}
}
}
// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
box.expandByVector( maxDisplacement );
}
geometry.boundingBox = box;
var sphere = new Sphere();
box.getCenter( sphere.center );
sphere.radius = box.min.distanceTo( box.max ) / 2;
geometry.boundingSphere = sphere;
}
/**
* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/
function addPrimitiveAttributes( geometry, primitiveDef, parser ) {
var attributes = primitiveDef.attributes;
var pending = [];
function assignAttributeAccessor( accessorIndex, attributeName ) {
return parser.getDependency( 'accessor', accessorIndex )
.then( function ( accessor ) {
geometry.setAttribute( attributeName, accessor );
} );
}
for ( var gltfAttributeName in attributes ) {
var threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();
// Skip attributes already provided by e.g. Draco extension.
if ( threeAttributeName in geometry.attributes ) continue;
pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );
}
if ( primitiveDef.indices !== undefined && ! geometry.index ) {
var accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {
geometry.setIndex( accessor );
} );
pending.push( accessor );
}
assignExtrasToUserData( geometry, primitiveDef );
computeBounds( geometry, primitiveDef, parser );
return Promise.all( pending ).then( function () {
return primitiveDef.targets !== undefined
? addMorphTargets( geometry, primitiveDef.targets, parser )
: geometry;
} );
}
/**
* @param {BufferGeometry} geometry
* @param {Number} drawMode
* @return {BufferGeometry}
*/
function toTrianglesDrawMode( geometry, drawMode ) {
var index = geometry.getIndex();
// generate index if not present
if ( index === null ) {
var indices = [];
var position = geometry.getAttribute( 'position' );
if ( position !== undefined ) {
for ( var i = 0; i < position.count; i ++ ) {
indices.push( i );
}
geometry.setIndex( indices );
index = geometry.getIndex();
} else {
console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
return geometry;
}
}
//
var numberOfTriangles = index.count - 2;
var newIndices = [];
if ( drawMode === TriangleFanDrawMode ) {
// gl.TRIANGLE_FAN
for ( var i = 1; i <= numberOfTriangles; i ++ ) {
newIndices.push( index.getX( 0 ) );
newIndices.push( index.getX( i ) );
newIndices.push( index.getX( i + 1 ) );
}
} else {
// gl.TRIANGLE_STRIP
for ( var i = 0; i < numberOfTriangles; i ++ ) {
if ( i % 2 === 0 ) {
newIndices.push( index.getX( i ) );
newIndices.push( index.getX( i + 1 ) );
newIndices.push( index.getX( i + 2 ) );
} else {
newIndices.push( index.getX( i + 2 ) );
newIndices.push( index.getX( i + 1 ) );
newIndices.push( index.getX( i ) );
}
}
}
if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {
console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );
}
// build final geometry
var newGeometry = geometry.clone();
newGeometry.setIndex( newIndices );
return newGeometry;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @param {Array<GLTF.Primitive>} primitives
* @return {Promise<Array<BufferGeometry>>}
*/
GLTFParser.prototype.loadGeometries = function ( primitives ) {
var parser = this;
var extensions = this.extensions;
var cache = this.primitiveCache;
function createDracoPrimitive( primitive ) {
return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
.decodePrimitive( primitive, parser )
.then( function ( geometry ) {
return addPrimitiveAttributes( geometry, primitive, parser );
} );
}
var pending = [];
for ( var i = 0, il = primitives.length; i < il; i ++ ) {
var primitive = primitives[ i ];
var cacheKey = createPrimitiveKey( primitive );
// See if we've already created this geometry
var cached = cache[ cacheKey ];
if ( cached ) {
// Use the cached geometry if it exists
pending.push( cached.promise );
} else {
var geometryPromise;
if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive( primitive );
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );
}
// Cache this geometry
cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };
pending.push( geometryPromise );
}
}
return Promise.all( pending );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
* @param {number} meshIndex
* @return {Promise<Group|Mesh|SkinnedMesh>}
*/
GLTFParser.prototype.loadMesh = function ( meshIndex ) {
var parser = this;
var json = this.json;
var meshDef = json.meshes[ meshIndex ];
var primitives = meshDef.primitives;
var pending = [];
for ( var i = 0, il = primitives.length; i < il; i ++ ) {
var material = primitives[ i ].material === undefined
? createDefaultMaterial( this.cache )
: this.getDependency( 'material', primitives[ i ].material );
pending.push( material );
}
pending.push( parser.loadGeometries( primitives ) );
return Promise.all( pending ).then( function ( results ) {
var materials = results.slice( 0, results.length - 1 );
var geometries = results[ results.length - 1 ];
var meshes = [];
for ( var i = 0, il = geometries.length; i < il; i ++ ) {
var geometry = geometries[ i ];
var primitive = primitives[ i ];
// 1. create Mesh
var mesh;
var material = materials[ i ];
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined ) {
// .isSkinnedMesh isn't in glTF spec. See .markDefs()
mesh = meshDef.isSkinnedMesh === true
? new SkinnedMesh( geometry, material )
: new Mesh( geometry, material );
if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) {
// we normalize floating point skin weight array to fix malformed assets (see #15319)
// it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
mesh.normalizeSkinWeights();
}
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );
}
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
mesh = new LineSegments( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
mesh = new Line( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
mesh = new LineLoop( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
mesh = new Points( geometry, material );
} else {
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
}
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
updateMorphTargets( mesh, meshDef );
}
mesh.name = meshDef.name || ( 'mesh_' + meshIndex );
if ( geometries.length > 1 ) mesh.name += '_' + i;
assignExtrasToUserData( mesh, meshDef );
parser.assignFinalMaterial( mesh );
meshes.push( mesh );
}
if ( meshes.length === 1 ) {
return meshes[ 0 ];
}
var group = new Group();
for ( var i = 0, il = meshes.length; i < il; i ++ ) {
group.add( meshes[ i ] );
}
return group;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
* @param {number} cameraIndex
* @return {Promise<THREE.Camera>}
*/
GLTFParser.prototype.loadCamera = function ( cameraIndex ) {
var camera;
var cameraDef = this.json.cameras[ cameraIndex ];
var params = cameraDef[ cameraDef.type ];
if ( ! params ) {
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
return;
}
if ( cameraDef.type === 'perspective' ) {
camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
} else if ( cameraDef.type === 'orthographic' ) {
camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
}
if ( cameraDef.name ) camera.name = cameraDef.name;
assignExtrasToUserData( camera, cameraDef );
return Promise.resolve( camera );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
* @param {number} skinIndex
* @return {Promise<Object>}
*/
GLTFParser.prototype.loadSkin = function ( skinIndex ) {
var skinDef = this.json.skins[ skinIndex ];
var skinEntry = { joints: skinDef.joints };
if ( skinDef.inverseBindMatrices === undefined ) {
return Promise.resolve( skinEntry );
}
return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {
skinEntry.inverseBindMatrices = accessor;
return skinEntry;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
* @param {number} animationIndex
* @return {Promise<AnimationClip>}
*/
GLTFParser.prototype.loadAnimation = function ( animationIndex ) {
var json = this.json;
var animationDef = json.animations[ animationIndex ];
var pendingNodes = [];
var pendingInputAccessors = [];
var pendingOutputAccessors = [];
var pendingSamplers = [];
var pendingTargets = [];
for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) {
var channel = animationDef.channels[ i ];
var sampler = animationDef.samplers[ channel.sampler ];
var target = channel.target;
var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
pendingNodes.push( this.getDependency( 'node', name ) );
pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
pendingSamplers.push( sampler );
pendingTargets.push( target );
}
return Promise.all( [
Promise.all( pendingNodes ),
Promise.all( pendingInputAccessors ),
Promise.all( pendingOutputAccessors ),
Promise.all( pendingSamplers ),
Promise.all( pendingTargets )
] ).then( function ( dependencies ) {
var nodes = dependencies[ 0 ];
var inputAccessors = dependencies[ 1 ];
var outputAccessors = dependencies[ 2 ];
var samplers = dependencies[ 3 ];
var targets = dependencies[ 4 ];
var tracks = [];
for ( var i = 0, il = nodes.length; i < il; i ++ ) {
var node = nodes[ i ];
var inputAccessor = inputAccessors[ i ];
var outputAccessor = outputAccessors[ i ];
var sampler = samplers[ i ];
var target = targets[ i ];
if ( node === undefined ) continue;
node.updateMatrix();
node.matrixAutoUpdate = true;
var TypedKeyframeTrack;
switch ( PATH_PROPERTIES[ target.path ] ) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.position:
case PATH_PROPERTIES.scale:
default:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
}
var targetName = node.name ? node.name : node.uuid;
var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;
var targetNames = [];
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
// Node may be a Group (glTF mesh with several primitives) or a Mesh.
node.traverse( function ( object ) {
if ( object.isMesh === true && object.morphTargetInfluences ) {
targetNames.push( object.name ? object.name : object.uuid );
}
} );
} else {
targetNames.push( targetName );
}
var outputArray = outputAccessor.array;
if ( outputAccessor.normalized ) {
var scale;
if ( outputArray.constructor === Int8Array ) {
scale = 1 / 127;
} else if ( outputArray.constructor === Uint8Array ) {
scale = 1 / 255;
} else if ( outputArray.constructor == Int16Array ) {
scale = 1 / 32767;
} else if ( outputArray.constructor === Uint16Array ) {
scale = 1 / 65535;
} else {
throw new Error( 'THREE.GLTFLoader: Unsupported output accessor component type.' );
}
var scaled = new Float32Array( outputArray.length );
for ( var j = 0, jl = outputArray.length; j < jl; j ++ ) {
scaled[ j ] = outputArray[ j ] * scale;
}
outputArray = scaled;
}
for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) {
var track = new TypedKeyframeTrack(
targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
inputAccessor.array,
outputArray,
interpolation
);
// Override interpolation with custom factory method.
if ( sampler.interpolation === 'CUBICSPLINE' ) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result );
};
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
tracks.push( track );
}
}
var name = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
return new AnimationClip( name, undefined, tracks );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
* @param {number} nodeIndex
* @return {Promise<Object3D>}
*/
GLTFParser.prototype.loadNode = function ( nodeIndex ) {
var json = this.json;
var extensions = this.extensions;
var parser = this;
var meshReferences = json.meshReferences;
var meshUses = json.meshUses;
var nodeDef = json.nodes[ nodeIndex ];
return ( function () {
var pending = [];
if ( nodeDef.mesh !== undefined ) {
pending.push( parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
var node;
if ( meshReferences[ nodeDef.mesh ] > 1 ) {
var instanceNum = meshUses[ nodeDef.mesh ] ++;
node = mesh.clone();
node.name += '_instance_' + instanceNum;
} else {
node = mesh;
}
// if weights are provided on the node, override weights on the mesh.
if ( nodeDef.weights !== undefined ) {
node.traverse( function ( o ) {
if ( ! o.isMesh ) return;
for ( var i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
}
} );
}
return node;
} ) );
}
if ( nodeDef.camera !== undefined ) {
pending.push( parser.getDependency( 'camera', nodeDef.camera ) );
}
if ( nodeDef.extensions
&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ]
&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light !== undefined ) {
pending.push( parser.getDependency( 'light', nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light ) );
}
return Promise.all( pending );
}() ).then( function ( objects ) {
var node;
// .isBone isn't in glTF spec. See .markDefs
if ( nodeDef.isBone === true ) {
node = new Bone();
} else if ( objects.length > 1 ) {
node = new Group();
} else if ( objects.length === 1 ) {
node = objects[ 0 ];
} else {
node = new Object3D();
}
if ( node !== objects[ 0 ] ) {
for ( var i = 0, il = objects.length; i < il; i ++ ) {
node.add( objects[ i ] );
}
}
if ( nodeDef.name ) {
node.userData.name = nodeDef.name;
node.name = PropertyBinding.sanitizeNodeName( nodeDef.name );
}
assignExtrasToUserData( node, nodeDef );
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
if ( nodeDef.matrix !== undefined ) {
var matrix = new Matrix4();
matrix.fromArray( nodeDef.matrix );
node.applyMatrix4( matrix );
} else {
if ( nodeDef.translation !== undefined ) {
node.position.fromArray( nodeDef.translation );
}
if ( nodeDef.rotation !== undefined ) {
node.quaternion.fromArray( nodeDef.rotation );
}
if ( nodeDef.scale !== undefined ) {
node.scale.fromArray( nodeDef.scale );
}
}
parser.associations.set( node, { type: 'nodes', index: nodeIndex } );
return node;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
* @param {number} sceneIndex
* @return {Promise<Group>}
*/
GLTFParser.prototype.loadScene = function () {
// scene node hierachy builder
function buildNodeHierachy( nodeId, parentObject, json, parser ) {
var nodeDef = json.nodes[ nodeId ];
return parser.getDependency( 'node', nodeId ).then( function ( node ) {
if ( nodeDef.skin === undefined ) return node;
// build skeleton here as well
var skinEntry;
return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) {
skinEntry = skin;
var pendingJoints = [];
for ( var i = 0, il = skinEntry.joints.length; i < il; i ++ ) {
pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) );
}
return Promise.all( pendingJoints );
} ).then( function ( jointNodes ) {
node.traverse( function ( mesh ) {
if ( ! mesh.isMesh ) return;
var bones = [];
var boneInverses = [];
for ( var j = 0, jl = jointNodes.length; j < jl; j ++ ) {
var jointNode = jointNodes[ j ];
if ( jointNode ) {
bones.push( jointNode );
var mat = new Matrix4();
if ( skinEntry.inverseBindMatrices !== undefined ) {
mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );
}
boneInverses.push( mat );
} else {
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] );
}
}
mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld );
} );
return node;
} );
} ).then( function ( node ) {
// build node hierachy
parentObject.add( node );
var pending = [];
if ( nodeDef.children ) {
var children = nodeDef.children;
for ( var i = 0, il = children.length; i < il; i ++ ) {
var child = children[ i ];
pending.push( buildNodeHierachy( child, node, json, parser ) );
}
}
return Promise.all( pending );
} );
}
return function loadScene( sceneIndex ) {
var json = this.json;
var extensions = this.extensions;
var sceneDef = this.json.scenes[ sceneIndex ];
var parser = this;
// Loader returns Group, not Scene.
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
var scene = new Group();
if ( sceneDef.name ) scene.name = sceneDef.name;
assignExtrasToUserData( scene, sceneDef );
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
var nodeIds = sceneDef.nodes || [];
var pending = [];
for ( var i = 0, il = nodeIds.length; i < il; i ++ ) {
pending.push( buildNodeHierachy( nodeIds[ i ], scene, json, parser ) );
}
return Promise.all( pending ).then( function () {
return scene;
} );
};
}();
return GLTFLoader;
} )();
// CONCATENATED MODULE: ./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--12-0!./node_modules/_thread-loader@2.1.3@thread-loader/dist/cjs.js!./node_modules/_babel-loader@8.1.0@babel-loader/lib!./node_modules/_cache-loader@4.1.0@cache-loader/dist/cjs.js??ref--0-0!./node_modules/_vue-loader@15.9.3@vue-loader/lib??vue-loader-options!./src/model-gltf.vue?vue&type=script&lang=js&
/* harmony default export */ var model_gltfvue_type_script_lang_js_ = ({
name: 'model-gltf',
mixins: [model_mixin],
props: {
lights: {
type: Array,
default: function _default() {
return [{
type: 'AmbientLight',
color: 0xaaaaaa
}, {
type: 'DirectionalLight',
position: {
x: 1,
y: 1,
z: 1
},
color: 0xffffff,
intensity: 0.8
}];
}
},
gammaOutput: {
type: Boolean,
default: true
}
},
data: function data() {
var loader = new GLTFLoader_GLTFLoader();
loader.setCrossOrigin(this.crossOrigin);
return {
loader: loader
};
},
methods: {
load: function load() {
var _this = this;
if (!this.src) return;
if (this.object) {
this.wrapper.remove(this.object);
}
this.loader.load(this.src, function (data) {
_this.addObject(data.scene);
_this.$emit('on-load');
}, function (xhr) {
_this.$emit('on-progress', xhr);
}, function (err) {
_this.$emit('on-error', err);
});
}
}
});
// CONCATENATED MODULE: ./src/model-gltf.vue?vue&type=script&lang=js&
/* harmony default export */ var src_model_gltfvue_type_script_lang_js_ = (model_gltfvue_type_script_lang_js_);
// CONCATENATED MODULE: ./src/model-gltf.vue
var model_gltf_render, model_gltf_staticRenderFns
/* normalize component */
var model_gltf_component = normalizeComponent(
src_model_gltfvue_type_script_lang_js_,
model_gltf_render,
model_gltf_staticRenderFns,
false,
null,
null,
null
)
/* harmony default export */ var model_gltf = (model_gltf_component.exports);
// CONCATENATED MODULE: ./src/index.js
// alias
var ModelJson = external_commonjs_vue_commonjs2_vue_root_Vue_default.a.extend(model_three, {
name: 'model-json'
});
var ModelDae = external_commonjs_vue_commonjs2_vue_root_Vue_default.a.extend(model_collada, {
name: 'model-dae'
});
var components = [model_obj, model_fbx, model_three, ModelJson, model_stl, model_ply, model_collada, ModelDae, model_gltf];
/* eslint-disable no-shadow */
var install = function install(Vue) {
components.forEach(function (component) {
Vue.component(component.name, component);
});
};
if (typeof window !== 'undefined' && window.Vue) {
install(window.Vue);
}
/* harmony default export */ var src_0 = ({
install: install,
ModelObj: model_obj,
ModelFbx: model_fbx,
ModelThree: model_three,
ModelJson: ModelJson,
ModelStl: model_stl,
ModelPly: model_ply,
ModelCollada: model_collada,
ModelDae: ModelDae,
ModelGltf: model_gltf
});
// CONCATENATED MODULE: ./node_modules/_@vue_cli-service@4.4.6@@vue/cli-service/lib/commands/build/entry-lib.js
/* harmony default export */ var entry_lib = __webpack_exports__["default"] = (src_0);
/***/ }),
/***/ "98a9":
/***/ (function(module, exports, __webpack_require__) {
var wellKnownSymbol = __webpack_require__("90fb");
var Iterators = __webpack_require__("9806");
var ITERATOR = wellKnownSymbol('iterator');
var ArrayPrototype = Array.prototype;
// check on default Array iterator
module.exports = function (it) {
return it !== undefined && (Iterators.Array === it || ArrayPrototype[ITERATOR] === it);
};
/***/ }),
/***/ "98e0":
/***/ (function(module, exports, __webpack_require__) {
var $ = __webpack_require__("1c8b");
var from = __webpack_require__("e62b");
var checkCorrectnessOfIteration = __webpack_require__("f471");
var INCORRECT_ITERATION = !checkCorrectnessOfIteration(function (iterable) {
Array.from(iterable);
});
// `Array.from` method
// https://tc39.github.io/ecma262/#sec-array.from
$({ target: 'Array', stat: true, forced: INCORRECT_ITERATION }, {
from: from
});
/***/ }),
/***/ "99ab":
/***/ (function(module, exports, __webpack_require__) {
var redefine = __webpack_require__("1944");
module.exports = function (target, src, options) {
for (var key in src) redefine(target, key, src[key], options);
return target;
};
/***/ }),
/***/ "99ad":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var anObject = __webpack_require__("857c");
// `RegExp.prototype.flags` getter implementation
// https://tc39.github.io/ecma262/#sec-get-regexp.prototype.flags
module.exports = function () {
var that = anObject(this);
var result = '';
if (that.global) result += 'g';
if (that.ignoreCase) result += 'i';
if (that.multiline) result += 'm';
if (that.dotAll) result += 's';
if (that.unicode) result += 'u';
if (that.sticky) result += 'y';
return result;
};
/***/ }),
/***/ "99ee":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var createIteratorConstructor = __webpack_require__("69fa");
var getPrototypeOf = __webpack_require__("908e");
var setPrototypeOf = __webpack_require__("50fb");
var setToStringTag = __webpack_require__("27b5");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var redefine = __webpack_require__("1944");
var wellKnownSymbol = __webpack_require__("90fb");
var IS_PURE = __webpack_require__("9b9d");
var Iterators = __webpack_require__("9806");
var IteratorsCore = __webpack_require__("2abc");
var IteratorPrototype = IteratorsCore.IteratorPrototype;
var BUGGY_SAFARI_ITERATORS = IteratorsCore.BUGGY_SAFARI_ITERATORS;
var ITERATOR = wellKnownSymbol('iterator');
var KEYS = 'keys';
var VALUES = 'values';
var ENTRIES = 'entries';
var returnThis = function () { return this; };
module.exports = function (Iterable, NAME, IteratorConstructor, next, DEFAULT, IS_SET, FORCED) {
createIteratorConstructor(IteratorConstructor, NAME, next);
var getIterationMethod = function (KIND) {
if (KIND === DEFAULT && defaultIterator) return defaultIterator;
if (!BUGGY_SAFARI_ITERATORS && KIND in IterablePrototype) return IterablePrototype[KIND];
switch (KIND) {
case KEYS: return function keys() { return new IteratorConstructor(this, KIND); };
case VALUES: return function values() { return new IteratorConstructor(this, KIND); };
case ENTRIES: return function entries() { return new IteratorConstructor(this, KIND); };
} return function () { return new IteratorConstructor(this); };
};
var TO_STRING_TAG = NAME + ' Iterator';
var INCORRECT_VALUES_NAME = false;
var IterablePrototype = Iterable.prototype;
var nativeIterator = IterablePrototype[ITERATOR]
|| IterablePrototype['@@iterator']
|| DEFAULT && IterablePrototype[DEFAULT];
var defaultIterator = !BUGGY_SAFARI_ITERATORS && nativeIterator || getIterationMethod(DEFAULT);
var anyNativeIterator = NAME == 'Array' ? IterablePrototype.entries || nativeIterator : nativeIterator;
var CurrentIteratorPrototype, methods, KEY;
// fix native
if (anyNativeIterator) {
CurrentIteratorPrototype = getPrototypeOf(anyNativeIterator.call(new Iterable()));
if (IteratorPrototype !== Object.prototype && CurrentIteratorPrototype.next) {
if (!IS_PURE && getPrototypeOf(CurrentIteratorPrototype) !== IteratorPrototype) {
if (setPrototypeOf) {
setPrototypeOf(CurrentIteratorPrototype, IteratorPrototype);
} else if (typeof CurrentIteratorPrototype[ITERATOR] != 'function') {
createNonEnumerableProperty(CurrentIteratorPrototype, ITERATOR, returnThis);
}
}
// Set @@toStringTag to native iterators
setToStringTag(CurrentIteratorPrototype, TO_STRING_TAG, true, true);
if (IS_PURE) Iterators[TO_STRING_TAG] = returnThis;
}
}
// fix Array#{values, @@iterator}.name in V8 / FF
if (DEFAULT == VALUES && nativeIterator && nativeIterator.name !== VALUES) {
INCORRECT_VALUES_NAME = true;
defaultIterator = function values() { return nativeIterator.call(this); };
}
// define iterator
if ((!IS_PURE || FORCED) && IterablePrototype[ITERATOR] !== defaultIterator) {
createNonEnumerableProperty(IterablePrototype, ITERATOR, defaultIterator);
}
Iterators[NAME] = defaultIterator;
// export additional methods
if (DEFAULT) {
methods = {
values: getIterationMethod(VALUES),
keys: IS_SET ? defaultIterator : getIterationMethod(KEYS),
entries: getIterationMethod(ENTRIES)
};
if (FORCED) for (KEY in methods) {
if (BUGGY_SAFARI_ITERATORS || INCORRECT_VALUES_NAME || !(KEY in IterablePrototype)) {
redefine(IterablePrototype, KEY, methods[KEY]);
}
} else $({ target: NAME, proto: true, forced: BUGGY_SAFARI_ITERATORS || INCORRECT_VALUES_NAME }, methods);
}
return methods;
};
/***/ }),
/***/ "9b11":
/***/ (function(module, exports, __webpack_require__) {
var defineWellKnownSymbol = __webpack_require__("6d51");
// `Symbol.iterator` well-known symbol
// https://tc39.github.io/ecma262/#sec-symbol.iterator
defineWellKnownSymbol('iterator');
/***/ }),
/***/ "9b9d":
/***/ (function(module, exports) {
module.exports = false;
/***/ }),
/***/ "9edd":
/***/ (function(module, exports) {
var g;
// This works in non-strict mode
g = (function() {
return this;
})();
try {
// This works if eval is allowed (see CSP)
g = g || new Function("return this")();
} catch (e) {
// This works if the window reference is available
if (typeof window === "object") g = window;
}
// g can still be undefined, but nothing to do about it...
// We return undefined, instead of nothing here, so it's
// easier to handle this case. if(!global) { ...}
module.exports = g;
/***/ }),
/***/ "9f67":
/***/ (function(module, exports, __webpack_require__) {
var isObject = __webpack_require__("a719");
// `ToPrimitive` abstract operation
// https://tc39.github.io/ecma262/#sec-toprimitive
// instead of the ES6 spec version, we didn't implement @@toPrimitive case
// and the second argument - flag - preferred type is a string
module.exports = function (input, PREFERRED_STRING) {
if (!isObject(input)) return input;
var fn, val;
if (PREFERRED_STRING && typeof (fn = input.toString) == 'function' && !isObject(val = fn.call(input))) return val;
if (typeof (fn = input.valueOf) == 'function' && !isObject(val = fn.call(input))) return val;
if (!PREFERRED_STRING && typeof (fn = input.toString) == 'function' && !isObject(val = fn.call(input))) return val;
throw TypeError("Can't convert object to primitive value");
};
/***/ }),
/***/ "a133":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var toIndexedObject = __webpack_require__("da10");
var addToUnscopables = __webpack_require__("258f");
var Iterators = __webpack_require__("9806");
var InternalStateModule = __webpack_require__("b702");
var defineIterator = __webpack_require__("99ee");
var ARRAY_ITERATOR = 'Array Iterator';
var setInternalState = InternalStateModule.set;
var getInternalState = InternalStateModule.getterFor(ARRAY_ITERATOR);
// `Array.prototype.entries` method
// https://tc39.github.io/ecma262/#sec-array.prototype.entries
// `Array.prototype.keys` method
// https://tc39.github.io/ecma262/#sec-array.prototype.keys
// `Array.prototype.values` method
// https://tc39.github.io/ecma262/#sec-array.prototype.values
// `Array.prototype[@@iterator]` method
// https://tc39.github.io/ecma262/#sec-array.prototype-@@iterator
// `CreateArrayIterator` internal method
// https://tc39.github.io/ecma262/#sec-createarrayiterator
module.exports = defineIterator(Array, 'Array', function (iterated, kind) {
setInternalState(this, {
type: ARRAY_ITERATOR,
target: toIndexedObject(iterated), // target
index: 0, // next index
kind: kind // kind
});
// `%ArrayIteratorPrototype%.next` method
// https://tc39.github.io/ecma262/#sec-%arrayiteratorprototype%.next
}, function () {
var state = getInternalState(this);
var target = state.target;
var kind = state.kind;
var index = state.index++;
if (!target || index >= target.length) {
state.target = undefined;
return { value: undefined, done: true };
}
if (kind == 'keys') return { value: index, done: false };
if (kind == 'values') return { value: target[index], done: false };
return { value: [index, target[index]], done: false };
}, 'values');
// argumentsList[@@iterator] is %ArrayProto_values%
// https://tc39.github.io/ecma262/#sec-createunmappedargumentsobject
// https://tc39.github.io/ecma262/#sec-createmappedargumentsobject
Iterators.Arguments = Iterators.Array;
// https://tc39.github.io/ecma262/#sec-array.prototype-@@unscopables
addToUnscopables('keys');
addToUnscopables('values');
addToUnscopables('entries');
/***/ }),
/***/ "a4c7":
/***/ (function(module, exports, __webpack_require__) {
/* eslint-disable no-new */
var global = __webpack_require__("d890");
var fails = __webpack_require__("efe2");
var checkCorrectnessOfIteration = __webpack_require__("f471");
var NATIVE_ARRAY_BUFFER_VIEWS = __webpack_require__("5a9e").NATIVE_ARRAY_BUFFER_VIEWS;
var ArrayBuffer = global.ArrayBuffer;
var Int8Array = global.Int8Array;
module.exports = !NATIVE_ARRAY_BUFFER_VIEWS || !fails(function () {
Int8Array(1);
}) || !fails(function () {
new Int8Array(-1);
}) || !checkCorrectnessOfIteration(function (iterable) {
new Int8Array();
new Int8Array(null);
new Int8Array(1.5);
new Int8Array(iterable);
}, true) || fails(function () {
// Safari (11+) bug - a reason why even Safari 13 should load a typed array polyfill
return new Int8Array(new ArrayBuffer(2), 1, undefined).length !== 1;
});
/***/ }),
/***/ "a719":
/***/ (function(module, exports) {
module.exports = function (it) {
return typeof it === 'object' ? it !== null : typeof it === 'function';
};
/***/ }),
/***/ "a7ef":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $reduceRight = __webpack_require__("58d8").right;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.reduceRicht` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.reduceright
exportTypedArrayMethod('reduceRight', function reduceRight(callbackfn /* , initialValue */) {
return $reduceRight(aTypedArray(this), callbackfn, arguments.length, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "aa6b":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var propertyIsEnumerableModule = __webpack_require__("ef71");
var createPropertyDescriptor = __webpack_require__("38b9");
var toIndexedObject = __webpack_require__("da10");
var toPrimitive = __webpack_require__("9f67");
var has = __webpack_require__("faa8");
var IE8_DOM_DEFINE = __webpack_require__("2039");
var nativeGetOwnPropertyDescriptor = Object.getOwnPropertyDescriptor;
// `Object.getOwnPropertyDescriptor` method
// https://tc39.github.io/ecma262/#sec-object.getownpropertydescriptor
exports.f = DESCRIPTORS ? nativeGetOwnPropertyDescriptor : function getOwnPropertyDescriptor(O, P) {
O = toIndexedObject(O);
P = toPrimitive(P, true);
if (IE8_DOM_DEFINE) try {
return nativeGetOwnPropertyDescriptor(O, P);
} catch (error) { /* empty */ }
if (has(O, P)) return createPropertyDescriptor(!propertyIsEnumerableModule.f.call(O, P), O[P]);
};
/***/ }),
/***/ "ab0f":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $findIndex = __webpack_require__("5dfd").findIndex;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.findIndex` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.findindex
exportTypedArrayMethod('findIndex', function findIndex(predicate /* , thisArg */) {
return $findIndex(aTypedArray(this), predicate, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "ab6e":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $copyWithin = __webpack_require__("19fc");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.copyWithin` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.copywithin
exportTypedArrayMethod('copyWithin', function copyWithin(target, start /* , end */) {
return $copyWithin.call(aTypedArray(this), target, start, arguments.length > 2 ? arguments[2] : undefined);
});
/***/ }),
/***/ "ae25":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var isObject = __webpack_require__("a719");
var document = global.document;
// typeof document.createElement is 'object' in old IE
var EXISTS = isObject(document) && isObject(document.createElement);
module.exports = function (it) {
return EXISTS ? document.createElement(it) : {};
};
/***/ }),
/***/ "af86":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var DOMIterables = __webpack_require__("064b");
var ArrayIteratorMethods = __webpack_require__("a133");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var wellKnownSymbol = __webpack_require__("90fb");
var ITERATOR = wellKnownSymbol('iterator');
var TO_STRING_TAG = wellKnownSymbol('toStringTag');
var ArrayValues = ArrayIteratorMethods.values;
for (var COLLECTION_NAME in DOMIterables) {
var Collection = global[COLLECTION_NAME];
var CollectionPrototype = Collection && Collection.prototype;
if (CollectionPrototype) {
// some Chrome versions have non-configurable methods on DOMTokenList
if (CollectionPrototype[ITERATOR] !== ArrayValues) try {
createNonEnumerableProperty(CollectionPrototype, ITERATOR, ArrayValues);
} catch (error) {
CollectionPrototype[ITERATOR] = ArrayValues;
}
if (!CollectionPrototype[TO_STRING_TAG]) {
createNonEnumerableProperty(CollectionPrototype, TO_STRING_TAG, COLLECTION_NAME);
}
if (DOMIterables[COLLECTION_NAME]) for (var METHOD_NAME in ArrayIteratorMethods) {
// some Chrome versions have non-configurable methods on DOMTokenList
if (CollectionPrototype[METHOD_NAME] !== ArrayIteratorMethods[METHOD_NAME]) try {
createNonEnumerableProperty(CollectionPrototype, METHOD_NAME, ArrayIteratorMethods[METHOD_NAME]);
} catch (error) {
CollectionPrototype[METHOD_NAME] = ArrayIteratorMethods[METHOD_NAME];
}
}
}
}
/***/ }),
/***/ "b338":
/***/ (function(module, exports, __webpack_require__) {
var internalObjectKeys = __webpack_require__("ead4");
var enumBugKeys = __webpack_require__("18f6");
var hiddenKeys = enumBugKeys.concat('length', 'prototype');
// `Object.getOwnPropertyNames` method
// https://tc39.github.io/ecma262/#sec-object.getownpropertynames
exports.f = Object.getOwnPropertyNames || function getOwnPropertyNames(O) {
return internalObjectKeys(O, hiddenKeys);
};
/***/ }),
/***/ "b497":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $map = __webpack_require__("5dfd").map;
var speciesConstructor = __webpack_require__("ef4c");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var aTypedArrayConstructor = ArrayBufferViewCore.aTypedArrayConstructor;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.map` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.map
exportTypedArrayMethod('map', function map(mapfn /* , thisArg */) {
return $map(aTypedArray(this), mapfn, arguments.length > 1 ? arguments[1] : undefined, function (O, length) {
return new (aTypedArrayConstructor(speciesConstructor(O, O.constructor)))(length);
});
});
/***/ }),
/***/ "b523":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var floor = Math.floor;
// `%TypedArray%.prototype.reverse` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.reverse
exportTypedArrayMethod('reverse', function reverse() {
var that = this;
var length = aTypedArray(that).length;
var middle = floor(length / 2);
var index = 0;
var value;
while (index < middle) {
value = that[index];
that[index++] = that[--length];
that[length] = value;
} return that;
});
/***/ }),
/***/ "b60f":
/***/ (function(module, exports, __webpack_require__) {
var classof = __webpack_require__("2a91");
var Iterators = __webpack_require__("9806");
var wellKnownSymbol = __webpack_require__("90fb");
var ITERATOR = wellKnownSymbol('iterator');
module.exports = function (it) {
if (it != undefined) return it[ITERATOR]
|| it['@@iterator']
|| Iterators[classof(it)];
};
/***/ }),
/***/ "b6bc":
/***/ (function(module, exports, __webpack_require__) {
var createTypedArrayConstructor = __webpack_require__("26a2");
// `Float32Array` constructor
// https://tc39.github.io/ecma262/#sec-typedarray-objects
createTypedArrayConstructor('Float32', function (init) {
return function Float32Array(data, byteOffset, length) {
return init(this, data, byteOffset, length);
};
});
/***/ }),
/***/ "b702":
/***/ (function(module, exports, __webpack_require__) {
var NATIVE_WEAK_MAP = __webpack_require__("604f");
var global = __webpack_require__("d890");
var isObject = __webpack_require__("a719");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var objectHas = __webpack_require__("faa8");
var sharedKey = __webpack_require__("7db2");
var hiddenKeys = __webpack_require__("d5a8");
var WeakMap = global.WeakMap;
var set, get, has;
var enforce = function (it) {
return has(it) ? get(it) : set(it, {});
};
var getterFor = function (TYPE) {
return function (it) {
var state;
if (!isObject(it) || (state = get(it)).type !== TYPE) {
throw TypeError('Incompatible receiver, ' + TYPE + ' required');
} return state;
};
};
if (NATIVE_WEAK_MAP) {
var store = new WeakMap();
var wmget = store.get;
var wmhas = store.has;
var wmset = store.set;
set = function (it, metadata) {
wmset.call(store, it, metadata);
return metadata;
};
get = function (it) {
return wmget.call(store, it) || {};
};
has = function (it) {
return wmhas.call(store, it);
};
} else {
var STATE = sharedKey('state');
hiddenKeys[STATE] = true;
set = function (it, metadata) {
createNonEnumerableProperty(it, STATE, metadata);
return metadata;
};
get = function (it) {
return objectHas(it, STATE) ? it[STATE] : {};
};
has = function (it) {
return objectHas(it, STATE);
};
}
module.exports = {
set: set,
get: get,
has: has,
enforce: enforce,
getterFor: getterFor
};
/***/ }),
/***/ "c051":
/***/ (function(module, exports, __webpack_require__) {
var toIndexedObject = __webpack_require__("da10");
var nativeGetOwnPropertyNames = __webpack_require__("b338").f;
var toString = {}.toString;
var windowNames = typeof window == 'object' && window && Object.getOwnPropertyNames
? Object.getOwnPropertyNames(window) : [];
var getWindowNames = function (it) {
try {
return nativeGetOwnPropertyNames(it);
} catch (error) {
return windowNames.slice();
}
};
// fallback for IE11 buggy Object.getOwnPropertyNames with iframe and window
module.exports.f = function getOwnPropertyNames(it) {
return windowNames && toString.call(it) == '[object Window]'
? getWindowNames(it)
: nativeGetOwnPropertyNames(toIndexedObject(it));
};
/***/ }),
/***/ "c10f":
/***/ (function(module, exports, __webpack_require__) {
var requireObjectCoercible = __webpack_require__("2732");
var whitespaces = __webpack_require__("fc8c");
var whitespace = '[' + whitespaces + ']';
var ltrim = RegExp('^' + whitespace + whitespace + '*');
var rtrim = RegExp(whitespace + whitespace + '*$');
// `String.prototype.{ trim, trimStart, trimEnd, trimLeft, trimRight }` methods implementation
var createMethod = function (TYPE) {
return function ($this) {
var string = String(requireObjectCoercible($this));
if (TYPE & 1) string = string.replace(ltrim, '');
if (TYPE & 2) string = string.replace(rtrim, '');
return string;
};
};
module.exports = {
// `String.prototype.{ trimLeft, trimStart }` methods
// https://tc39.github.io/ecma262/#sec-string.prototype.trimstart
start: createMethod(1),
// `String.prototype.{ trimRight, trimEnd }` methods
// https://tc39.github.io/ecma262/#sec-string.prototype.trimend
end: createMethod(2),
// `String.prototype.trim` method
// https://tc39.github.io/ecma262/#sec-string.prototype.trim
trim: createMethod(3)
};
/***/ }),
/***/ "c3ba":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var exportTypedArrayMethod = __webpack_require__("5a9e").exportTypedArrayMethod;
var fails = __webpack_require__("efe2");
var global = __webpack_require__("d890");
var Uint8Array = global.Uint8Array;
var Uint8ArrayPrototype = Uint8Array && Uint8Array.prototype || {};
var arrayToString = [].toString;
var arrayJoin = [].join;
if (fails(function () { arrayToString.call({}); })) {
arrayToString = function toString() {
return arrayJoin.call(this);
};
}
var IS_NOT_ARRAY_METHOD = Uint8ArrayPrototype.toString != arrayToString;
// `%TypedArray%.prototype.toString` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.tostring
exportTypedArrayMethod('toString', arrayToString, IS_NOT_ARRAY_METHOD);
/***/ }),
/***/ "c4e4":
/***/ (function(module, exports) {
module.exports = function (it, Constructor, name) {
if (!(it instanceof Constructor)) {
throw TypeError('Incorrect ' + (name ? name + ' ' : '') + 'invocation');
} return it;
};
/***/ }),
/***/ "c54b":
/***/ (function(module, exports, __webpack_require__) {
var fails = __webpack_require__("efe2");
module.exports = !!Object.getOwnPropertySymbols && !fails(function () {
// Chrome 38 Symbol has incorrect toString conversion
// eslint-disable-next-line no-undef
return !String(Symbol());
});
/***/ }),
/***/ "c69d":
/***/ (function(module, exports, __webpack_require__) {
var has = __webpack_require__("faa8");
var ownKeys = __webpack_require__("8d44");
var getOwnPropertyDescriptorModule = __webpack_require__("aa6b");
var definePropertyModule = __webpack_require__("d910");
module.exports = function (target, source) {
var keys = ownKeys(source);
var defineProperty = definePropertyModule.f;
var getOwnPropertyDescriptor = getOwnPropertyDescriptorModule.f;
for (var i = 0; i < keys.length; i++) {
var key = keys[i];
if (!has(target, key)) defineProperty(target, key, getOwnPropertyDescriptor(source, key));
}
};
/***/ }),
/***/ "cbab":
/***/ (function(module, exports, __webpack_require__) {
var internalObjectKeys = __webpack_require__("ead4");
var enumBugKeys = __webpack_require__("18f6");
// `Object.keys` method
// https://tc39.github.io/ecma262/#sec-object.keys
module.exports = Object.keys || function keys(O) {
return internalObjectKeys(O, enumBugKeys);
};
/***/ }),
/***/ "cfd1":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $indexOf = __webpack_require__("45af").indexOf;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.indexOf` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.indexof
exportTypedArrayMethod('indexOf', function indexOf(searchElement /* , fromIndex */) {
return $indexOf(aTypedArray(this), searchElement, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "d104":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var global = __webpack_require__("d890");
var ArrayBufferViewCore = __webpack_require__("5a9e");
var ArrayIterators = __webpack_require__("a133");
var wellKnownSymbol = __webpack_require__("90fb");
var ITERATOR = wellKnownSymbol('iterator');
var Uint8Array = global.Uint8Array;
var arrayValues = ArrayIterators.values;
var arrayKeys = ArrayIterators.keys;
var arrayEntries = ArrayIterators.entries;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var nativeTypedArrayIterator = Uint8Array && Uint8Array.prototype[ITERATOR];
var CORRECT_ITER_NAME = !!nativeTypedArrayIterator
&& (nativeTypedArrayIterator.name == 'values' || nativeTypedArrayIterator.name == undefined);
var typedArrayValues = function values() {
return arrayValues.call(aTypedArray(this));
};
// `%TypedArray%.prototype.entries` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.entries
exportTypedArrayMethod('entries', function entries() {
return arrayEntries.call(aTypedArray(this));
});
// `%TypedArray%.prototype.keys` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.keys
exportTypedArrayMethod('keys', function keys() {
return arrayKeys.call(aTypedArray(this));
});
// `%TypedArray%.prototype.values` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.values
exportTypedArrayMethod('values', typedArrayValues, !CORRECT_ITER_NAME);
// `%TypedArray%.prototype[@@iterator]` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype-@@iterator
exportTypedArrayMethod(ITERATOR, typedArrayValues, !CORRECT_ITER_NAME);
/***/ }),
/***/ "d1fd":
/***/ (function(module, exports, __webpack_require__) {
var isObject = __webpack_require__("a719");
module.exports = function (it) {
if (!isObject(it) && it !== null) {
throw TypeError("Can't set " + String(it) + ' as a prototype');
} return it;
};
/***/ }),
/***/ "d5a8":
/***/ (function(module, exports) {
module.exports = {};
/***/ }),
/***/ "d77f":
/***/ (function(module, exports) {
module.exports = typeof ArrayBuffer !== 'undefined' && typeof DataView !== 'undefined';
/***/ }),
/***/ "d7e1":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var fails = __webpack_require__("efe2");
module.exports = function (METHOD_NAME, argument) {
var method = [][METHOD_NAME];
return !!method && fails(function () {
// eslint-disable-next-line no-useless-call,no-throw-literal
method.call(null, argument || function () { throw 1; }, 1);
});
};
/***/ }),
/***/ "d838":
/***/ (function(module, exports, __webpack_require__) {
var createTypedArrayConstructor = __webpack_require__("26a2");
// `Uint32Array` constructor
// https://tc39.github.io/ecma262/#sec-typedarray-objects
createTypedArrayConstructor('Uint32', function (init) {
return function Uint32Array(data, byteOffset, length) {
return init(this, data, byteOffset, length);
};
});
/***/ }),
/***/ "d88d":
/***/ (function(module, exports, __webpack_require__) {
var toInteger = __webpack_require__("3da3");
var min = Math.min;
// `ToLength` abstract operation
// https://tc39.github.io/ecma262/#sec-tolength
module.exports = function (argument) {
return argument > 0 ? min(toInteger(argument), 0x1FFFFFFFFFFFFF) : 0; // 2 ** 53 - 1 == 9007199254740991
};
/***/ }),
/***/ "d890":
/***/ (function(module, exports, __webpack_require__) {
/* WEBPACK VAR INJECTION */(function(global) {var check = function (it) {
return it && it.Math == Math && it;
};
// https://github.com/zloirock/core-js/issues/86#issuecomment-115759028
module.exports =
// eslint-disable-next-line no-undef
check(typeof globalThis == 'object' && globalThis) ||
check(typeof window == 'object' && window) ||
check(typeof self == 'object' && self) ||
check(typeof global == 'object' && global) ||
// eslint-disable-next-line no-new-func
Function('return this')();
/* WEBPACK VAR INJECTION */}.call(this, __webpack_require__("9edd")))
/***/ }),
/***/ "d8fc":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var DESCRIPTORS = __webpack_require__("1e2c");
var fails = __webpack_require__("efe2");
var objectKeys = __webpack_require__("cbab");
var getOwnPropertySymbolsModule = __webpack_require__("0a60");
var propertyIsEnumerableModule = __webpack_require__("ef71");
var toObject = __webpack_require__("3553");
var IndexedObject = __webpack_require__("692f");
var nativeAssign = Object.assign;
var defineProperty = Object.defineProperty;
// `Object.assign` method
// https://tc39.github.io/ecma262/#sec-object.assign
module.exports = !nativeAssign || fails(function () {
// should have correct order of operations (Edge bug)
if (DESCRIPTORS && nativeAssign({ b: 1 }, nativeAssign(defineProperty({}, 'a', {
enumerable: true,
get: function () {
defineProperty(this, 'b', {
value: 3,
enumerable: false
});
}
}), { b: 2 })).b !== 1) return true;
// should work with symbols and should have deterministic property order (V8 bug)
var A = {};
var B = {};
// eslint-disable-next-line no-undef
var symbol = Symbol();
var alphabet = 'abcdefghijklmnopqrst';
A[symbol] = 7;
alphabet.split('').forEach(function (chr) { B[chr] = chr; });
return nativeAssign({}, A)[symbol] != 7 || objectKeys(nativeAssign({}, B)).join('') != alphabet;
}) ? function assign(target, source) { // eslint-disable-line no-unused-vars
var T = toObject(target);
var argumentsLength = arguments.length;
var index = 1;
var getOwnPropertySymbols = getOwnPropertySymbolsModule.f;
var propertyIsEnumerable = propertyIsEnumerableModule.f;
while (argumentsLength > index) {
var S = IndexedObject(arguments[index++]);
var keys = getOwnPropertySymbols ? objectKeys(S).concat(getOwnPropertySymbols(S)) : objectKeys(S);
var length = keys.length;
var j = 0;
var key;
while (length > j) {
key = keys[j++];
if (!DESCRIPTORS || propertyIsEnumerable.call(S, key)) T[key] = S[key];
}
} return T;
} : nativeAssign;
/***/ }),
/***/ "d910":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var IE8_DOM_DEFINE = __webpack_require__("2039");
var anObject = __webpack_require__("857c");
var toPrimitive = __webpack_require__("9f67");
var nativeDefineProperty = Object.defineProperty;
// `Object.defineProperty` method
// https://tc39.github.io/ecma262/#sec-object.defineproperty
exports.f = DESCRIPTORS ? nativeDefineProperty : function defineProperty(O, P, Attributes) {
anObject(O);
P = toPrimitive(P, true);
anObject(Attributes);
if (IE8_DOM_DEFINE) try {
return nativeDefineProperty(O, P, Attributes);
} catch (error) { /* empty */ }
if ('get' in Attributes || 'set' in Attributes) throw TypeError('Accessors not supported');
if ('value' in Attributes) O[P] = Attributes.value;
return O;
};
/***/ }),
/***/ "da10":
/***/ (function(module, exports, __webpack_require__) {
// toObject with fallback for non-array-like ES3 strings
var IndexedObject = __webpack_require__("692f");
var requireObjectCoercible = __webpack_require__("2732");
module.exports = function (it) {
return IndexedObject(requireObjectCoercible(it));
};
/***/ }),
/***/ "db0a":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $filter = __webpack_require__("5dfd").filter;
var speciesConstructor = __webpack_require__("ef4c");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var aTypedArrayConstructor = ArrayBufferViewCore.aTypedArrayConstructor;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.filter` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.filter
exportTypedArrayMethod('filter', function filter(callbackfn /* , thisArg */) {
var list = $filter(aTypedArray(this), callbackfn, arguments.length > 1 ? arguments[1] : undefined);
var C = speciesConstructor(this, this.constructor);
var index = 0;
var length = list.length;
var result = new (aTypedArrayConstructor(C))(length);
while (length > index) result[index] = list[index++];
return result;
});
/***/ }),
/***/ "dbe8":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var definePropertyModule = __webpack_require__("d910");
var anObject = __webpack_require__("857c");
var objectKeys = __webpack_require__("cbab");
// `Object.defineProperties` method
// https://tc39.github.io/ecma262/#sec-object.defineproperties
module.exports = DESCRIPTORS ? Object.defineProperties : function defineProperties(O, Properties) {
anObject(O);
var keys = objectKeys(Properties);
var length = keys.length;
var index = 0;
var key;
while (length > index) definePropertyModule.f(O, key = keys[index++], Properties[key]);
return O;
};
/***/ }),
/***/ "e026":
/***/ (function(module, exports) {
// IEEE754 conversions based on https://github.com/feross/ieee754
// eslint-disable-next-line no-shadow-restricted-names
var Infinity = 1 / 0;
var abs = Math.abs;
var pow = Math.pow;
var floor = Math.floor;
var log = Math.log;
var LN2 = Math.LN2;
var pack = function (number, mantissaLength, bytes) {
var buffer = new Array(bytes);
var exponentLength = bytes * 8 - mantissaLength - 1;
var eMax = (1 << exponentLength) - 1;
var eBias = eMax >> 1;
var rt = mantissaLength === 23 ? pow(2, -24) - pow(2, -77) : 0;
var sign = number < 0 || number === 0 && 1 / number < 0 ? 1 : 0;
var index = 0;
var exponent, mantissa, c;
number = abs(number);
// eslint-disable-next-line no-self-compare
if (number != number || number === Infinity) {
// eslint-disable-next-line no-self-compare
mantissa = number != number ? 1 : 0;
exponent = eMax;
} else {
exponent = floor(log(number) / LN2);
if (number * (c = pow(2, -exponent)) < 1) {
exponent--;
c *= 2;
}
if (exponent + eBias >= 1) {
number += rt / c;
} else {
number += rt * pow(2, 1 - eBias);
}
if (number * c >= 2) {
exponent++;
c /= 2;
}
if (exponent + eBias >= eMax) {
mantissa = 0;
exponent = eMax;
} else if (exponent + eBias >= 1) {
mantissa = (number * c - 1) * pow(2, mantissaLength);
exponent = exponent + eBias;
} else {
mantissa = number * pow(2, eBias - 1) * pow(2, mantissaLength);
exponent = 0;
}
}
for (; mantissaLength >= 8; buffer[index++] = mantissa & 255, mantissa /= 256, mantissaLength -= 8);
exponent = exponent << mantissaLength | mantissa;
exponentLength += mantissaLength;
for (; exponentLength > 0; buffer[index++] = exponent & 255, exponent /= 256, exponentLength -= 8);
buffer[--index] |= sign * 128;
return buffer;
};
var unpack = function (buffer, mantissaLength) {
var bytes = buffer.length;
var exponentLength = bytes * 8 - mantissaLength - 1;
var eMax = (1 << exponentLength) - 1;
var eBias = eMax >> 1;
var nBits = exponentLength - 7;
var index = bytes - 1;
var sign = buffer[index--];
var exponent = sign & 127;
var mantissa;
sign >>= 7;
for (; nBits > 0; exponent = exponent * 256 + buffer[index], index--, nBits -= 8);
mantissa = exponent & (1 << -nBits) - 1;
exponent >>= -nBits;
nBits += mantissaLength;
for (; nBits > 0; mantissa = mantissa * 256 + buffer[index], index--, nBits -= 8);
if (exponent === 0) {
exponent = 1 - eBias;
} else if (exponent === eMax) {
return mantissa ? NaN : sign ? -Infinity : Infinity;
} else {
mantissa = mantissa + pow(2, mantissaLength);
exponent = exponent - eBias;
} return (sign ? -1 : 1) * mantissa * pow(2, exponent - mantissaLength);
};
module.exports = {
pack: pack,
unpack: unpack
};
/***/ }),
/***/ "e18c":
/***/ (function(module, exports, __webpack_require__) {
var TO_STRING_TAG_SUPPORT = __webpack_require__("47ae");
var redefine = __webpack_require__("1944");
var toString = __webpack_require__("52f9");
// `Object.prototype.toString` method
// https://tc39.github.io/ecma262/#sec-object.prototype.tostring
if (!TO_STRING_TAG_SUPPORT) {
redefine(Object.prototype, 'toString', toString, { unsafe: true });
}
/***/ }),
/***/ "e1d6":
/***/ (function(module, exports, __webpack_require__) {
var toInteger = __webpack_require__("3da3");
var max = Math.max;
var min = Math.min;
// Helper for a popular repeating case of the spec:
// Let integer be ? ToInteger(index).
// If integer < 0, let result be max((length + integer), 0); else let result be min(integer, length).
module.exports = function (index, length) {
var integer = toInteger(index);
return integer < 0 ? max(integer + length, 0) : min(integer, length);
};
/***/ }),
/***/ "e349":
/***/ (function(module, exports, __webpack_require__) {
var aFunction = __webpack_require__("0c3c");
// optional / simple context binding
module.exports = function (fn, that, length) {
aFunction(fn);
if (that === undefined) return fn;
switch (length) {
case 0: return function () {
return fn.call(that);
};
case 1: return function (a) {
return fn.call(that, a);
};
case 2: return function (a, b) {
return fn.call(that, a, b);
};
case 3: return function (a, b, c) {
return fn.call(that, a, b, c);
};
}
return function (/* ...args */) {
return fn.apply(that, arguments);
};
};
/***/ }),
/***/ "e35a":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var exec = __webpack_require__("5139");
$({ target: 'RegExp', proto: true, forced: /./.exec !== exec }, {
exec: exec
});
/***/ }),
/***/ "e4db":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var createNonEnumerableProperty = __webpack_require__("0fc1");
module.exports = function (key, value) {
try {
createNonEnumerableProperty(global, key, value);
} catch (error) {
global[key] = value;
} return value;
};
/***/ }),
/***/ "e62b":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var bind = __webpack_require__("e349");
var toObject = __webpack_require__("3553");
var callWithSafeIterationClosing = __webpack_require__("69c5");
var isArrayIteratorMethod = __webpack_require__("98a9");
var toLength = __webpack_require__("d88d");
var createProperty = __webpack_require__("1bbd");
var getIteratorMethod = __webpack_require__("b60f");
// `Array.from` method implementation
// https://tc39.github.io/ecma262/#sec-array.from
module.exports = function from(arrayLike /* , mapfn = undefined, thisArg = undefined */) {
var O = toObject(arrayLike);
var C = typeof this == 'function' ? this : Array;
var argumentsLength = arguments.length;
var mapfn = argumentsLength > 1 ? arguments[1] : undefined;
var mapping = mapfn !== undefined;
var iteratorMethod = getIteratorMethod(O);
var index = 0;
var length, result, step, iterator, next, value;
if (mapping) mapfn = bind(mapfn, argumentsLength > 2 ? arguments[2] : undefined, 2);
// if the target is not iterable or it's an array with the default iterator - use a simple case
if (iteratorMethod != undefined && !(C == Array && isArrayIteratorMethod(iteratorMethod))) {
iterator = iteratorMethod.call(O);
next = iterator.next;
result = new C();
for (;!(step = next.call(iterator)).done; index++) {
value = mapping ? callWithSafeIterationClosing(iterator, mapfn, [step.value, index], true) : step.value;
createProperty(result, index, value);
}
} else {
length = toLength(O.length);
result = new C(length);
for (;length > index; index++) {
value = mapping ? mapfn(O[index], index) : O[index];
createProperty(result, index, value);
}
}
result.length = index;
return result;
};
/***/ }),
/***/ "e671":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var toLength = __webpack_require__("d88d");
var toOffset = __webpack_require__("7aeb");
var toObject = __webpack_require__("3553");
var fails = __webpack_require__("efe2");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var FORCED = fails(function () {
// eslint-disable-next-line no-undef
new Int8Array(1).set({});
});
// `%TypedArray%.prototype.set` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.set
exportTypedArrayMethod('set', function set(arrayLike /* , offset */) {
aTypedArray(this);
var offset = toOffset(arguments.length > 1 ? arguments[1] : undefined, 1);
var length = this.length;
var src = toObject(arrayLike);
var len = toLength(src.length);
var index = 0;
if (len + offset > length) throw RangeError('Wrong length');
while (index < len) this[offset + index] = src[index++];
}, FORCED);
/***/ }),
/***/ "e8d6":
/***/ (function(module, exports, __webpack_require__) {
var fails = __webpack_require__("efe2");
var replacement = /#|\.prototype\./;
var isForced = function (feature, detection) {
var value = data[normalize(feature)];
return value == POLYFILL ? true
: value == NATIVE ? false
: typeof detection == 'function' ? fails(detection)
: !!detection;
};
var normalize = isForced.normalize = function (string) {
return String(string).replace(replacement, '.').toLowerCase();
};
var data = isForced.data = {};
var NATIVE = isForced.NATIVE = 'N';
var POLYFILL = isForced.POLYFILL = 'P';
module.exports = isForced;
/***/ }),
/***/ "ead4":
/***/ (function(module, exports, __webpack_require__) {
var has = __webpack_require__("faa8");
var toIndexedObject = __webpack_require__("da10");
var indexOf = __webpack_require__("45af").indexOf;
var hiddenKeys = __webpack_require__("d5a8");
module.exports = function (object, names) {
var O = toIndexedObject(object);
var i = 0;
var result = [];
var key;
for (key in O) !has(hiddenKeys, key) && has(O, key) && result.push(key);
// Don't enum bug & hidden keys
while (names.length > i) if (has(O, key = names[i++])) {
~indexOf(result, key) || result.push(key);
}
return result;
};
/***/ }),
/***/ "eec6":
/***/ (function(module, exports, __webpack_require__) {
var fails = __webpack_require__("efe2");
module.exports = !fails(function () {
function F() { /* empty */ }
F.prototype.constructor = null;
return Object.getPrototypeOf(new F()) !== F.prototype;
});
/***/ }),
/***/ "ef4c":
/***/ (function(module, exports, __webpack_require__) {
var anObject = __webpack_require__("857c");
var aFunction = __webpack_require__("0c3c");
var wellKnownSymbol = __webpack_require__("90fb");
var SPECIES = wellKnownSymbol('species');
// `SpeciesConstructor` abstract operation
// https://tc39.github.io/ecma262/#sec-speciesconstructor
module.exports = function (O, defaultConstructor) {
var C = anObject(O).constructor;
var S;
return C === undefined || (S = anObject(C)[SPECIES]) == undefined ? defaultConstructor : aFunction(S);
};
/***/ }),
/***/ "ef71":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var nativePropertyIsEnumerable = {}.propertyIsEnumerable;
var getOwnPropertyDescriptor = Object.getOwnPropertyDescriptor;
// Nashorn ~ JDK8 bug
var NASHORN_BUG = getOwnPropertyDescriptor && !nativePropertyIsEnumerable.call({ 1: 2 }, 1);
// `Object.prototype.propertyIsEnumerable` method implementation
// https://tc39.github.io/ecma262/#sec-object.prototype.propertyisenumerable
exports.f = NASHORN_BUG ? function propertyIsEnumerable(V) {
var descriptor = getOwnPropertyDescriptor(this, V);
return !!descriptor && descriptor.enumerable;
} : nativePropertyIsEnumerable;
/***/ }),
/***/ "efe2":
/***/ (function(module, exports) {
module.exports = function (exec) {
try {
return !!exec();
} catch (error) {
return true;
}
};
/***/ }),
/***/ "f09c":
/***/ (function(module, exports, __webpack_require__) {
var $ = __webpack_require__("1c8b");
var assign = __webpack_require__("d8fc");
// `Object.assign` method
// https://tc39.github.io/ecma262/#sec-object.assign
$({ target: 'Object', stat: true, forced: Object.assign !== assign }, {
assign: assign
});
/***/ }),
/***/ "f30b":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $includes = __webpack_require__("45af").includes;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.includes` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.includes
exportTypedArrayMethod('includes', function includes(searchElement /* , fromIndex */) {
return $includes(aTypedArray(this), searchElement, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "f3dd":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var global = __webpack_require__("d890");
var getBuiltIn = __webpack_require__("6d7a");
var IS_PURE = __webpack_require__("9b9d");
var DESCRIPTORS = __webpack_require__("1e2c");
var NATIVE_SYMBOL = __webpack_require__("c54b");
var USE_SYMBOL_AS_UID = __webpack_require__("74cb");
var fails = __webpack_require__("efe2");
var has = __webpack_require__("faa8");
var isArray = __webpack_require__("74e7");
var isObject = __webpack_require__("a719");
var anObject = __webpack_require__("857c");
var toObject = __webpack_require__("3553");
var toIndexedObject = __webpack_require__("da10");
var toPrimitive = __webpack_require__("9f67");
var createPropertyDescriptor = __webpack_require__("38b9");
var nativeObjectCreate = __webpack_require__("6d60");
var objectKeys = __webpack_require__("cbab");
var getOwnPropertyNamesModule = __webpack_require__("b338");
var getOwnPropertyNamesExternal = __webpack_require__("c051");
var getOwnPropertySymbolsModule = __webpack_require__("0a60");
var getOwnPropertyDescriptorModule = __webpack_require__("aa6b");
var definePropertyModule = __webpack_require__("d910");
var propertyIsEnumerableModule = __webpack_require__("ef71");
var createNonEnumerableProperty = __webpack_require__("0fc1");
var redefine = __webpack_require__("1944");
var shared = __webpack_require__("6d28");
var sharedKey = __webpack_require__("7db2");
var hiddenKeys = __webpack_require__("d5a8");
var uid = __webpack_require__("7e8b");
var wellKnownSymbol = __webpack_require__("90fb");
var wrappedWellKnownSymbolModule = __webpack_require__("4350");
var defineWellKnownSymbol = __webpack_require__("6d51");
var setToStringTag = __webpack_require__("27b5");
var InternalStateModule = __webpack_require__("b702");
var $forEach = __webpack_require__("5dfd").forEach;
var HIDDEN = sharedKey('hidden');
var SYMBOL = 'Symbol';
var PROTOTYPE = 'prototype';
var TO_PRIMITIVE = wellKnownSymbol('toPrimitive');
var setInternalState = InternalStateModule.set;
var getInternalState = InternalStateModule.getterFor(SYMBOL);
var ObjectPrototype = Object[PROTOTYPE];
var $Symbol = global.Symbol;
var $stringify = getBuiltIn('JSON', 'stringify');
var nativeGetOwnPropertyDescriptor = getOwnPropertyDescriptorModule.f;
var nativeDefineProperty = definePropertyModule.f;
var nativeGetOwnPropertyNames = getOwnPropertyNamesExternal.f;
var nativePropertyIsEnumerable = propertyIsEnumerableModule.f;
var AllSymbols = shared('symbols');
var ObjectPrototypeSymbols = shared('op-symbols');
var StringToSymbolRegistry = shared('string-to-symbol-registry');
var SymbolToStringRegistry = shared('symbol-to-string-registry');
var WellKnownSymbolsStore = shared('wks');
var QObject = global.QObject;
// Don't use setters in Qt Script, https://github.com/zloirock/core-js/issues/173
var USE_SETTER = !QObject || !QObject[PROTOTYPE] || !QObject[PROTOTYPE].findChild;
// fallback for old Android, https://code.google.com/p/v8/issues/detail?id=687
var setSymbolDescriptor = DESCRIPTORS && fails(function () {
return nativeObjectCreate(nativeDefineProperty({}, 'a', {
get: function () { return nativeDefineProperty(this, 'a', { value: 7 }).a; }
})).a != 7;
}) ? function (O, P, Attributes) {
var ObjectPrototypeDescriptor = nativeGetOwnPropertyDescriptor(ObjectPrototype, P);
if (ObjectPrototypeDescriptor) delete ObjectPrototype[P];
nativeDefineProperty(O, P, Attributes);
if (ObjectPrototypeDescriptor && O !== ObjectPrototype) {
nativeDefineProperty(ObjectPrototype, P, ObjectPrototypeDescriptor);
}
} : nativeDefineProperty;
var wrap = function (tag, description) {
var symbol = AllSymbols[tag] = nativeObjectCreate($Symbol[PROTOTYPE]);
setInternalState(symbol, {
type: SYMBOL,
tag: tag,
description: description
});
if (!DESCRIPTORS) symbol.description = description;
return symbol;
};
var isSymbol = USE_SYMBOL_AS_UID ? function (it) {
return typeof it == 'symbol';
} : function (it) {
return Object(it) instanceof $Symbol;
};
var $defineProperty = function defineProperty(O, P, Attributes) {
if (O === ObjectPrototype) $defineProperty(ObjectPrototypeSymbols, P, Attributes);
anObject(O);
var key = toPrimitive(P, true);
anObject(Attributes);
if (has(AllSymbols, key)) {
if (!Attributes.enumerable) {
if (!has(O, HIDDEN)) nativeDefineProperty(O, HIDDEN, createPropertyDescriptor(1, {}));
O[HIDDEN][key] = true;
} else {
if (has(O, HIDDEN) && O[HIDDEN][key]) O[HIDDEN][key] = false;
Attributes = nativeObjectCreate(Attributes, { enumerable: createPropertyDescriptor(0, false) });
} return setSymbolDescriptor(O, key, Attributes);
} return nativeDefineProperty(O, key, Attributes);
};
var $defineProperties = function defineProperties(O, Properties) {
anObject(O);
var properties = toIndexedObject(Properties);
var keys = objectKeys(properties).concat($getOwnPropertySymbols(properties));
$forEach(keys, function (key) {
if (!DESCRIPTORS || $propertyIsEnumerable.call(properties, key)) $defineProperty(O, key, properties[key]);
});
return O;
};
var $create = function create(O, Properties) {
return Properties === undefined ? nativeObjectCreate(O) : $defineProperties(nativeObjectCreate(O), Properties);
};
var $propertyIsEnumerable = function propertyIsEnumerable(V) {
var P = toPrimitive(V, true);
var enumerable = nativePropertyIsEnumerable.call(this, P);
if (this === ObjectPrototype && has(AllSymbols, P) && !has(ObjectPrototypeSymbols, P)) return false;
return enumerable || !has(this, P) || !has(AllSymbols, P) || has(this, HIDDEN) && this[HIDDEN][P] ? enumerable : true;
};
var $getOwnPropertyDescriptor = function getOwnPropertyDescriptor(O, P) {
var it = toIndexedObject(O);
var key = toPrimitive(P, true);
if (it === ObjectPrototype && has(AllSymbols, key) && !has(ObjectPrototypeSymbols, key)) return;
var descriptor = nativeGetOwnPropertyDescriptor(it, key);
if (descriptor && has(AllSymbols, key) && !(has(it, HIDDEN) && it[HIDDEN][key])) {
descriptor.enumerable = true;
}
return descriptor;
};
var $getOwnPropertyNames = function getOwnPropertyNames(O) {
var names = nativeGetOwnPropertyNames(toIndexedObject(O));
var result = [];
$forEach(names, function (key) {
if (!has(AllSymbols, key) && !has(hiddenKeys, key)) result.push(key);
});
return result;
};
var $getOwnPropertySymbols = function getOwnPropertySymbols(O) {
var IS_OBJECT_PROTOTYPE = O === ObjectPrototype;
var names = nativeGetOwnPropertyNames(IS_OBJECT_PROTOTYPE ? ObjectPrototypeSymbols : toIndexedObject(O));
var result = [];
$forEach(names, function (key) {
if (has(AllSymbols, key) && (!IS_OBJECT_PROTOTYPE || has(ObjectPrototype, key))) {
result.push(AllSymbols[key]);
}
});
return result;
};
// `Symbol` constructor
// https://tc39.github.io/ecma262/#sec-symbol-constructor
if (!NATIVE_SYMBOL) {
$Symbol = function Symbol() {
if (this instanceof $Symbol) throw TypeError('Symbol is not a constructor');
var description = !arguments.length || arguments[0] === undefined ? undefined : String(arguments[0]);
var tag = uid(description);
var setter = function (value) {
if (this === ObjectPrototype) setter.call(ObjectPrototypeSymbols, value);
if (has(this, HIDDEN) && has(this[HIDDEN], tag)) this[HIDDEN][tag] = false;
setSymbolDescriptor(this, tag, createPropertyDescriptor(1, value));
};
if (DESCRIPTORS && USE_SETTER) setSymbolDescriptor(ObjectPrototype, tag, { configurable: true, set: setter });
return wrap(tag, description);
};
redefine($Symbol[PROTOTYPE], 'toString', function toString() {
return getInternalState(this).tag;
});
redefine($Symbol, 'withoutSetter', function (description) {
return wrap(uid(description), description);
});
propertyIsEnumerableModule.f = $propertyIsEnumerable;
definePropertyModule.f = $defineProperty;
getOwnPropertyDescriptorModule.f = $getOwnPropertyDescriptor;
getOwnPropertyNamesModule.f = getOwnPropertyNamesExternal.f = $getOwnPropertyNames;
getOwnPropertySymbolsModule.f = $getOwnPropertySymbols;
wrappedWellKnownSymbolModule.f = function (name) {
return wrap(wellKnownSymbol(name), name);
};
if (DESCRIPTORS) {
// https://github.com/tc39/proposal-Symbol-description
nativeDefineProperty($Symbol[PROTOTYPE], 'description', {
configurable: true,
get: function description() {
return getInternalState(this).description;
}
});
if (!IS_PURE) {
redefine(ObjectPrototype, 'propertyIsEnumerable', $propertyIsEnumerable, { unsafe: true });
}
}
}
$({ global: true, wrap: true, forced: !NATIVE_SYMBOL, sham: !NATIVE_SYMBOL }, {
Symbol: $Symbol
});
$forEach(objectKeys(WellKnownSymbolsStore), function (name) {
defineWellKnownSymbol(name);
});
$({ target: SYMBOL, stat: true, forced: !NATIVE_SYMBOL }, {
// `Symbol.for` method
// https://tc39.github.io/ecma262/#sec-symbol.for
'for': function (key) {
var string = String(key);
if (has(StringToSymbolRegistry, string)) return StringToSymbolRegistry[string];
var symbol = $Symbol(string);
StringToSymbolRegistry[string] = symbol;
SymbolToStringRegistry[symbol] = string;
return symbol;
},
// `Symbol.keyFor` method
// https://tc39.github.io/ecma262/#sec-symbol.keyfor
keyFor: function keyFor(sym) {
if (!isSymbol(sym)) throw TypeError(sym + ' is not a symbol');
if (has(SymbolToStringRegistry, sym)) return SymbolToStringRegistry[sym];
},
useSetter: function () { USE_SETTER = true; },
useSimple: function () { USE_SETTER = false; }
});
$({ target: 'Object', stat: true, forced: !NATIVE_SYMBOL, sham: !DESCRIPTORS }, {
// `Object.create` method
// https://tc39.github.io/ecma262/#sec-object.create
create: $create,
// `Object.defineProperty` method
// https://tc39.github.io/ecma262/#sec-object.defineproperty
defineProperty: $defineProperty,
// `Object.defineProperties` method
// https://tc39.github.io/ecma262/#sec-object.defineproperties
defineProperties: $defineProperties,
// `Object.getOwnPropertyDescriptor` method
// https://tc39.github.io/ecma262/#sec-object.getownpropertydescriptors
getOwnPropertyDescriptor: $getOwnPropertyDescriptor
});
$({ target: 'Object', stat: true, forced: !NATIVE_SYMBOL }, {
// `Object.getOwnPropertyNames` method
// https://tc39.github.io/ecma262/#sec-object.getownpropertynames
getOwnPropertyNames: $getOwnPropertyNames,
// `Object.getOwnPropertySymbols` method
// https://tc39.github.io/ecma262/#sec-object.getownpropertysymbols
getOwnPropertySymbols: $getOwnPropertySymbols
});
// Chrome 38 and 39 `Object.getOwnPropertySymbols` fails on primitives
// https://bugs.chromium.org/p/v8/issues/detail?id=3443
$({ target: 'Object', stat: true, forced: fails(function () { getOwnPropertySymbolsModule.f(1); }) }, {
getOwnPropertySymbols: function getOwnPropertySymbols(it) {
return getOwnPropertySymbolsModule.f(toObject(it));
}
});
// `JSON.stringify` method behavior with symbols
// https://tc39.github.io/ecma262/#sec-json.stringify
if ($stringify) {
var FORCED_JSON_STRINGIFY = !NATIVE_SYMBOL || fails(function () {
var symbol = $Symbol();
// MS Edge converts symbol values to JSON as {}
return $stringify([symbol]) != '[null]'
// WebKit converts symbol values to JSON as null
|| $stringify({ a: symbol }) != '{}'
// V8 throws on boxed symbols
|| $stringify(Object(symbol)) != '{}';
});
$({ target: 'JSON', stat: true, forced: FORCED_JSON_STRINGIFY }, {
// eslint-disable-next-line no-unused-vars
stringify: function stringify(it, replacer, space) {
var args = [it];
var index = 1;
var $replacer;
while (arguments.length > index) args.push(arguments[index++]);
$replacer = replacer;
if (!isObject(replacer) && it === undefined || isSymbol(it)) return; // IE8 returns string on undefined
if (!isArray(replacer)) replacer = function (key, value) {
if (typeof $replacer == 'function') value = $replacer.call(this, key, value);
if (!isSymbol(value)) return value;
};
args[1] = replacer;
return $stringify.apply(null, args);
}
});
}
// `Symbol.prototype[@@toPrimitive]` method
// https://tc39.github.io/ecma262/#sec-symbol.prototype-@@toprimitive
if (!$Symbol[PROTOTYPE][TO_PRIMITIVE]) {
createNonEnumerableProperty($Symbol[PROTOTYPE], TO_PRIMITIVE, $Symbol[PROTOTYPE].valueOf);
}
// `Symbol.prototype[@@toStringTag]` property
// https://tc39.github.io/ecma262/#sec-symbol.prototype-@@tostringtag
setToStringTag($Symbol, SYMBOL);
hiddenKeys[HIDDEN] = true;
/***/ }),
/***/ "f471":
/***/ (function(module, exports, __webpack_require__) {
var wellKnownSymbol = __webpack_require__("90fb");
var ITERATOR = wellKnownSymbol('iterator');
var SAFE_CLOSING = false;
try {
var called = 0;
var iteratorWithReturn = {
next: function () {
return { done: !!called++ };
},
'return': function () {
SAFE_CLOSING = true;
}
};
iteratorWithReturn[ITERATOR] = function () {
return this;
};
// eslint-disable-next-line no-throw-literal
Array.from(iteratorWithReturn, function () { throw 2; });
} catch (error) { /* empty */ }
module.exports = function (exec, SKIP_CLOSING) {
if (!SKIP_CLOSING && !SAFE_CLOSING) return false;
var ITERATION_SUPPORT = false;
try {
var object = {};
object[ITERATOR] = function () {
return {
next: function () {
return { done: ITERATION_SUPPORT = true };
}
};
};
exec(object);
} catch (error) { /* empty */ }
return ITERATION_SUPPORT;
};
/***/ }),
/***/ "f594":
/***/ (function(module, exports, __webpack_require__) {
var global = __webpack_require__("d890");
var userAgent = __webpack_require__("4fda");
var process = global.process;
var versions = process && process.versions;
var v8 = versions && versions.v8;
var match, version;
if (v8) {
match = v8.split('.');
version = match[0] + match[1];
} else if (userAgent) {
match = userAgent.match(/Edge\/(\d+)/);
if (!match || match[1] >= 74) {
match = userAgent.match(/Chrome\/(\d+)/);
if (match) version = match[1];
}
}
module.exports = version && +version;
/***/ }),
/***/ "f62c":
/***/ (function(module, exports, __webpack_require__) {
var toInteger = __webpack_require__("3da3");
var requireObjectCoercible = __webpack_require__("2732");
// `String.prototype.{ codePointAt, at }` methods implementation
var createMethod = function (CONVERT_TO_STRING) {
return function ($this, pos) {
var S = String(requireObjectCoercible($this));
var position = toInteger(pos);
var size = S.length;
var first, second;
if (position < 0 || position >= size) return CONVERT_TO_STRING ? '' : undefined;
first = S.charCodeAt(position);
return first < 0xD800 || first > 0xDBFF || position + 1 === size
|| (second = S.charCodeAt(position + 1)) < 0xDC00 || second > 0xDFFF
? CONVERT_TO_STRING ? S.charAt(position) : first
: CONVERT_TO_STRING ? S.slice(position, position + 2) : (first - 0xD800 << 10) + (second - 0xDC00) + 0x10000;
};
};
module.exports = {
// `String.prototype.codePointAt` method
// https://tc39.github.io/ecma262/#sec-string.prototype.codepointat
codeAt: createMethod(false),
// `String.prototype.at` method
// https://github.com/mathiasbynens/String.prototype.at
charAt: createMethod(true)
};
/***/ }),
/***/ "f74a":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
var $join = [].join;
// `%TypedArray%.prototype.join` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.join
// eslint-disable-next-line no-unused-vars
exportTypedArrayMethod('join', function join(separator) {
return $join.apply(aTypedArray(this), arguments);
});
/***/ }),
/***/ "fa41":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var toObject = __webpack_require__("3553");
var toAbsoluteIndex = __webpack_require__("e1d6");
var toLength = __webpack_require__("d88d");
// `Array.prototype.fill` method implementation
// https://tc39.github.io/ecma262/#sec-array.prototype.fill
module.exports = function fill(value /* , start = 0, end = @length */) {
var O = toObject(this);
var length = toLength(O.length);
var argumentsLength = arguments.length;
var index = toAbsoluteIndex(argumentsLength > 1 ? arguments[1] : undefined, length);
var end = argumentsLength > 2 ? arguments[2] : undefined;
var endPos = end === undefined ? length : toAbsoluteIndex(end, length);
while (endPos > index) O[index++] = value;
return O;
};
/***/ }),
/***/ "faa8":
/***/ (function(module, exports) {
var hasOwnProperty = {}.hasOwnProperty;
module.exports = function (it, key) {
return hasOwnProperty.call(it, key);
};
/***/ }),
/***/ "fc6e":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var ArrayBufferViewCore = __webpack_require__("5a9e");
var $forEach = __webpack_require__("5dfd").forEach;
var aTypedArray = ArrayBufferViewCore.aTypedArray;
var exportTypedArrayMethod = ArrayBufferViewCore.exportTypedArrayMethod;
// `%TypedArray%.prototype.forEach` method
// https://tc39.github.io/ecma262/#sec-%typedarray%.prototype.foreach
exportTypedArrayMethod('forEach', function forEach(callbackfn /* , thisArg */) {
$forEach(aTypedArray(this), callbackfn, arguments.length > 1 ? arguments[1] : undefined);
});
/***/ }),
/***/ "fc8c":
/***/ (function(module, exports) {
// a string of all valid unicode whitespaces
// eslint-disable-next-line max-len
module.exports = '\u0009\u000A\u000B\u000C\u000D\u0020\u00A0\u1680\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2009\u200A\u202F\u205F\u3000\u2028\u2029\uFEFF';
/***/ }),
/***/ "fe59":
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var $ = __webpack_require__("1c8b");
var forEach = __webpack_require__("3c10");
// `Array.prototype.forEach` method
// https://tc39.github.io/ecma262/#sec-array.prototype.foreach
$({ target: 'Array', proto: true, forced: [].forEach != forEach }, {
forEach: forEach
});
/***/ }),
/***/ "ff9c":
/***/ (function(module, exports, __webpack_require__) {
var DESCRIPTORS = __webpack_require__("1e2c");
var fails = __webpack_require__("efe2");
var has = __webpack_require__("faa8");
var defineProperty = Object.defineProperty;
var cache = {};
var thrower = function (it) { throw it; };
module.exports = function (METHOD_NAME, options) {
if (has(cache, METHOD_NAME)) return cache[METHOD_NAME];
if (!options) options = {};
var method = [][METHOD_NAME];
var ACCESSORS = has(options, 'ACCESSORS') ? options.ACCESSORS : false;
var argument0 = has(options, 0) ? options[0] : thrower;
var argument1 = has(options, 1) ? options[1] : undefined;
return cache[METHOD_NAME] = !!method && !fails(function () {
if (ACCESSORS && !DESCRIPTORS) return true;
var O = { length: -1 };
if (ACCESSORS) defineProperty(O, 1, { enumerable: true, get: thrower });
else O[1] = 1;
method.call(O, argument0, argument1);
});
};
/***/ })
/******/ });
});
//# sourceMappingURL=vue-3d-model.umd.js.map